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Rapid Discriminative Acoustic Model Based on
Eigenspace Mapping for Fast Speaker Adaptation
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Abstract—It is widely believed that strong correlations exist
across an utterance as a consequence of time-invariant charac-
teristics of speaker and acoustic environments. It is verified in
this paper that the first primary eigendirections of the utterance
covariance matrix are speaker dependent. Based on this observa-
tion, a novel family of fast speaker adaptation algorithms entitled
Eigenspace Mapping (EigMap) is proposed. The proposed algo-
rithms are applied to continuous density Hidden Markov Model
(HMM) based speech recognition. The EigMap algorithm rapidly
constructs discriminative acoustic models in the test speaker’s
eigenspace by preserving discriminative information learned from
baseline models in the directions of the test speaker’s eigenspace.
Moreover, the adapted models are compressed by discarding
model parameters that are assumed to contain no discrimination
information. The core idea of EigMap can be extended in many
ways, and a family of algorithms based on EigMap is described
in this paper. Unsupervised adaptation experiments show that
EigMap is effective in improving baseline models using very
limited amounts of adaptation data with superior performance
to conventional adaptation techniques such as MLLR and block
diagonal MLLR. A relative improvement of 18.4% over a baseline
recognizer is achieved using EigMap with only about 4.5 s of adap-
tation data. Furthermore, it is also demonstrated that EigMap is
additive to MLLR by encompassing important speaker dependent
discriminative information. A significant relative improvement of
24.6% over baseline is observed using 4.5 s of adaptation data by
combining MLLR and EigMap techniques.

Index Terms—Discriminative acoustic model, eigenspace map-
ping, hidden Markov models, rapid speaker adaptation, speech
recognition.

1. INTRODUCTION

APID speaker adaptation for large vocabulary continuous
R speech recognition (LVCSR) has been an interesting and
challenging problem for last decade. The task of how to adapt a
set of speaker independent (SI) hidden Markov models (HMMs)
to a new speaker with a small amount of adaptation data is
very important in many applications, such as speech recogni-
tion in changing car environments [14] or data mining in an
audio information retrieval system [32]. The main challenge
of rapid speaker adaptation is to improve speech recognition
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performance by adjusting the speaker independent recognition
system toward a target speaker, where a range of speaker spe-
cific acoustical information must be learned from a very limited
amount of adaptation data.

Currently, the most commonly-used speaker adaptation algo-
rithms include transformation-based techniques and Bayesian
learning. The typical approach of the former is maximum
likelihood linear regression (MLLR) [20], which is achieved
with affine transformations using maximum likelihood estima-
tion. The representative approach of the latter is maximum a
posterior (MAP) [11], which combines adaptation data with
some a priori knowledge concerning the model parameters that
was represented by a priori distribution. In addition, there are
also several extensions or combinations of these two schemes
that have been extensively investigated in recent years that in-
clude regression based model prediction (RMP) [1], Structural
MAP [25], block-diagonal MLLR [21], MAP linear regression
(MAPLR) [5], [6] and structural MAPLR [26], discounted
likelihood linear regression (DLLR) [3], and others (refer to
the review in [29] for more comparisons). These two families
of algorithms are able to obtain direct adaptation for the test
speaker by transforming only the SI models, which is obviously
one of the desirable properties for speaker adaptation technolo-
gies. Both MLLR and MAP adaptation have been successfully
applied to many speaker adaptation situations where sufficient
amounts of adaptation data are available. For relatively small
amounts of adaptation data, transformation-based schemes
have demonstrated superior performance over MAP due to
its global adaptation via transformation sharing. On the other
hand, MAP adaptation is more desirable for its asymptotic
convergence to maximum likelihood estimation when the
amount of adaptation data continues to increase [11]. However,
both MLLR and MAP have not been able to show comparable
improvements when only a very limited amount of adaptation
data is available (e.g., around 5 s of adaptation data observed
in the first utterances from the test speaker for an HMM system
with 100 K component Gaussians), which is very important
for many real world applications such as telephony or spoken
dialog systems which require rapid adaptation.

Recently, a family of cluster based speaker adaptation
schemes has received much attention [17], [27]. In this family
of approaches, the correlations among different training
speakers are explored and adaptation is based on obtaining the
appropriate linear combination of acoustic models of some
“canonical” speakers. Eigenvoice, which is based on a priori
knowledge of speaker variation, is a typical example of such
cluster based speaker adaptation [17], [18]. In this method, all
mean vectors from a single set of acoustic models are combined
into a “supervector” and then the speaker space is constructed
by spanning a K-space via the principal component analysis
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(PCA) of a reasonable set of supervectors. The eigenvoices
with the first K largest eigenvalues are chosen as the basis set
of this speaker space. Next, the adapted acoustic models for the
test speaker is represented, and hence obtained, as a point in
this K -dimensional eigenspace through a maximum likelihood
eigen-decomposition algorithm. This family of schemes was
shown to produce better speaker adaptation performance than
MLLR or MAP when only a small amount of adaptation data
was available.

However, speaker cluster based schemes require either the
entire training corpus to be available on-line for the adaptation
process, or a set of well-formed speaker dependent (SD) models,
or a priori knowledge about speaker class information extracted
from a large amount of training speakers. These issues impact
the practical application of model adaptation due to either large
data storage requirements or insufficient data to obtain reliable
a priori speaker class information. If this family of model adap-
tation methods are collectively compared, it becomes apparent
that an algorithm that directly adapts acoustic models from a
single set of SI models and requires minimal resources is more
attractive.

With advances in applying speech technology to different
tasks, many speech applications require rapid deployment of
speech recognition with minimal resources. In such speech sys-
tems, it is desirable that the acoustic model be dynamically im-
proved based only on the baseline model and a very limited
amount of adaptation data. In other words, no training data, no
speaker dependent models or any a priori speaker clustering in-
formation is demanded for adaptation (note that this makes the
proposed algorithm fundamentally different from speaker class
based methods), and the computational and storage overhead of
the adaptation process in the desirable algorithm should be in-
expensive. On the other hand, the desirable algorithm should be
effective in adaptation using a very limited amount of adapta-
tion data.

Our goal in this paper, is therefore to develop a novel algo-
rithm to meet these requirements. To achieve these goals, the
proposed algorithm should sufficiently capitalize on informa-
tion contained in the baseline model, and also be able to discover
sufficient speaker knowledge within a very limited amount of
adaptation data. One of the motivations of this paper is from
the widely believed fact that strong correlations exist across an
utterance as a consequence of time-invariant characteristics of
speaker and/or acoustic environments. Given a sequence of ob-
servation feature frames from an utterance, there are at least two
types of correlation that exist over the observations: the tem-
poral correlation between feature frames, and the correlation
between feature components. However, state-of-the-art speech
recognition technologies ignore such correlations. For example,
it is usually assumed that observations are independent in both
acoustic model training and decoding. The use of dynamic fea-
ture components [9] partly captures some correlation between
feature frames, but it is limited to neighboring frames. On the
other hand, for many practical considerations, such as storage
and computation, acoustic models typically assume diagonal co-
variance. This assumption ignores the correlations between fea-
ture components. It is expected that bringing these correlations
into consideration should produce more accurate acoustic mod-
eling. For example, linear discriminant analysis (LDA) [19],

[24] and maximum likelihood linear transform (MLLT) [10],
[13] have been used to improve acoustic model training.

The focus of this paper is to introduce a method that dy-
namically incorporates the correlation at the decoding phase
for rapid model adaptation. It is noted that directly modeling
the correlation is too expensive and not computationally prac-
tical. Alternatively, the proposed method constrains model pa-
rameters implicitly based on correlation. The question of how
to capture speaker information from limited amounts of adapta-
tion data, and how to impose the speaker information appropri-
ately into baseline acoustic models are the key problems inves-
tigated in this paper. The existence of strong correlation within
an utterance has long been noted by researchers in the litera-
ture [2]. The motivation for using long distance correlation for
rapid speaker adaptation is that the correlation should be speaker
dependent. Intuitively, the manner by which speech frames af-
fect each other is highly related to the vocal tract movement
and speaking styles, which are largely dependent on the speaker
[22]. In Section II, a set of experiments are designed to verify
this claim. As one might expect, it is observed from our experi-
ments that the first primary eigendirections of the utterance co-
variance matrix encode significant speaker information.

If every component Gaussian distribution in the acoustic
model is viewed as a class, then a well-trained baseline model
can be assumed to maintain a fair discrimination power between
different Gaussians, in the sense of providing a reasonable be-
tween-class covariance B,. By can be decomposed into the
sum of variances along its different eigendirections. Among
them, the variances that belong to the first primary eigendi-
rection reflect the dominant power for discrimination. This
paper proposes an algorithm to construct the discriminative
acoustic models for the test speaker, by preserving the dominant
discriminating power from the baseline model along the test
speaker’s first primary eigendirection of the specific speaker’s
between-class covariance By. Other constraints are also im-
posed on the adapted means to minimize the shift from the
baseline model due to insufficient observations of adaptation
data within the context of rapid adaptation. The adaptation
process is performed through a linear transformation in the
model space using a method entitled Eigenspace Mapping
(EigMap). Based on the core idea of EigMap, a number of
algorithms can be extended using different objective functions.
Some typical examples include one algorithm entitled Struc-
tural maximum likelihood Eigenspace mapping (SMLEM)
[30], [31], which will also be developed in this paper. Experi-
mental results show that EigMap is effective in improving the
baseline model using very limited amounts of adaptation data
with superior performance to MLLR. Moreover, EigMap is
highly additive to MLLR by bringing additional discrimination
information into the adapted acoustic model that maximizes
the adaptation data likelihood.

The remainder of this paper is organized as follows: Section II
investigates the speaker information in utterances, and shows
from experiments that the first primary eigendirections of the
observation covariance matrix encode significant speaker infor-
mation; Section III develops the eigenspace mapping algorithm,
and points out the relationship between EigMap and LDA; Sec-
tion IV introduces some extensions of EigMap algorithm such
as SMLEM; Section V evaluates the proposed algorithm with
multiple experiments in standard applications using both na-
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tive and nonnative speakers from the Wall Street Journal (WSJ)
corpus; Section VI is a discussion of algorithm issues and Sec-
tion VII summarizes the paper contributions.

II. SPEAKER INFORMATION IN UTTERANCES

In speech recognition, raw speech from a speaker is typically
first parameterized into the Mel-cepstrum. One interesting ob-
servation is that the covariance matrix of the feature vectors
from a specific speaker encapsulates a range of speaker de-
pendent features. An example can be found in [4], [33] where
the statistics based on covariances are used successfully to de-
tect speaker turns in audio streams. Previous work by other re-
searchers have also shown that the statistics based on the covari-
ance matrix can be applied successfully in the task of speaker
identification and tracking [16].

The utterance covariance matrix By, of feature vectors {O; |
1 =1,2,...,t} represents the variance among feature dimen-
sions, and the first few eigenvectors! in the ordered set of of
eigenvectors e,; of B, will therefore indicate the directions in
the feature space, in decreasing order, that contribute most to the
variances between feature vectors [15]. A reasonable assump-
tion from the above observations is that the directions of the
first few eigenvectors encapsulate a range of those speaker spe-
cific traits. In other words, what directions contribute most to
the variances between feature vectors reflects the speaker’s pri-
mary acoustic characteristics.

Typically, dependence in feature observations exist between
more than two feature components, and Principal Component
Analysis (PCA) can help extract the most important dimen-
sions of variations. In our study, we claim that the first pri-
mary eigendirections encode more significant speaker informa-
tion than phonemic information.

We design the following experiments to verify our claim.

1. First, we select a set of speakers, S =
{s1,82,...,85}, and randomly select an iden-
tical set of utterances U = {uj,ug,...,ur}
produced by each speaker in S. A well-
trained speaker independent acoustic model
A with 100 K component Gaussians is used
to represent the acoustic space.

2. For each utterance u in S x U, we esti-
mate the covariance matrix B, of the ob-
servation frames in the standard MFCC fea-
ture domain. The covariances are estimated
independently for the static cepstrum (12
MFCC plus energy), delta, and double delta
feature streams.

3. Next, the first p eigendirections
[€u1,€u2,- .., €4 of By are derived using PCA.
4. To measure the relative position of

an eigenvector e,; in this space, each
Gaussian mean X; in A is projected onto

TAll the eigenvectors e; mentioned in this paper are normalized, i.e., |e;| =
1. To emphasize the directions pointed by the eigenvectors, the terms “eigen-
vector” and “eigendirection” will be used interchangeably in this paper.

the eigendirection to obtain an inner
product diur = X; - €uk -

5. Next, the variance of d;,; across
the speaker set S, and w,;, the variance
across the utterance set U, are estimated
respectively to determine which dimension
possesses speaker dependent versus utter-
ance dependent information.

Usi s

The goal is to compare V; and V,,, the averaged variances of
vs; and v,; across all component Gaussian projections. If the
claim is correct, and the eigendirections of the utterance covari-
ance matrix are more likely to be speaker dependent, one might
expect to observe that the former should be higher than the latter.

Part (a) and (b) in Fig. 1 compare the averaged projection
variances onto the first and second eigendirections respectively.
Clearly, the averaged variance across different speakers with the
same utterance, Vj, is higher than the averaged variance across
different utterances from the same speakers, V,,. This observa-
tion strongly supports the claim that the first primary eigendi-
rections are more likely to be speaker dependent and are less
affected by the phoneme context in utterances. In addition, it is
interesting to note that the ratio V /V,, are in different ranges for
each feature stream (i.e., the ratio is more than five for the static
features, above two for the delta stream, while only slightly
above one for double delta), as indicated in the lower part of
Fig. 1. This again verifies the common knowledge that the static
feature stream carries the most significant speaker traits. The ex-
perimental results in Fig. 1 also suggest that the feature streams
should be treated separately in such eigenspace processing, to
assure that we are extracting appropriate speaker information
from each stream.

III. EIGENSPACE MAPPING (EIGMAP)

For the task of model adaptation, the improved model is
achieved by adjusting the baseline model parameters based on
adaptation data. From the previous section, it is assumed that
the speaker dependent information can be learned from the first
primary eigendirections. On the other hand, a well-trained base-
line model A is assumed to maintain a fair model discrimination
between component Gaussian means {x; |7 =1,2,...,N},in

the sense of providing a reasonable between-class covariance
B«

1 N
By = Z;xixf —xxT 1)

where every component Gaussian x; is treated as a single class,
J
and x = (1/N) I, x;. By can be decomposed as the sum of

variations along its eigendirections {€,1,€.2,...,€zn }
n P
log(det (Bx)) = > log\i = Y log \; 2)
i=1 i=1

where n is the Gaussian dimension, and A\ > Ay > --- > )\, >
0 are the rank ordered eigenvalues of the symmetric semi-posi-
tive definite matrix Bx. The variance of the sth principal com-
ponentis \;, and in a loose sense, this component “accounts for”
a proportion \;/ 377_; A; of the total variances. It is assumed
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Fig. 1.

Comparison of averaged Gaussian mean projection variances across the speaker set .S (V) and across the utterance set U (V,,): (a) Variances of projection

onto first PCA of speaker’s eigenspace, (b) variances of projection onto second PCA of speaker’s eigenspace, and (c) the ratio of V/V,, for different feature

streams.

that p < n is the number of primary eigenvalues that contribute
dominant variations, and hence the variations along the corre-
sponding eigendirections {e,1, €2, - . . ,exp} provide the most
significant discrimination power, among any p eigendirections,
in the sense of maximizing the Fisher ratio

det(B)
det(W)

where W is the averaged within-class covariance matrix.

F= 3)

A. EigMap

The basic idea of EigMap is to maintain the between-class
variances (i.e, the discrimination power) of the baseline
Gaussian means unchanged along the first primary eigendi-
rections in the test speaker’s eigenspace. Given the primary
eigendirections {ey1,€,2,...,€,,} of the test speaker’s ob-
servation covariance matrix By, the adapted Gaussian means
{y:|i=1,2,..., N} are expected to satisfy

n n
E :yijeymj = E TijCrmj, M =1,...,p.
j=1 =1

For every component Gaussian x; in the model A, all possible
adapted means y; that satisfies (4) form a (n — p)-dimensional
subplane €2(x;) in the acoustic space that is given by

“

Q(x;)

n n
yi | E Yij€ymj = E xije.rmjvmzlv"'vp
j=1 j=1

(&)

In the task of rapid model adaptation where observation data is
sparse, aggressive assumptions based on insufficient adaptation
data often tend to be unreliable. Alternatively, a more conser-
vative approach is to minimize the shift from the well-trained
baseline model parameters, given the constraint of no loss of
discrimination power along the first dominant eigendirections
in the test speaker eigenspace

yi = argmin (x; — yi)? (xi — yi)- (6)

Vi €Q(x;)
By substituting (5) into (6) and minimizing the objective func-
tion using the Lagrange Multiplier method, the adapted mean
y: can be obtained from x; using a linear transformation: f :
R — Ry = f(x) = Ox, with © an n X n nonsingular
matrix given by

P

O=1,-> (-1)0 e,

i=1

(N

(eyi - emi)

where I,, is an n X n identity matrix. Considering the orthogo-
nality between eigenvectors (i.e., e,; - ey; = 1;e,; - e,; = 0,
Vi # j), one can show that © = E;'E,,, where

E;l = [9517952;---79571 (8)
and
Em = [ez1,...,€qp, €y(pt1);- - - 7eyn]T. 9)
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Fig. 2. TIllustration of adapting the baseline model Gaussian mean x to the test
speaker specified Gaussian mean y using the Eigenspace Mapping (EigMap).
(a) The first eigenvector of baseline model e, and of the test speaker e, ;. (b)
The projection of x onto e, where d is the most significant discriminative
power to separate x from other baseline Gaussian means. (c) Preserve the first
principal component d in the test speaker’s eigenspace and obtain a subplane
2 by rotating d onto the e, ;. (d) To be conservative, project x onto the 2 to
obtain adapted mean y.

After transforming the baseline model mean x into y using (7),
the discrimination information is assumed to be mostly encap-
sulated in the first ¢ dimensions, where p < ¢ < n, hence the
last n — ¢ dimensions of y can be discarded. In the model space,
this is equivalent to setting the last n — q rows of © to zeros

é = [eanJO(nfq)Xn]T (10)

and the adapted Gaussian mean y is achieved through following
transformation:

Ygx1 :eananl- (11)

The values of p and ¢ are determined based on the distribu-
tions of adaptation data and baseline model parameters. More
specifically, the selection is affected by the distribution of eigen-
values of By and B,,. The p is selected to ensure that the first
p eigenvalues are sufficient to represent overall variations in
By and B, while avoiding the use of subsequent eigendirec-
tions that are unreliably estimated. Similarly, ¢ is determined to
achieve the balance of removing the noise in the model param-
eters after the linear transformation and maintaining sufficient
model discrimination.

It is important to conclude from the above equation that the
baseline model is not only adapted through the transformation,
but also compressed with reduced Gaussian dimensions of the
model mean, which further suggests that faster recognition
speed can also be achieved using the adapted model due to
reduced Gaussian computations.

To illustrate the underlying principles of the EigMap, a
graphic example of mapping a baseline Gaussian mean onto the
test speaker’s eigenspace is further explained in Fig. 2, where
a simple 2-dimensional eigenspace is used, and only the first

PCA is considered [i.e., let n = 2 and p = 1 in (5)]. The first
eigendirections for the baseline and test speaker, e, and e,
respectively, are first estimated. Given any baseline Gaussian
mean X, its first PCA d in the baseline’s eigenspace is the most
significant discriminative factor to separate this Gaussian from
any others in the baseline model. To maintain this discrimina-
tion power, this PCA is preserved for the test speaker in his
eigenspace, which produces a » — 1 dimensional subplane €2
in the new eigenspace. On the other hand, to be conservative,
the baseline model mean x is projected onto the subplane €2 to
minimize the shift from the original model parameters. Thus,
the adapted mean y is obtained as the projection of x onto 2.

B. Multistream Processing Approach

An important issue in the procedure of eigenspace mapping
is multi-stream processing. The feature vectors used in many
state-of-the-art continuous density HMM based speech recog-
nition systems are composed of three base feature vectors: 12
static MFCCs plus energy, followed by their first-derivatives
and second-derivatives. These three base feature vectors are re-
ferred to as static, delta, and double delta streams respectively
in this paper. Following the observations from Section II, that
different feature streams encode different amounts of speaker
information, it is suggested that EigMap processing should be
performed independently for different streams.

There are a number of facts to explain the need of
multi-stream processing. First, the delta and double delta
streams possess different spectral-temporal information. Sec-
ondly, the static and dynamic streams are of different numerical
range, and principal components are scale dependent. Typically,
the variations of static feature components is much higher than
those of dynamic feature components. Mixing different feature
streams together will make the first principal component dom-
inated by the static stream, and the speaker information in the
dynamic streams will therefore be overlooked.

To address this issue, each feature stream is treated separately
in EigMap, and the nonsingular transformation © is estimated
and applied independently for each stream of Gaussian means
in the adaptation.

C. Between-Class Variances Estimation

One of the key points in the EigMap scheme is how to esti-
mate the between-class variances By, for the test speaker, and
accordingly, the By for the baseline model given the adaptation
data.

One approach is based on Viterbi forced alignment. In this
approach, the best state sequence of the adaptation data is first
found through Viterbi alignment

Q(q1,s-..,q) = argmax P(q1,...,q:;01,...,0¢ | A). (12)

By is directly computed from the observed adaptation speech
frames o; as follows:

t
1
By =B, = ;oiof — 00" (13)
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where ¢ is the number of observed speech frames, and 0 =
(1/¢) Z:Zl 0;. At the baseline model side, a “simulated” ob-
servation from the perspective of baseline models is, given the
best state ¢; at each time

0; = E We;mXgm,t = 1,2,...,1

qi;:m

(14)

where wg;, , is the m-th mixture weight of component Gaussian
Xq,m at state ¢; with the constraint: ) wg,m = 1. Next, By
is estimated from these “simulated” observations as follows:

t
=g o6l -6t

~4-|>—l

15)

where 6 = (1/t)Y_, 6.

D. EigMap and LDA

LDA [8], or more recently, Heteroscedastic Discriminant
Analysis (HDA) [19], is used by researchers to improve
acoustic model discrimination before Maximum Likelihood
(ML) based model training. The goal of LDA is to find the
linear transformation 6 in the feature space f : R — RP,
y = f(xz) = Ox, where 6 is a p x n nonsingular matrix with
p < n. The @ is obtained to maximize the following objective
function:

det (0587)

1O = roweTy

(16)

However, EigMap seeks a linear transformation © in the
model space for rapid model adaptation, and is applied in
the decoding phase. Therefore, no training data is required
in EigMap. If the Gaussian variance is not adapted, then the
within-class covariance W is unchanged after EigMap trans-
formation. In this sense, the EigMap transformation © can
be viewed as a solution that maximizes the same objective
function in (16) with the constraint that the baseline model
discrimination is preserved along the speaker’s first primary
eigendirections.

IV. EXTENSIONS TO EIGMAP

Based on the core idea of EigMap, a number of extensions
can be derived. This section will introduce some of them.

A. SMLEM: Structural Maximum Likelihood
Eigenspace Mapping
This section outlines the formulation of the proposed

SMLEM algorithm, which essentially extends the core EigMap
algorithm by imposing a further shift in the model space to

maximize the adaptation data likelihood, in addition to the
discriminative power obtained by EigMap.

1) Maximum  Likelihood Estimation of FEigenspace
Bias: The objective of the proposed EigMap algorithm is
to rapidly impose discriminative information learned from
adaptation data onto a baseline model. It is important to note
that no adaptation data likelihood information is considered in
the EigMap procedure. It is therefore expected that the model
can be further adapted after EigMap using an appropriate
method to bring the adaptation data likelihood into considera-
tion.

To account for the adaptation data likelihood, the EigMap
formulation can be extended by adding a linear bias b in the
test speaker’s eigenspace

y =6x+E;'b (17)
where b is derived in a manner that maximizes the adaptation
data likelihood P(O | A) given the model A. According to the
EM algorithm [7], we define an auxiliary function Q(A, A)

O(t) | A)

QA =—3PO VT T A
(18)

where 'y( )( t) is the Gaussian-frame occupancy probability at
time ¢ for m-th mixture Gaussian component at state s, A is
the current model and A is the estimated model. Since we only
adapt the Gaussian means, we ignore other model parameters in
the auxiliary function, and log f(O(t) | A) from (18) becomes

) log f(

log f(O(t) | A) = nlog 2 + log | )|

HOW) - y)SOT01) - ) (19)

where n is the dimension of the Gaussian model stream means.
Substituting y$f) in (19), and using (17), we can rewrite (18) as
shown in the equation at the bottom of the page. To maximize
Q(A, A) with respect to b, we set

9Q(A, A)
Jb

Therefore, the following accumulation equation can be derived:

222

=0. (20)

(HE” (0(1) - Ox(Y)
E;lﬁ Q1)

where the bias b is tied across sets of states and Gaussian mix-
tures for accumulation. From (21), it is important to note that
only a (n — g)-dimensional vector needs to be solved, and only

PO )

xzzz{

QA A) =

[nlog27r+log|2( )|+ (0O(t) — Ox®) —

S\ Tsn(s) ™
E;'b)TE;



560 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 13, NO. 4, JULY 2005

one equation needs to be accumulated. Therefore, the accumu-
lation overhead is limited during online adaptation, and more
importantly, robust estimation of the bias can be achieved even
with very limited amounts of adaptation data due to the small
number of free parameters in the estimation.

2) Structural Estimation of Maximum Likelihood Bias: On
the other hand, the small number of estimating parameters in
(21) suggests that even when only limited amounts of adaptation
data are available, a significant number of free parameters can
still be reliably estimated. Therefore, the accumulation of both
sides of (21) can be tied across a smaller group of Gaussians to
achieve more specific bias estimation, rather than across global
Gaussians. To automatically determine the degree of tying of
the bias estimation, a structural method is employed to hierar-
chically cluster component Gaussians into a binary tree.

Different methods can be used to generate the clustering
tree. In a bottom-up clustering scheme, all of the component
Gaussian mean vectors of the well-trained baseline system are
clustered into N base classes based on the K-means algorithm
according to their acoustic similarity using the Euclidian dis-
tance measure (see Fig. 3). The average mean of a class with R

component Gaussians {x; | 7 = 1,2,..., R} is
. R
p= e Y Wik (22)
S w; i=1
i=1

where w; is the mixture weight associated with component
Gaussian x;. After obtaining base classes, the average of each
class is used to represent that class. Next, a binary tree based
on those classes is obtained through a greedy search: two
closest classes are identified and merged, and then the center is
updated for the merged class. This process is repeated until all
the classes are clustered into the final root node.

The accumulation of both sides of (21) is first conducted for
each base class {n | n = 1,2,..., N} by summing all Gaus-
sians that reside in that base class: {s, m} € n. Next, according
to the hierarchical structure, the base classes that belong to the
same space are summed for higher level accumulations until the
root of the tree is reached. To determine the adaptation level,
we perform a bottom-up traversing of the binary tree and stop
at the lowest nodes where ~,, = Z?:l Yo 77(;3)(15) is larger
than some established threshold ~,.

In multi-stream SMLEM, the tree-structured hierarchical
spaces are independently constructed for each stream. While
processing each stream, only the corresponding feature com-
ponents in that stream contribute to the distance computation
and K-means relabeling. Fig. 3 shows how different binary
trees are generated using associated feature streams. It is clear
that these trees have both different base classes and different
tree structures. The dark nodes in the tree are those that meet
the stopping criteria while white nodes do not, and the arrows
show how lower level nodes map to higher levels to accumulate
sufficient adaptation data.

B. Constrained ML EigMap

For completeness, we consider a constrained ML EigMap
scheme, where the eigenspace bias is only allowed to reside on

Static Delta Double-Delta

| ,C,C, -, Cpy AE,ACL,ACZ,---,ACHgAAE,AACl,AAC,,---,AACu
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Fig. 3. Portions of the binary tree-structured hierarchical eigenspaces for
different streams. The binary trees are constructed independently for each
feature stream through centroid bottom-up search from base classes that are
generated from K-means clustering. Note that each stream will have different
base classes and tree structures.

(I

the subplane € (i.e., there is no eigenspace bias allowed along
the first primary eigendirections we want to preserve) as fol-
lows:

y: = argmax L(O(t); N(y;, X)). (23)

yi€Q(x;)
Although interesting, experiments with this approach resulted in
WER performance that was less successful than SMLEM dis-

cussed previously. We therefore, consider it to be a special case
of SMLEM.

C. EigMap With Minimized Mahalanobis Distance

One more extension to EigMap is to employ a minimized
Mahalanobis distance. When we bring the component Gaussian
covariance X; into consideration, it is reasonable to minimize
the Mahalanobis distance between x; and y; as follows:

yi = argmin (y; — xq;)TEi_l(yi - Xj). (24)

Vi €Q(x:)

Similarly, (24) can be minimized using the Lagrange Multiplier
approach to obtain the linear transformation?¥. For example, ¥
is given by the following relation, when p = 1:

ezjl (eyl - exl>2i

T
yl

V=1, - 25)

eylﬁie

D. MLLR+EigMap: EigMap to Extend Maximum
Likelihood Models

Another way to use the EigMap method is to combine the
algorithm with other conventional techniques where the dis-
crimination information has not been considered. For example,
MLLR has been widely used for adaptation by adjusting the
baseline model parameters to maximize the adaptation data like-
lihood. However, adaptation frames are treated independently
in MLLR and no discrimination information has been learned
from the adaptation data. In this case, applying EigMap to the

2Thanks to Juan Yuan, University of Colorado, for helpful discussions.
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MLLR adapted models can thus further enhance the discrimi-
nation power of the acoustic model. Thus, complementary per-
formance improvement can be expected.

V. EVALUATIONS
A. Experimental Setup

The adaptation experiments reported in this paper are all
conducted in an unsupervised manner, on the WSJ Spoke3
and Spoke4 corpus. The baseline speaker independent acoustic
model has 6275 context-dependent tied states, each of which
has 16 mixture component Gaussians (i.e., in total 100,400
diagonal mixture component Gaussians exist in the acoustic
model). The baseline system uses a feature of 39 dimensions
with 13 static cepstral coefficients plus delta and double-delta.
The baseline speech recognition system used for experiments
is the CMU Sphinx-3.2 recognizer [23]. The language model is
a standard 5000-word back-off trigram. In offline multi-stream
tree-structured Gaussian clustering, the 100,400 component
Gaussians in the SI models are grouped into 300 base classes
and hence a binary tree with 599 nodes is used to represent the
structural space for each stream.

The Spoke4 corpus is collected from four native speakers of
American English with balanced gender. The Spoke3 data con-
sists of nonnative speakers. Each speaker of Spoke3 provides
a set of adaptation utterances, and another set of 40 utterances
for testing. We select the last six speakers from Spoke3 for our
experiments® (approximately 3900 words in the test set). For
Spoke4, all speakers and all 50 test utterances from group G
of each speaker are used in the evaluation (approximately 3300
words in the test set). Since we are primarily interested in rapid
adaptation, only a single utterance from each speaker is allowed
to be used as adaptation data to improve the baseline model. To
account for variability in the small amount of data, and to obtain
statistically representable results, three randomly selected adap-
tation utterances are identically used for each test speaker in
adaptation. The adaptation data ranges from 3.7 to 5 s of speech
for different utterances and speakers. All experimental results
presented are obtained by averaging all open experiments.

The EigMap algorithm was compared with the block di-
agonal MLLR (BD-MLLR) scheme, since the amount of
adaptation data is very limited, and it is shown from ex-
periments that BD-MLLR achieves better performance than
conventional MLLR [31] due to the reduced parameters to be
estimated. For the same reason, one global regression class is
used for BD-MLLR adaptation. For a fair comparison, EigMap
also uses a global eigenspace for both test speaker and baseline
model for the mapping. In our experiments, n is set as 13 for
static, delta and double-delta streams. The values of p and ¢
are selected automatically for each stream by comparing the
eigenvalues of By and B, with some thresholds, which are
determined through experiments with some evaluation test

3The first four speakers demonstrate a relatively high Word Error Rate (WER)
that is above 65% for the baseline system. We believe this may be in conflict
with our assumption for the EigMap algorithm that the SI models are reasonably
well-trained for the test speakers. Therefore, we exclude the first four speakers.

TABLE 1
WER (%) OF NATIVE SPEAKERS (WSJ SPOKE4) WITH ABOUT 4 s OF
UNSUPERVISED ADAPTATION DATA IN AVERAGE

Speaker | 406 ] 407 ] 408 [ 409 | Average
Baseline 44 | 38|80 | 62 5.6
BD-MLLR | 49 | 3.5 | 82 | 6.2 5.8
EigMap 40| 32|78 | 6.0 5.2

speakers. Once they are determined, these thresholds are fixed
for all speakers and adaptation data across all the experiments
reported in this paper.

B. Experimental Results

1) Adaptation for Native Speakers: Table I shows the per-
formance comparison using Spoke4 corpus with about 4 s of
adaptation data. Due to the very limited amount of adaptation
data and the close match between the baseline model and test
data, BD-MLLR achieves no improvement over baseline on av-
erage, while EigMap obtains consistent improvement for all
speakers, with an average of 7% relative improvement from
baseline. This observation suggests that even if the test data
matches the acoustic model well, the discriminative power in-
troduced by EigMap is still able to improve the acoustic model
for more accurate classification.

2) Adaptation for Non-Native Speakers: The experimental
results on Spoke3 corpus are summarized in Table II. In av-
erage, about 4.5 s of adaptation data are used. Due to the mis-
match between the model and test data, the averaged baseline
model WER performance is as high as 20.7%. Table II clearly
shows that EigMap consistently improves the recognition for
all nonnative speakers. On average, the proposed algorithm ef-
fectively enhances the baseline by a relative improvement of
18.4%, while BD-MLLR achieves a 15.9% relative improve-
ment. By applying SMLEM, to maximize adaptation data like-
lihood after EigMap, the overall relative performance gain is
further improved to 21.7%. Moreover, EigMap is highly addi-
tive to MLLR by bringing additional discrimination information
into the adapted acoustic model that maximizes the adaptation
data likelihood. As showm in the last column of Table II, by ap-
plying EigMap to the MLLR adapted model, the average WER
is reduced to 15.6% and a significant relative improvement of
24.6% is observed in the experiments.

3) More Results of SMLEM: The performance of SMLEM
is affected by the threshold setting of v, which needs to be
tuned to achieve the balance of reliable estimation and specific
adaptation. Fig. 4 shows the adaptation performance of different
speakers with threshold v, varied from 5 to 15. As observed
from this figure, different speakers demonstrate varied sensitiv-
ities to the value of -y, and on average, the optimal performance
is achieved when 5 = 12.

To ensure the improvements of SMLEM is not dominantly
contributed by structural maximum likelihood bias (SMLB)
b, the performance of SMLB is compared with EigMap and
SMLEM in Table III. Comparing EigMap with SMLEM shows
that applying the structural maximum likelihood bias after
EigMap provides additional benefits. On the other hand, as
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TABLE 1I

WER (%) OF NON-NATIVE SPEAKERS (WSJ SPOKE3) WITH ABOUT 4.5 s OF UNSUPERVISED ADAPTATION DATA ON AVERAGE

Spkr | Bascline | BD-MLLR | EigMap | SMLEM [ BD-MLLR+EigMap
4n5 235 20.2 214 208 20.2
4n8 16.4 13.0 13.6 125 133
n9 21.6 189 16.7 16.0 15.0
4na 11.9 10.3 8.0 8.4 75
4nb 32.0 28.3 25.8 26.9 25.8
dnc 18.7 13.6 15.9 124 11.6
Avg 20.7 174 16.9 16.2 15.6
Rel. lmp | — 15.9% | 184% | 21.1% 24.6%
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Fig. 4. Performance of SMLEM as a function of -y for different speakers.

illustrated in this table, though SMLEM achieves consistent
and significant improvement over the baseline recognizer for
all speakers, using only the structural maximum likelihood bias
obtains a slight performance gain on average, while providing
worse performance for some speakers. Therefore, while the
bias can help, it is clear that EigMap is the key contributor of
the SMLEM algorithm.

VI. DISCUSSIONS AND FUTURE WORK

The family of EigMap algorithms rapidly constructs discrimi-
native acoustic models based on the strong correlations existing
over adaptation utterances, which, we believe, encode signifi-
cant speaker information. The algorithm might also be applied
to background noise adaptation, in cases where the correlations

TABLE 1II
A COMPARISON OF WER PERFORMANCE OF SMLEM, EIGMAP AND
STRUCTURAL MAXIMUM LIKELIHOOD BIAS (SMLB) (WITH v, = 12)

Spkr [ 4n5 [ 4n8 | 4n9 [ 4na [ 4nb [ 4nc [ Avg
SMLB | 219 | 13.7 | 214 | 11.8 | 33.4 | 17.6 | 20.0
EigMap | 21.4 | 13.6 | 16.7 | 8.0 | 25.8 | 15.9 | 16.9
SMLEM | 20.8 | 12.5 | 16.0 | 84 | 26.9 | 124 | 16.2

over adaptation frames carry a range of background acoustic
characteristics. Experiments will be conducted for adapting dif-
ferent noise conditions.

It is observed from experiments that the bias vector, estimated
using maximum likelihood criterion such as that was derived
in SMLEM, is not linearly additive to EigMap. Therefore, it is
interesting to explore other methods for bias estimation in the
future. Among others, discriminative biases based on minimal
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classification error (MCE) and maximum mutual information
estimation (MMIE) are of special interest to us.

The issue of how to optimally determine the number of
model dimensions that should be discarded after EigMap trans-
formation is not clear yet. In our experiments, the value of ¢ is
determined empirically. It is observed that nonnative speakers
typically require a larger ¢ than native speakers. This may be
explained by fact that EigMap transformations for nonnative
speakers are more dramatic than those for native speakers, due
to more significant mismatch with the baseline model which
existed for nonnative speakers. In the future, a more theoretical
method that optimally determines the values of ¢ for different
tasks will be expected.

VII. CONCLUSIONS

This paper has introduced a novel family of algorithms based
on Eigenspace Mapping (EigMap) for rapid speaker adaptation.
EigMap constructs a discriminative acoustic model for the test
speaker by preserving the discrimination power of the baseline
model in the test speaker’s eigenspace with constraints. Unsu-
pervised adaptation experiments show that EigMap can effec-
tively improve the baseline model with very limited amounts
of adaptation data. In addition, the EigMap algorithm can be
extended in many ways. The algorithm entitled structural max-
imum likelihood Eigenspace mapping (SMLEM) achieves extra
benefits by incorporating a linear bias to maximize adaptation
data likelihood. Moreover, EigMap is able to provide additional
performance gain to existing methods such as MLLR. By com-
bining MLLR and EigMap, a significant 24.6% relative im-
provement is achieved using only about 4.5 s of adaptation data.
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