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Speech Enhancement Using a
Constrained Iterative Sinusoidal Model

Jesper Jensen and John H. L. Hansen, Senior Member, IEEE

Abstract—This paper presents a sinusoidal model based algo-
rithm for enhancement of speech degraded by additive broad-band
noise. In order to ensure speech-like characteristics observed in
clean speech, smoothness constraints are imposed on the model pa-
rameters using a spectral envelope surface (SES) smoothing proce-
dure. Algorithm evaluation is performed using speech signals de-
graded by additive white Gaussian noise. Distortion as measured
by objective speech quality scores showed a 34%–41% reduction
over a SNR range of 5-to-20 dB. Objective and subjective evalu-
ations also show considerable improvement over traditional spec-
tral subtraction and Wiener filtering based schemes. Finally, in a
subjective AB preference test, where enhanced signals were coded
with the G729 codec, the proposed scheme was preferred over the
traditional enhancement schemes tested for SNR’s in the range of
5 to 20 dB.

Index Terms—Sinusoidal speech model, speech and noise, speech
enhancement, speech quality.

I. INTRODUCTION

I N general, the need exists for digital voice communications
or automatic speech recognition systems to perform reliably

in noisy environments. For example in hands-free operation of
cellular phones in vehicles, the speech signal to be transmitted
may be contaminated by reverberation and background noise. In
many cases, these systems work well in nearly noise-free condi-
tions, while their performance deteriorates rapidly in noisy con-
ditions. Therefore, development of preprocessing algorithms for
reducing background degradation in speech signals is of current
interest.

In the past, a number of single-microphone speech en-
hancement algorithms have been proposed. A number of these
are discussed in overview studies by Lim and Oppenheim
[15], Ephraim [3], and Hansen [7]. These include variants of
spectral subtraction [2], methods based on all-pole modeling
[8], [15], subspace model based methods [5], [14], schemes
based on hidden Markov models [4], [25], and algorithms

Manuscript received April 25, 2000; revised June 28, 2001. This work was
conducted at CSLR during a 1999/2000 visiting internship, with financial sup-
port provided by the Danish Government and CPK. This work was also sup-
ported in part by SPAWAR under Grant N66001-92-0092. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Hsiao-Chuan Wang.

J. Jensen was with Center for PersonKommunikation (CPK), Aalborg
University, Denmark. He is now with the Information and Communication
Theory Group, Delft University of Technology, Delft, The Netherlands (e-mail:
j.jensen@its.tudelft.nl).

J. H. L. Hansen is with Center for Spoken Language Research (CSLR), Ro-
bust Speech Processing Laboratory (RSPL), University of Colorado, Boulder,
CO 80309-0594 USA (e-mail: john.hansen@colorado.edu; http://cslr.col-
orado.edu/rspl/).

Publisher Item Identifier S 1063-6676(01)08236-0.

that exploit masking effects, [26], [27]. Some methods have
focused on iterative speech modeling schemes that employ
speech production-like spectral constraints (e.g., Auto-LSP
[8], [10]), auditory based constraints (e.g., ACE-I,II [19],
[11]), and noise dependent constraints (e.g., [9], [20]). These
methods however assume a linear all-pole based speech model.
Although successful for speech coding (e.g., [16]), and speech
signal modification (e.g., [24]), the sinusoidal model has not
received the same level of attention in a speech enhancement
context [1], [17], [22], [23].

In this paper, we propose a sinusoidal model based algo-
rithm for enhancement of speech degraded by additive broad-
band noise. Adopting a similar idea as that used in [8], for an
all-pole model, the present algorithm exploits the notion that
during the speech production process, the vocal tract transfer
function varies continuously and relatively slowly with time.
Furthermore, in most voiced speech regions, the fundamental
frequency varies relatively slowly as well. The aim of the
proposed enhancement scheme is to improve the quality of the
enhanced speech signal, by exploiting this knowledge of the
signals origin to apply speech production constraints in the en-
hancement process.

This paper is structured as follows. Section II introduces the
signal model and notation. In Section III each step of the en-
hancement algorithm is considered in detail. Algorithm perfor-
mance using objective and subjective testing with signals de-
graded with additive white Gaussian noise (AWGN) are pre-
sented in Section IV. The evaluation is based on an objective
speech quality measure as well as subjective listener preference
tests. Finally, in Section V, we summarize our study and identify
directions for future research.

II. SIGNAL MODEL AND NOTATION

In this paper, we assume that speech is corrupted by additive
broadband noise as follows:

where and denote the noisy speech, clean signal, and
noise component, respectively. Furthermore, the noise is as-
sumed stationary, such that the estimate of the noise spectrum
in silence regions is still valid during speech activity. Finally, it
is assumed that the noise is uncorrelated with the speech signal.
The noise level is measured with the global SNR defined as

where denotes vector transposition.
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The enhanced speech signal is modeled as a sum of sinusoids
on a frame-by-frame basis as

(1)

where is the enhanced speech, is the number of sinu-
soids used; and , and are th sinusoidal ampli-
tude, angular frequency, and phase, respectively, for frame.
Finally, since the proposed algorithm is iterative, the superscript

is used to denote the iteration number, (e.g., represents
the amplitude vector for frame at iteration ).

III. ENHANCEMENT ALGORITHM

A. Algorithm Overview

It is well-known that most clean voiced speech segments can
be represented accurately with the model from (1) such that am-
plitudes and frequencies are relatively smooth functions of time
(provided frequent parameter updates, e.g., every 10 ms). How-
ever, when estimated from a noisy signal, using peak-picking of
the FFT magnitude spectrum as described in [16, p. 143], the si-
nusoidal parameters show a much more unstructured behavior.
The aim of the proposed algorithm is to obtain an enhanced
signal, where the amplitudes and frequencies evolve smoothly
with time, as is expected in a clean voiced speech signal.

In Fig. 1, the proposed algorithm is outlined. First, the noisy
speech signal is divided into overlapping analysis frames.
Initial sinusoidal parameters are estimated for each frame.
Amplitudes and frequencies (in voiced regions) are refined
iteratively, while the initial phase values are not modified.
Finally, enhanced frames are synthesized using estimated and
constrained smoothed parameters for theth iteration in an
overlap-and-add manner in order to generate the enhanced
speech signal.

B. Estimation of Initial Sinusoidal Model Parameters

Each of the noisy signal frames are Hanning windowed, zero-
padded, and transformed with a high-order FFT. In noise-only
regions, an estimate of the noise amplitude spectrum is calcu-
lated as the average FFT magnitude spectrum across consec-
utive analysis signal frames. The updating of this smoothed,
high-order FFT magnitude spectrum is terminated in regions
where speech is present.

In signal frames with speech (and noise), the goal is to
represent the speech signal with the sinusoidal model in (1).
The first step toward this goal is to select all spectral peaks
of each FFT magnitude spectrum. These peaks represent
candidate triplets from which the speech
signal relevant triplets are selected.

For voiced speech frames, the relevant signal peaks are
mainly due to periodicity of the speech signal, while other
peaks are related to analysis window side lobes or noise.
Using a rough estimate in frame , the frequency
axis is divided into nonoverlapping bands of the form

, and a peak

Fig. 1. Block diagram of the enhancement algorithm. Black arrows: algorithm
flow and white arrows: parameter input/output.

from each band is selected. For each of these frequency bands
an SNR is estimated as

where denotes the highest amplitude in frequency band
number , and denotes the value of the noise amplitude
spectrum sampled at the frequency bin associated with. In
bands with SNR above a prespecified value, (in the re-
ported simulations a value of dB was used), the
highest peak is selected. In all other bands, the peak closest to

is selected, where denotes the middle of the fre-
quency band in question. Using this peak-picking strategy in
low SNR bands generally works better than selecting the highest
peak in all bands.

While for unvoiced frames it is more difficult to decide which
peaks best describe the clean speech signal, it is well-known
that relatively many sinusoidal components are needed to rep-
resent noise-like speech sounds (e.g., unvoiced fricatives) well
[16]. Thus, one reasonable approach might be to keep all the
candidate peaks for the later processing stages. However, in
the presence of noise, some voiced frames will typically be
mis-classified as unvoiced, and experiments have shown that the
side lobe peaks between harmonic peaks in these mis-classified
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Fig. 2. FFT Magnitude spectra with candidate peaks (‘+’) and selected peaks (‘�’). (a) Voiced frame /ae/ in “had” (̂F = 314 Hz), (b) Unvoiced frame /s/ in
“she”, (c) Misclassified voiced frame /i/ in “she”.

voiced frames should be discarded to avoid audible artifacts in
the enhanced signal (We mention in passing that mis-classified
voiced frames constitute more than 90% of the observed voicing
errors). In order to increase robustness against mis-classified
voiced frames, the following sidelobe detection scheme is ap-
plied. Side lobe peaks are detected by calculating the slopes of
the lines between each peak and its two neighbors. If neighbor
peaks have higher amplitude and steeper slopes than a pre-spec-
ified value, (simulations have shown a value of

dB/Hz to work well), the peak represents a side lobe and
should be discarded. The sidelobe detection scheme succeeds in
discarding most of the sidelobe peaks in mis-classified voiced
frames, while the perceptual quality of the truly unvoiced frames
remains essentially unchanged. In principle, sidelobe detection
could also be used for voiced frames in combination with the

based scheme described above. However, this combined ap-
proach did not lead to improved performance, and was thus
abandoned.

Fig. 2 illustrates the peak-picking procedure for a female
speech signal sampled at 8 kHz and degraded with additive
white Gaussian noise at a global SNR of 20 dB. Fig. 2(a) shows
the FFT magnitude spectrum for a voiced signal frame (/ae/
in “had”). The peaks of the magnitude spectrum are marked
with ‘ ’; these represent potential sinusoidal components. In
addition, the peaks selected in the peak-picking procedure for
voiced speech described above are marked with ‘’. Clearly,
all peaks representing harmonics have been picked, while
all other peaks have been discarded. Fig. 2(b) illustrates the
peak-picking procedure for an unvoiced signal frame (/s/ in
“she”). Here, the peaks are generally spaced less structured

compared to the voiced case. For illustrative purposes, we
deliberately misclassified a voiced frame (/i/ in “she”) as
unvoiced in Fig. 2(c), and the unvoiced peak-picking procedure
was applied. From this figure it is clear that using the unvoiced
peak-picking procedure here causes most of the harmonic
peaks to be picked, while most of the sidelobe peaks between
the harmonics have been discarded. Thus, the peak-picking
scheme in unvoiced frames is relatively robust toward voicing
errors.

Using this peak-picking approach with clean speech signals
results in modeled signals of high perceptual quality, nearly in-
distinguishable from the originals.

C. Enhancement and Amplitude Smoothing Constraints

The procedure for enhancement of sinusoidal amplitudes
consists of two steps. The first step aims at reducing the noise,
while the second step ensures that amplitudes evolve smoothly
with time.

In the first step, enhanced amplitudes are estimated using a
weighted average between amplitude values from the previous
iteration and their Wiener filtered counterparts,

where

(2)

where
value of the Wiener filter at frequency ;

estimated sinusoidal amplitude at iteration;
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Fig. 3. Spectral envelope approximation(–––) for clean, voiced, speech segment obtained by linear interpolation between spectral peaks in the log-amplitude
domain.

noise amplitude spectrum sampled at the fre-
quency bin corresponding to .

The weight factor controls the amount of noise reduction at
each iteration.

In the second step, enhanced amplitude values are used to
obtain a vocal tract spectral envelope approximation for frame

by linear interpolation between the points

As suggested in [16, p. 143], interpolation is performed in the
log-amplitude domain. Fig. 3 shows an example of a vocal tract
envelope approximation. Spectral envelope approximations for
consecutive frames constitute what we call the spectral envelope
surface (SES), which reflects a grid of points; see Fig. 4 for
an example. Since the vocal tract transfer function presumably
varies continuously and relatively slowly with time, and the SES
is a spectral interpretation of this evolution, the SES should be
a smooth surface.

For this reason, a smoothing procedure is applied to the esti-
mated SES, by calculating a weighted average between each of
the points on the SES and the eight neighboring points

(3)

The weight factor is adjusted close to in low SNR
regions of SES and close to 1 in high SNR regions. With this
scheme, amplitudes at high SNR are not greatly modified,

Fig. 4. SES obtained from consecutive spectral envelope approximations of
clean voiced speech segments.

while low SNR amplitudes can change more during the
smoothing process. After smoothing of the SES, enhanced and
smoothed amplitude values are obtained by resampling
the smoothed SES at points corresponding to the frequencies

. We note that the amplitude smoothing procedure (3)
makes use of a one frame look-ahead per iteration.

D. Smoothing of Frequency Tracks

In noisy conditions, only a rough fundamental frequency
estimate can be expected. This issue coupled with the

peak-picking procedure described above, results in rough
frequency tracks for voiced regions, particularly at higher
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frequencies. However, clean voiced speech can be represented
with the model in (1), such that the frequency tracks evolve
smoothly with time. For this reason, a smoothing procedure
is applied to the sinusoidal frequencies in voiced regions.
Smoothed frequencies are determined by linking each fre-
quency to a frequency in the previous and following frames,
and calculating a weighted average

(4)

This smoothed frequency value is used, unless the relative fre-
quency change from frame to frame exceeds a threshold(in-
formal evaluations showed that % performed well).
In this case, a pitch halving/doubling error may have occurred,
and no smoothing is performed, i.e., . The proce-
dure for smoothing of frequency tracks, shown in (4), requires
a look-ahead of one frame per iteration.

Fig. 5 illustrates the frequency smoothing scheme. Fig. 5(a)
shows a clean female speech signal: “She had your dark suit
in greasy wash water all year”. This signal is degraded with
AWGN, dB, and voicing and is estimated,
Fig. 5(b). Fig. 5(c) shows the frequencies picked in the
peak-picking procedure for each frame of the noisy signal.
Clearly, the peak-picking procedure results in rough frequency
tracks, especially at high frequencies. Fig. 5(d) shows the result
of the frequency smoothing scheme after termination of the
iterative process. Obviously, the frequency smoothing scheme
results in smoothly evolving frequency tracks.

E. Termination Criterion

An open question in this, as well as other constrained iterative
schemes, is when to stop the iterative process. This is a trade-off
between noise reduction and speech processing artifacts. If the
iterations are too few, the enhanced signal is noisier than nec-
essary, and if too many iterations are performed, parts of the
speech signal could have artifacts introduced.

In order to develop a termination criterion, enhanced speech
signals were generated after each iteration. The objective speech
quality of each of the enhanced signals was estimated by using
the symmetric log-likelihood ratio (LLR) quality measure de-
fined in ([21, p. 49]), which has been shown to correlate fairly
well with subjective quality [21].

Initially, the optimum terminating iteration number (in terms
of LLR) varied both with input SNR and individual speaker.
However, further evaluations showed that with a proper selec-
tion of the weight factors and defined above, op-
timum enhanced signals could be achieved after itera-
tions, almost independent of speaker and input AWGN level.
Furthermore, in cases where the optimum LLR was reached
after or iterations, the optimum point was usually broad,
so the performance loss using iterations was insignifi-
cant.

F. Signal Resynthesis

After terminating the iterations, enhanced signal frames are
generated by inserting the enhanced/smoothed sinusoidal am-
plitudes and frequencies with the original noisy phase values
into (1). The enhanced speech is then synthesized by overlap-

adding the enhanced frames using a triangular synthesis window
(i.e., the last step of the flow diagram in Fig. 1).

IV. A LGORITHM EVALUATION

For the proposed enhancement scheme, voicing decisions
were made based on frame energy and zero-crossing rate. In
voiced frames, fundamental frequency estimates were obtained
using an improved correlation based pitch estimator. The
analysis frame length used in the enhancement algorithm was
200 samples (25 ms) and new frames were selected every 80
samples (10 ms). In the procedures for estimating the noise
spectrum and initial model parameters an FFT order of 1024
was used. The triangular window for overlap-add synthesis
had a length of 160 samples (20 ms). In all simulations, an
estimate of the noise amplitude spectrum was calculated from
a noise-only region preceding each test signal. To be more
specific, the noise spectrum estimate was calculated as the
average FFT magnitude spectrum across the first 6 analysis
frames.

A. Objective Evaluation

Four test sentences, two female and two male, sampled at 8
kHz were randomly selected from the TIMIT database. In these
test signals, speech was present 93–95% of the time. The test
sentences were degraded with AWGN at global SNR levels of
20, 15, 10 and 5 dB, and enhanced using iterations of the
proposed scheme.

For comparison, enhanced signals were generated with the
spectral subtraction method in [2] using halfwave rectification
of enhanced spectral magnitudes, and magnitude averaging
across three signal frames. The spectral subtraction scheme
made use of signal frames with a length of 160 samples (20
ms), and an overlap of 80 samples (10 ms) between consecutive
frames. In addition, enhanced signals were generated with
the unconstrained, iterative Wiener filtering approach in [15],
where speech spectral envelopes were represented with LPC
models of order 10, while the noise amplitude spectrum was
represented with an LPC model of order 2. Up to ten enhance-
ment iterations were performed for each signal, and the best
enhanced signal in terms of LLR selected. We note that this
selection procedure gives an enhancement performance, which
can generally not be achieved in practice, since the optimum
iteration number is signal dependent and not known in advance
[15].

For objective quality assessment of sentences, the average
symmetric LLR value was calculated from frames of length 240
samples (30 ms) taken with an overlap of 75%.

Fig. 6 compares the objective speech quality of the enhanced
signals. Fig. 6(a), (b), and (c) show average LLR values from
unvoiced regions, voiced regions, and nonsilence regions (i.e.,
unvoiced, voiced and transitional speech regions with silence
removed), respectively. Fig. 6(a) shows that spectral subtraction
and unconstrained Wiener filtering perform poorly in unvoiced
segments, while some improvement can be observed with the
proposed method. In voiced segments, Fig. 6(b), all methods
improve speech quality, but the proposed method has the largest
degree of improvement. Fig. 6(c) shows that, in general, better
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Fig. 5. Smoothing of frequency tracks. (a) Noise-free female signal. (b)F and voicing estimates based on noisy signal with globalSNR = 10 dB. (c) Frequencies
picked during peak-picking procedure. (d) Frequencies after iterative enhancement.

overall performance can be obtained with the proposed method.
Furthermore, there is little performance difference in using
and voicing estimates based on noisy signals instead of clean
signals. In particular, the average LLR with noisy estimates
is only 1% higher than with clean estimates.

Fig. 7 shows spectrograms of a clean female signal, the
signal degraded with AWGN, dB, and the signal
enhanced with the proposed method, respectively. It is clear

that the proposed method has nice advantages in obtaining, and
ensuring speech-like periodic structure during voiced-speech
sections (e.g., compare spectral tracks between 1.3–1.7 s).

B. Informal Listening

In general, signals enhanced with the proposed method have
high subjective quality in voiced regions. However, at times,
enhanced voiced regions are slightly reverberant, especially for
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Fig. 6. Enhancement performance in terms of LLR. (a) Unvoiced segments, (b) voiced segments, and (c) all segments (excluding silence). Noisy signals: �.
Spectral Subtraction:�. Unconstrained Wiener:}. Proposed method withF and voicing from clean signals:+. Proposed method withF and voicing from
noisy signals:�. Clean signals represented with the sinusoidal model (1): —.

high pitch female speakers. This reverberance may partly be due
to the noisy phases used in the resynthesis process.

In unvoiced regions, the enhanced signal seems to have lower
subjective quality; in particular, stops tend to sound slightly
“muffled.” The reason may be that the local SNR in unvoiced re-
gions is typically much lower than in voiced regions. Moreover,
the sinusoidal model in (1) is not well-suited for representing
speech segments with rapid amplitude changes, when model pa-
rameters are based on FFT peak picking [13].

In order to study the influence of inaccurate voicing and
information on perceived signal quality, noisy signals were en-
hanced using and voicing estimates from clean and noisy
signals, respectively. Informal listening confirms the objective
test results from Fig. 6(c), that the algorithm is not particu-
larly sensitive to accurate and voicing information, (i.e., a
rough -contour is adequate for near-optimum performance).
However, the algorithm at times is sensitive to bursts of
halving/doubling errors; sometimes, such bursts cause audible
artifacts in the enhanced speech signal. This does not occur
often, since only one series of 10–15 consecutive frames con-
taining pitch errors was observed in the approximately 5600
frames employed in the objective evaluation. Also, such errors
almost always occurred for high dynamic pitch range female
speakers. Further effort in pitch tracking error detection would
be useful in eliminating this issue.

C. AB-Comparison Test With G729-Coded Speech

Often, the performance of a speech enhancement algorithm
as a front-end for a speech coding algorithm is of importance.

Other studies have shown that enhancing speech in combination
with speech coding methods, such as CELP, can result in a mea-
sureable improvement in speech quality [18]. It has also been
demonstrated that changing noise and language conditions seri-
ously impacts voice coders such as the GSM (RPE-LTP) coder
[12]. For this reason, an informal AB-preference test with coded
speech was conducted. Three different clean signals from dif-
ferent speakers, two male and one female, were degraded with
AWGN at global SNR levels of 20, 15, 10, and 5 dB. The noisy
signals were then enhanced with the proposed scheme using
and voicing estimates from the noisy signals. Subsequently, the
enhanced signals were encoded and decoded with the G729 8
kbit/s CS-ACELP speech codec [6]. Ten subjects were asked
to compare these signals to coded versions of the unprocessed
noisy signals, signals enhanced with spectral subtraction, and
signals enhanced with unconstrained Wiener filtering. The sig-
nals were presented in random order over headphones, and the
specific processing of the A and B signal was unknown to the
subjects. The purpose here was to determine if the enhancement
method could provide a degree of improvement over other en-
hancement methods, and to establish listener preference for un-
processed versus processed speech signals. This second point is
important because speech coding algorithms generally assume
clean input speech, and react differently when noise corrupts
the assumed speech signal model. In contrast, while speech en-
hancement methods can reduce the background noise prior to
voice coding [18], the resulting processed speech at times can
also differ from an assumed clean speech model. From a gen-
eral perspective in listener testing for voice communications,
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Fig. 7. Top: Spectrogram of the clean female speech signal: “dirty wash water all year”. Middle: Spectrogram of the speech signal corrupted by additive white
Gaussian noise, globalSNR = 10 dB. Bottom: Spectrogram of the enhanced speech signal using the proposed method.

listeners often concentrate on longer sustained periods of noise
between speaker phrases. While it is important to suppress the
noise between longer speech segments over time, it is also crit-
ical for ease in voice communication understanding that the re-
sulting speech quality across individual phones be as high as
possible.

In Table I, we summarize results that show the preference
toward the combined proposed enhancement scheme plus
CS-ACELP coder for different test conditions. A total of
30 tests were performed for each condition, where listeners
were asked to choose between (a) the proposed enhancement
algorithm plus CS-ACELP coder combination versus orig-
inal noisy speech plus CS-ACELP coding, (b) the proposed
enhancement algorithm plus CS-ACELP coder combination
versus traditional spectral subtraction plus CS-ACELP coder,
and (c) the proposed enhancement algorithm plus CS-ACELP
coder combination versus traditional unconstrained Wiener
filtering plus CS-ACELP coder. From this table it is clear that
the proposed enhancement scheme plus CS-ACELP coder
combination is generally preferred over CS-ACELP coded

speech signals with either spectral subtraction or unconstrained
Wiener filtering front-ends, or nonenhanced (noisy) signals
with CS-ACELP coding alone.

The coded/enhanced signals can be described in general
terms as follows. For the nonenhanced, noisy signals, the
CS-ACELP codec tends to reduce the noise energy. However
the residual noise component in the coded signals have a
‘hissing’ characteristic and is generally more disturbing than
the original noise. Signals enhanced with spectral subtraction
have a high level of ‘musical noise’. The codec tends to
reproduce this residual noise fairly faithfully, though some
slight changes in the residual noise occurs resulting in coded
signals of poor subjective quality. The Wiener filtering scheme
reduces the noise energy without changing the character of the
remaining noise noticeable. When coded, these signals suffer
from the same ‘hissing’ noise as with nonenhanced, coded
signals, although at a much lower energy level. For signals
enhanced with the proposed scheme, the coding process makes
the signals sound slightly more ‘muffled’. However, in some
cases the CS-ACELP codec attenuates some of the artifacts
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TABLE I
AB PREFERENCETEST WITH A COMPARISON FOR: (a) THE PROPOSED

ENHANCEMENT SCHEME PLUS CS-ACELP CODER VERSUS THEORIGINAL

NOISY SIGNAL PLUS CS-ACELP CODER, (b) THE PROPOSEDENHANCEMENT

SCHEME PLUS CS-ACELP CODER VERSUSSPECTRAL SUBTRACTION PLUS

CS-ACELP CODER, AND (c) THE PROPOSEDENHANCEMENT SCHEME

PLUS CS-ACELP CODER VERSUSUNCONSTRAINEDWIENER FILTERING

PLUS CS-ACELP CODER

introduced by the proposed enhancement scheme, e.g., the
reverberant artifacts in female speech.

V. CONCLUSIONS ANDDISCUSSION

An iterative sinusoidal model-based scheme has been
proposed for enhancement of speech degraded by additive
broad-band noise. Smoothness constraints were imposed on
the sinusoidal amplitudes and frequencies (in voiced regions)
in order to ensure a parameter behavior similar to that observed
in clean speech. A performance evaluation was conducted on
speech from male and female speakers using objective speech
quality measures and a subjective AB preference test. It was
shown that the proposed method is effective in producing
speech-like sinusoidal trajectories in low and high-frequency
voiced speech domains. A measureable improvement in objec-
tive speech quality was observed compared to more traditional
speech enhancement methods such as spectral subtraction and
unconstrained Wiener filtering. It should be noted that the
improvement in an objective speech quality measure is only
useful if the measure is well correlated with the noise sources
of interest, and that while there was a 34–41% reduction in
distortion using the LLR measure, further evaluations would
be necessary to establish performance for other types of noise.
This quality improvement was also seen for the case of a
subjective AB-comparison test with G729-coded signals.

In terms of extensions to this work, further performance im-
provement in unvoiced speech regions is clearly a topic for con-
tinued research. This could, for example, be performed by in-
troducing an alternative signal model in these regions. In ad-
dition, the current implementation of the proposed algorithm
introduces an algorithmic delay of approximately 90 ms. This
delay is related to the smoothing procedure applied to model
amplitudes and frequencies, since the algorithm needs to main-
tain a look-ahead frame of speech to ensure speech-like struc-
ture across iterations. However, due to the nonstationarity of
speech we find it reasonable to assume that incidents in the
speech signal 90 ms ahead in time should not influence the pro-
cessing of the present signal frame. For this reason, we expect
that the algorithmic delay can be reduced without sacrificing
the quality of the enhanced speech signal. The study of other
smoothing procedures with smaller delay is a topic for future re-
search. Furthermore, alternatives to reducing the computation-

ally requirements of the parameter smoothing scheme are cur-
rently an area of interest.
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