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Abstract 
Speech activity detection (SAD) on channel transmissions is a 
critical preprocessing task for speech, speaker and language 
recognition or for further human analysis. This paper presents 
a feature combination approach to improve SAD on highly 
channel degraded speech as part of the Defense Advanced 
Research Projects Agency’s (DARPA) Robust Automatic 
Transcription of Speech (RATS) program. The key 
contribution is the feature combination exploration of different 
novel SAD features based on pitch and spectro-temporal 
processing and the standard Mel Frequency Cepstral 
Coefficients (MFCC) acoustic feature. The SAD features are: 
(1) a GABOR feature representation, followed by a multilayer 
perceptron (MLP); (2) a feature that combines multiple 
voicing features and spectral flux measures (Combo); (3) a 
feature based on subband autocorrelation (SAcC) and MLP 
postprocessing and (4) a multiband comb-filter F0 
(MBCombF0) voicing measure. We present single, pairwise 
and all feature combinations, show high error reductions from 
pairwise feature level combination over the MFCC baseline 
and show that the best performance is achieved by the 
combination of all features. 
Index Terms: speech detection, channel-degraded speech, 
robust voicing features 

1. Introduction 
Speech activity detection (SAD) on noisy channel 
transmissions is a critical preprocessing task for speech, 
speaker and language recognition or for further human 
analysis. SAD tackles the problem of separation between 
speech and background noises and channel distortions such as 
spurious tones, etc. 

Numerous methods have been proposed for speech 
detection. Some simple methods are based on comparing the 
frame energy, zero crossing rate, periodicity measure, or 
spectral entropy with a detection threshold to make the 
speech/nonspeech decision. More advanced methods include 
long-term spectral divergence measure [1, 2], amplitude 
probability distribution [3], and low-variance spectrum 
estimation [4]. 

This paper presents a feature combination approach to 
improve speech detection performance. The main motivation 
is to improve the baseline acoustic feature performance with 
different novel pitch and spectro-temporal processing features 
by exploring the complementary information from the 
presence of a pitch structure or from a different spectro-

temporal representation. We combine an MFCC acoustic 
feature with four speech activity detection features: (1) a 
GABOR feature representation followed by a multilayer 
perceptron that produces a speech confidence measure; (2) a 
Combo feature that combines multiple voicing features and a 
spectral flow measure; (3) a feature based on subband 
autocorrelation (SAcC) and MLP postprocessing and (4) a 
multiband comb-filter F0 (MBCombF0) voicing measure 
estimated from a multiple filterbank representation. We 
present speech detection results for highly channel-degraded 
speech data collected as part of the DARPA RATS program. 
We show gains from feature level combination, resulting in 
significant error reductions over the MFCC baseline. 

The RATS program aims at the development of robust 
speech processing techniques for highly degraded transmission 
channel data, specifically for SAD, speaker and language 
identification, and keyword spotting. The data was collected 
by the Linguistic Data Consortium (LDC) by retransmitting 
conversational telephone speech (CTS) through eight different 
communication channels [12] using multiple signal 
transmitters/transceivers, listening station receivers and signal 
collection and digitization apparatus. The RATS rebroadcasted 
data is unique in that it contains a wide array of real 
transmission distortions such as: band limitation, strong 
channel noises, nonlinear speech distortions (e.g., clipping), 
frequency shifts, high energy non transmission bursts, etc. 

The proposed SAD system is based on a smoothed log 
likelihood ratio between a speech Gaussian mixture model 
(GMM) and a background GMM with a multiple feature 
combination input and Discrete Cosine Transform (DCT) long 
range modeling. The SAD model is similar to the one 
presented by Ng et. al. [11], however we used different model 
and likelihood smoothing parameters. The long span feature 
and dimensionality reduction technique differ from the one 
from Ng; instead of Heterosedastic linear discrimination 
(HLDA) we used the DCT technique. In Ng’s paper the DCT 
component is used but on the MLP SAD subcomponent. 
Finally, the types of features differ as well. In our work we 
employ the standard acoustic features (i.e., MFCC) as well as 
four different types of features ranging from spectro-temporal 
to voicing derived features, whereas Ng’s paper a combination 
of standard acoustic features and cortical based features. 

2. Features Description 
This section describes specific aspects of each of the four 
SAD-specific features: GABOR, Combo, SAcC and 
MBCombF0. 
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2.1. GABOR Feature 
The GABOR with MLP feature is computed by processing a 
Mel spectrogram by 59 real-valued spectro-temporal filters 
covering a range of temporal and spectral frequencies. Each of 
these filters can be viewed as correlating the time-frequency 
plane with a particular ripple in time and frequency. Because 
some of these filters yield very similar outputs for neighboring 
spectral channels, only a subset of 449 GABOR features is 
used for each time frame. As the final preprocessing step, 
mean and variance normalization of the features over the 
training set is performed. GABOR features are described in 
[5].  

Next, a MLP is trained to predict speech/nonspeech labels 
given 9 frames of the 449 GABOR features, or 4,041 inputs. 
The MLP uses 300 hidden units and 2 output units. The size of 
the hidden layer is chosen so that each MLP parameter has 
approximately 20 training data points. Although the MLP is 
trained with a softmax nonlinearity at the output, during 
feature generation the values used are the linear outputs before 
the nonlinearity. The resulting 2 outputs are then mean and 
variance normalized per file, and used as the input features to 
the classification backend. 

2.2. Combo Feature 
This section describes the procedure for extracting a 1-
dimensional feature vector that has been shown to possess 
great potential for speech/non-speech discrimination in harsh 
acoustic noise environments [6]. This “combo” feature is 
efficiently obtained from a linear combination of four voicing 
measures as well as a perceptual spectral flux (SF) measure. 
The perceptual SF and periodicity are extracted in the 
frequency domain, whereas the harmonicity, clarity, and 
prediction gain are time domain features.  

The combo feature includes the following: (1) 
Harmonicity (also known as harmonics-to-noise ratio) is 
defined as the relative height of the maximum autocorrelation 
peak in the plausible pitch range. (2) Clarity is the relative 
depth of the minimum average magnitude difference function 
(AMDF) valley in the plausible pitch range. Computing the 
AMDF from its exact definition is costly; however, it has been 
shown [7] that the AMDF can be derived (analytically) from 
the autocorrelation. (3) Prediction gain is defined as the ratio 
of the signal energy to the linear prediction (LP) residual 
signal energy. (4) Periodicity, in the short-time Fourier 
transform domain, is the maximum peak of the harmonic 
product spectrum (HPS) [8] in the plausible pitch range. (5) 
Perceptual SF measures the degree of variation in the 
subjective spectrum across time. In short-time frames, speech 
is a quasistationary and slowly varying signal, that is, its 
spectrum does not change rapidly from one frame to another. 

After extracting the features, a 5-dimensional vector is 
formed by concatenating the voicing measures along with the 
perceptual SF. Each feature dimension  is normalized by its 
mean and variance over the entire waveform. The normalized 
5-dimensional feature vectors are linearly mapped into a 1-
dimensional feature space represented by the most significant 
eigenvector of the feature covariance matrix. This is realized 
through principal component analysis (PCA), and by retaining 
the dimension that corresponds to the largest eigenvalue. The 
1-dimensional feature vector is further smoothed via a 3-point 
median filter and passed to the next stage for speech activity 
detector.  

2.3. MBCombF0 Feature 
The voicing feature is the estimated degree of voicing of each 
frame computed by the MBCombF0 algorithm, which is a 
modification of the correlogram-based F0 estimation 
algorithm described in [9]. The processing sequence of the 
MBCombF0 is the following. A frame length of 100 ms is 
used. First, the input signal is downsampled to 8 kHz and split 
into four subbands that cover 0 to 3.4 kHz. Each subband has a 
1-kHz bandwidth and overlaps the adjacent filter by 0.2 kHz. 
Envelope extraction is then performed on each subband 
stream, followed by multichannel comb-filtering with comb 
filters of different interpeak frequencies.  

Next, reliable comb-channels are selected individually for 
each subband using a 3-stage selection process. The first 
selection stage is based on the comb-channel's harmonic-to-
subharmonic-energy ratio in the respective subband, those 
with a peak magnitude greater than one. In the second stage, 
comb-channels and their corresponding subharmonic channels 
(with an interpeak frequency that is half of the former) are 
retained if both are present in this initial selected set. In the 
final selection stage, channels whose maximum 
autocorrelation peak location (computed from their comb-
filtered outputs) is close to their corresponding comb-filters' 
fundamental period are selected. A subband summary 
correlogram is then derived from the weighted average of 
selected energy-normalized autocorrelation functions. Finally, 
the four subband summary correlograms are combined using a 
subband reliability weighting scheme to form the multiband 
summary correlogram. The weighting of each subband 
depends on its maximum harmonic-to-subharmonic-energy 
ratio and the number of the subband summary correlogram 
whose maximum peak location is similar to its own. Time-
smoothing is then applied to the multiband summary 
correlogram as described in [9], and the maximum peak 
magnitude of the resulting summary correlogram is the 
MBCombF0 voicing feature extracted.  

2.4. SAcC Feature 
The SAcC feature (for Subband Autocorrelation 
Classification) [10] is derived from our noise-robust pitch 
tracker. SAcC involves an MLP classifier trained on subband 
autocorrelation features to estimate, for each time frame, the 
posterior probability over a range of quantized pitch values, 
and one "no-pitch" output. We trained a RATS-specific MLP 
by using the consensus of conventional pitch trackers applied 
to the clean (source) signal to create a ground truth for each of 
the noisy (received) channels; we trained a single MLP for all 
channels. For this system, we used only the "no-pitch" 
posterior as a feature to indicate the absence of voiced speech 
in the signal frame. 

2.5. Feature Figures 
Figure 1 shows a plot of the channel-degraded waveform for 
channel A, spectrogram, labels, and the GABOR, Combo, 
SAcC and MBCombF0 feature outputs per frame. Rectangles 
superimposed on the waveform highlight the speech regions. 
Notice the highly channel-degraded waveform and low signal 
to noise ratio (SNR). The labels are 1 for speech, 0 for non-
speech and -1 for no transmission (NT) regions. The NT 
regions are high energy white noise type of sounds interleaved 
between valid signal transmissions. GABOR features are 
much smoother with a long time span. Other SAD features are 
frame-based so they have a more dynamic behavior. However, 
they all achieve good detection of the speech regions. 
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Interestingly, the three voicing based features provide 
somewhat different outputs. 
 

 Figure 1: Waveform, spectrogram, ground truth speech and 
nonspeech labels, GABOR, Combo, SAcC and MBCombF0 

features. Speech regions marked in black rectangles. 

3. SAD Description 
The SAD system is based on a frame-based smoothed log-
likelihood ratio (LLR) setup. The LLR is computed between 
speech and nonspeech Gaussian mixture models (GMM). 
Then the LLR is smoothed with a multiple window median 
filter of length 51 frames. Finally, the speech regions are 
obtained from the smoothed LLR frames which are higher 
than a given threshold. No padding was used to artificially 
extend the speech regions. 

Additionally, we used long range modeling using a 1-
dimensional Discrete Cosine Transform (DCT). For each 
feature dimension we first created a window of multiple 
frames. Next, we computed the DCT transform and only 
preserved a subset of the initial DCT coefficients to obtain the 
desired number of features. This results in a low-dimensional 
representation of the feature modulation within the multi-
frame window. We found that a 30 frame window was optimal 
for most features. We then concatenated the DCT 
dimensionality-reduced features for all dimensions and applied 
waveform level mean and variance normalization.  

For most of the experiments we used 256-mixture GMMs 
with full covariance matrices for speech and nonspeech 
classes. We trained channel dependent models, therefore at 
test time we ended up with 16 models, 8 for speech and 8 for 
nonspeech. When testing SAD features we used 32-mixture 
GMMs with full covariance matrices due to their reduced 
feature dimension. During testing we obtained the LLR from 
the numerator obtained as the sum of the log probability of the 
speech models given the current feature and the denominator 
obtained from the sum of the log probability of the nonspeech 
models given the current feature. No channel selection is 
performed during testing. 

4. Experiments 

4.1. Data Description 
This section discusses speech detection in RATS data. We 
present the results of each feature in isolation and then the 
feature level combination results.  

The data used belongs to the LDC collections for the 
DARPA RATS program: LDC2011E86, LDC2011E99, and 
LDC2011E111. We trained models on the train subsets and 
tested on the Dev-1 and Dev-2 sets. These two development 
sets contain similar data but we found Dev-2 to contain speech 
at lower SNR. The data was annotated with speech and 
background labels. More details are presented in Walker and 
Strassel [12]. 

The audio data was retransmitted using a multilink 
transmission system designed and hosted at LDC. Eight 
combinations of analog transmitters and receivers were used 
covering a range of carrier frequencies, modes and 
bandwidths, from 1MHz amplitude modulation to 2.4GHz 
frequency modulation. 

The audio material for retransmission was obtained from 
existing speech corpora such as Fisher English data, Levantine 
Arabic telephone data and RATS program specific collections, 
which included speech in several languages such as English, 
Pashto, Urdu, Levantine Arabic, etc. 

4.2. Error Computation  
The equal error rate (EER) was computed from two error 
measures using SAIC’s RES engine which is the official SAD 
scoring software for the RATS program. One error measure is 
the probability of missing speech (Pmiss), and the second is 
the likelihood of falsely accepting the speech presence 
hypothesis (Pfa). These are computed as follows:  
 
Pmiss = total_missed_speech / total_scored_speech 
Pfa = total_false_accept_speech / total_scored_nonspeech 
 
where total_missed_speech is the duration of the undetected 
speech regions, and total_scored_speech is the duration of all 
the speech regions from transcripts. 
Total_false_accept_speech is the duration of the falsely 
detected speech segments, and total_scored_nonspeech is the 
total duration of the nonspeech regions from transcripts. 

4.3. Speech Detection Results 
Table 1 shows the % EER for different input features on Dev-
1 and Dev-2 sets. We first tested all the features in isolation. 
Next, in Table 2 we performed a two way combination 
between MFCC and each of the alternative SAD features. For 
example, in the first case we appended the 40-dimensional 
MFCC to a 4-dimensional GABOR feature, resulting in a 44 
dimensional feature vector. Finally, in Table 2 we performed 
full feature combination between MFCC and the four SAD 
features resulting in a 56-dimensional feature vector. In Table 
3 we present the channel specific results for the all feature 
combination system. Notice that channel D is missing, as it 
was officially excluded from scoring. 
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Table 1: Single Feature Speech Detection % EER Results. 
Input 
Features 

Feat 
Dim 

Model 
Gauss 

% EER  
Dev-1 

% EER  
Dev-2 

MFCC (baseline) 40 256 2.05 2.70 
GABOR   4   32 4.00 5.45 
Combo   4   32 4.20 4.75 
SAcC   4   32 4.75 4.90 
MBCombF0   4   32 4.10 6.15 

 
In Table 1 we used the performance of the MFCC feature 

with DCT processing as the baseline, which resulted in a very 
low EER on both Dev-1 and Dev-2 sets. Next, we compared 
the other four SAD features in isolation. On Dev-1 GABOR 
achieves the lowest EER, followed by MBCombF0, and 
finally Combo and SAcC. However, on Dev-2 the best feature 
is Combo, followed by SAcC, GABOR and MBCombF0. This 
reveals that some features might be more robust to the specific 
types of distortions in one set but fail to generalize to the other 
set. The increased errors on Dev-2 might be due to the fact 
that SNRs are lower than that on Dev-1. 
 

Table 2: Feature Combination Speech Detection % EER 
Results. 

Input 
 Features 

Feat 
Dim 

Model 
Gauss 

% EER  
Dev-1 

% EER  
Dev-2 

MFCC + GABOR 44 256 1.70 2.50 
MFCC + Combo 44 256 1.85 2.40 
MFCC + SAcC 44 256 1.90 2.45 
MFCC + MBCombF0 44 256 1.65 2.45 
MFCC + All SAD  56 256 1.55 2.10 

 
Analyzing the results in Table 2 we found big error 

reductions on both sets when combining one SAD feature with 
the MFCC feature compared to the baseline performance. On 
Dev-1 the best pairwise combination is with MBCombF0 
followed by the combination with GABOR. Interestingly, this 
reverses the order of performance from Table 1 for each of 
these features in isolation. The combination with Combo and 
SAcC also produces error reductions compared to the baseline. 
On Dev-2 the best pairwise combination is achieved with 
Combo feature, followed closely by the combination with 
SAcC, MBCombF0 and finally GABOR. This trend in Dev-2 
additionally shows that these different features in combination 
and over different test sets produce different gains, therefore it 
is expected that the combination of all features will result in 
further performance improvements. 

Finally, the best performance is found from the all feature 
combination on both development sets. On Dev-1 the relative 
gain from the all feature combination system over the MFCC 
baseline is 24.3% and over the best pairwise combination is 
6.0%. On Dev-2 the relative gain from the all feature 
combination system over the MFCC baseline is 22.2% (about 
the same as on Dev-1) and over the best pairwise combination 
is 12.5%. This means that each SAD feature provides different 
complementary information to the baseline MFCC feature. 
This is a very relevant result as three out of the four SAD 
features (Combo, SAcC and MBCombF0) aim at capturing 
voicing information. Since each of these features approaches 
the problem from a different perspective and use different 
processing techniques, the complementary information is 
expected. 

 

Table 3: % EER Results by Channel on Dev-1 
from MFCC and MFCC+All SAD Feature Systems. 

Input 
Feature A B C E F G H 

MFCC 2.50 3.05 2.40 3.05 2.00 0.80 1.90 
MFCC + 
All SAD 2.25 2.40 2.35 2.00 2.45 0.70 1.20 

 
In Table 3 we present the channel specific results on Dev-

1 from the MFCC only and the all feature combination 
systems, this last one is the one which performed best in Table 
2. Comparing both systems, there is a gain from the feature 
combination system in all channels except for F. The best 
performance for the MFCC+All SAD system is achieved on 
channel G, followed by channel H and the rest of the channels 
with similar performance overall. On channel G the signal is 
very clear and SNR is higher compared to other channels. In 
addition, channel G data does not contain any non-transmit 
(NT) regions. Channel H also overall contains high SNR 
recordings. The other channels contain different types of 
distortions and vary in SNR and speech degradation types. 
Overall the performance is similar in those highly degraded 
channels which reveal a consistent behavior of the proposed 
SAD. However, performance on those degraded channels lag 
behind channels G and H, which reveals that there is still work 
to do to minimize that difference. 

5. Conclusions 
Our feature combination approach results in a highly accurate 
speech detector despite high degradation by channel noise and 
transmission distortions. We found significant gains from 
combining a MFCC acoustic feature with four speech activity 
detection features: GABOR, Combo, SAcC and MBCombF0l. 
These SAD features differ in their processing techniques, one 
is based on spectro-temporal processing and the other three are 
based on voicing measure estimation. Their different 
processing techniques and approaches result in different 
performances over two different test sets. The complementary 
information from these features results in important gains 
when combining with the baseline MFCC feature. Finally, we 
found important gains in performance when combining all the 
features, which is the major benefit from the feature 
combination explored in this paper.  
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