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Abstract—This study addresses novel advances in English
dialect/accent classification. A word-based modeling technique is
proposed that is shown to outperform a large vocabulary contin-
uous speech recognition (LVCSR)-based system with significantly
less computational costs. The new algorithm, which is named
Word-based Dialect Classification (WDC), converts the text-inde-
pendent decision problem into a text-dependent decision problem
and produces multiple combination decisions at the word level
rather than making a single decision at the utterance level. The
basic WDC algorithm also provides options for further modeling
and decision strategy improvement. Two sets of classifiers are
employed for WDC: a word classifier Dyy () and an utterance
classifier D,. Dy (k) is boosted via the AdaBoost algorithm
directly in the probability space instead of the traditional feature
space. D,, is boosted via the dialect dependency information of
the words. For a small training corpus, it is difficult to obtain a
robust statistical model for each word and each dialect. Therefore,
a context adapted training (CAT) algorithm is formulated, which
adapts the universal phoneme Gaussian mixture models (GMMs)
to dialect-dependent word hidden Markov models (HMMs) via
linear regression. Three separate dialect corpora are used in
the evaluations that include the Wall Street Journal (American
and British English), NATO N4 (British, Canadian, Dutch, and
German accent English), and IViE (eight British dialects). Sig-
nificant improvement in dialect classification is achieved for all
corpora tested.

Index Terms—A ccent/dialect classification, AdaBoost algorithm,
context adapted trianing, dialect dependency information, limited
training data, robust acoustic modeling, word-based modeling.

I. INTRODUCTION

IALECT/ACCENT is a pattern of pronunciation and/or
Dvocabulary of a language used by the community of na-
tive/nonnative speakers belonging to some geographical region.
For example, American English and British English are two di-
alects of English; English spoken by native Chinese or German
are two accents of English. Some researchers have a slightly
different definition of dialect and accent, depending on whether
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they approach the problem from a linguistics or speech sci-
ence/engineering perspective. In our study, we will use “dialect”
and “accent” interchangeably. In this study, we wish to detect
the dialect of an unrestricted (i.e., speaker-independent, tran-
script unknown) audio utterance from a predefined set of N di-
alect classes. Accent detection, or as it is sometimes referred to
as accent classification [1], is an emerging topic of interest in the
automatic speech recognition (ASR) community since accent is
one of the most important factors next to gender that influence
ASR performance [10], [12]. Accent knowledge could be used
in various components of the ASR system such as pronuncia-
tion modeling [23], lexicon adaptation [36], and acoustic model
training [14] and adaptation [3].

Dialect classification of a language is similar to language
identification (LID). There are many previous studies on LID.
The popular methods are based on phone recognition such as
single language Phone recognition followed by language-de-
pendent language modeling (PRLM), parallel PRLM, and lan-
guage-dependent parallel phone recognition (PPR) [16], [40]. It
is well known that low-level features such as Mel frequency cep-
stral coefficients (MFCCs) cannot provide sufficient discrimi-
nating information for LID. Jayram et al. [16] proposed a par-
allel subword recognizer for LID. Rouas et al. [32] evaluated the
relevance of prosodic information such as rhythm and intona-
tion for LID. Parandekar and Kirchhoff [28] applied an n-gram
modeling of parallel streams of articulatory features which in-
clude manner of articulation, consonantal place of articulation,
and even the phone sequence was treated as a feature stream. Gu
and Shibata [9] proposed a predictive vector quantization (VQ)
technique with several high-level features such as tone of voice,
rhythm, style, and pace to identify languages. Most of the above
techniques can be directly employed in dialect classification.

There are far fewer studies addressing dialect classification.
Kumpf and King [19] applied linear discriminant analysis
(LDA) classification on individual phonemes to analyze
three accents in Australian English. Miller and Trischitta
[27] selected phoneme sets including primary vowels for an
analysis on the TIMIT American English dialects. Yan and
Vaseghi [39] applied formant vectors instead of MFCC to train
hidden Markov models (HMMs) and Gaussian mixture models
(GMMs) for American, Australian, and British English accent
analysis. Lincoln et al. [22] built phonotactic models with
the CMU American English pronunciation dictionary and the
BEEP British English pronunciation dictionary for American
and British English accent classification. Angkititrakul and
Hansen [1] proposed trajectory models to capture the phoneme
temporal structure of Chinese, French, Thai, and Turkish ac-
cents in English.
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In this paper, we focus our attention on English, and suggest
that application to other languages is straightforward. In order to
achieve reasonable identification accuracy in English dialect/ac-
cent classification, it is first necessary to understand how di-
alects differ. Fortunately, there are numerous studies that have
considered English dialectology [30], [35], [37]. While there are
many factors which can be considered in the analysis of dialect,
English dialects generally differ in the following ways [37]:

1) phonetic realization of vowels and consonants;

2) phonotactic distribution (e.g., rhotic and nonrhotic in farm:
/F AA R M/ versus /F AA M/);
3) phonemic system (the number or identity of phonemes
used);
4) lexical distribution (word choice or word use frequency);
5) rhythmical characteristics:
* syllable boundary (e.g., self#ish versus sel#fish);
* pace (average number of syllables uttered per second);
* lexical stress (across word or phrase);
 intonation (sentence level, semantic focus);
* voice quality (e.g., creaky voice versus breathy voice).
The first four areas above are visible at the word level. All the
rhythmical characteristics except intonation can be, or at least
partially, represented at the word level [37]. In [30], a single
word “hello” was used to distinguish three dialects in American
English. In our experiments, it is observed that human listeners
can make comfortable decisions on English dialects based on
isolated words. Individual words do encode high-level features
such as formant and intonation structure to be useful for di-
alect classification. From a linguistic point of view, a word may
be the best unit to classify dialects. However, for an automatic
speech-based classification system, it is impossible to construct
statistical models for all possible words from even a small subset
of dialects. Fortunately, the words in a language are very un-
evenly distributed. The 100 most common words account for
40% of the occurrences in the Wall Street Journal (WSJ) corpus
[24], which has 20K distinct words, and account for 66% in the
SwitchBoard corpus [8], which has 26K distinct words. There-
fore, only a small set of words is required for modeling. In
[18], [24], and [31], word level information was embedded into
phoneme models and improvement in language identification
was achieved. In this study, a system based only on word models
named Word-based Dialect Classification (WDC) is proposed
and will be shown to outperform a large-vocabulary continuous
speech recognition (LVCSR)-based system, which is claimed to
be the best performing system in language identification [41].

The WDC turns a single text-independent decision problem
into a multiple text-dependent decision problem. There are two
sets of classifiers in the WDC system: a word classifier Dyy (1)
and an utterance classifier D,,. WDC provides options for alter-
native decision and modeling technique improvement as well.
The AdaBoost algorithm [6] is an ensemble learning algorithm.
In [4], [5], and [26], different researchers applied the AdaBoost
algorithm to GMM/HMM-based modeling and obtained small
but consistent improvement with large computational costs. In
this study, the AdaBoost algorithm is applied directly to our
word classifier Dyy ;) in the probability space instead of the
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Fig. 1. LVCSR-based dialect classification system.
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Fig. 2. Block diagram of WDC training framework.

feature space, where the latter results in model training for each
iteration. This method obtains significant improvement with
small computational costs. The dialect dependency of words
is also considered and embedded within the WDC framework
through the utterance classifier D,,. For a small dialect corpus,
the primary problem of formulating a word-based classification
algorithm is that there is not sufficient training data to model
each word for each dialect robustly. A context adaptive training
(CAT) algorithm is formulated to address this problem. First,
all dialect data is grouped together to train a set of universal
phoneme GMMs; next, the word HMM is adapted from the
phoneme GMMs with the limited dialect-specific word samples.

The remainder of this paper is organized as follows: the
LVCSR-based classification system is introduced in Section II
as the baseline for our study. Section III is dedicated to the
WDC algorithm and its extensions: Section III-A introduces
the motivation of the basic WDC algorithm; Section III-B
presents the method for boosting the word classifier Dy (x);
Section III-C introduces how to encode the dialect depen-
dent information of words into the utterance classifier D,;
Section III-D proposes the CAT algorithm, which adapts the
universal phoneme GMMs to the dialect-dependent word
models. The CAT is specifically formulated for word modeling
in a small audio corpus. Section IV presents system experi-
ments using three corpora. Finally, conclusions are presented
in Section V.

II. BASELINE CLASSIFICATION SYSTEM

It is known that LVCSR-based systems achieve high perfor-
mance in language identification since they employ knowledge
from individual phonemes, phoneme sequences within a word,
and whole word sequences [41]. In several studies [11], [25],
[34], LVCSR-based systems were shown to perform well for the
task of language identification. A similar LVCSR-based system
is employed as our dialect classification baseline system. Fig. 1
shows a block digram of the system, where N represents the
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Fig. 3. Block diagram of WDC evaluation system.

number of dialects. In this figure, the blocks AM; and LM, rep-
resent the acoustic model (trained on triphones) and the lan-
guage model (trained on word sequences) of dialect % respec-
tively. AM; and LM; are trained with data from dialect  in the
task. No additional data is added for model training. A common
pronunciation dictionary is used for all AM + LM pairs con-
sisting of the publicly available CMU 125K American English
dictionary [2]. Here, L; represents the likelihood of dialect 3.
The final decision is obtained as follows:

1=1,2

g Ly ey

N. (1)

Dy = argmax L;,
The LVCSR-based system requires a significant amount of word
level transcribed audio data to train the acoustic and language
models for each dialect. Also, during the test phase, IV recog-
nizers must be employed in parallel. Because of this parallel
structure, this computationally complex algorithm achieves very
high dialect classification accuracy, and therefore represents a
good baseline system for comparison.

III. WDC AND EXTENSIONS

A. Basic WDC Algorithm

In this section, we formulate the basic word-based dialect
classification algorithm. Fig. 2 shows the block diagram for
training the WDC system. For dialect ¢, we require that audio
data A; and its corresponding word level transcript 7; are given.
In this phase, Viterbi forced alignment is applied to obtain the
word boundaries, and the data corresponding to the same word
in that dialect is grouped together (i.e., “Data Grouping” block
in Fig. 2). We determine the common words across all the di-
alects (i.e., “Common Words” block of Fig. 2) and maintain
them as set J. An HMM is trained for each word in set 7 and
for each dialect. The number of states in the word HMM is set
equal to the number of phonemes within the word. The number
of Gaussian mixtures of the HMM is selected based on the size
of the training data with a minimum of two. Therefore, the set
of dialect-dependent word HMMs is summarized as

\I’:{HMMU}/ 1=1,2,....N, €T
where N is the number of dialects. Next, the transcript set 7 =
{Ty,...,T;,..., Ty} is used to train a language model LM (see
bottom of Fig. 2), which includes the common word set 7 and
is used in the word recognizer (see Fig. 3) during the WDC
evaluation.

Fig. 3 shows the block diagram of the WDC evaluation
system. A gender classifier can be applied to the input utter-
ance if gender-dependent dialect classification is needed. The

common word recognizer is a dialect-independent recognizer
and is applied to output word and boundary information of the
incoming audio. The acoustic model in the word recognizer
can be trained by grouping all dialect training data together. No
additional data is necessary. A decision-tree triphone modeling
technique is applied to train the dialect-independent acoustic
model. However, we note that the accuracy of the acoustic
model in the word recognizer has limited overall impact on di-
alect classification performance.! Therefore, it is not absolutely
necessary to train an acoustic model for every new dialect
classification task in a language. Since there are many existing
well-trained triphone acoustic models in English available for
speech recognition, a previously well-trained decision-tree
triphone acoustic model AM,, can be used in our study as an al-
ternative, which is independent of the dialect data and the task.
The language model LM in the common word recognizer is a
task-dependent, dialect-independent model, which is trained
with the transcripts of all the dialect data in the task as shown in
Fig. 2. The task-dependent language model LM is intentionally
used for the word recognizer to output words which have
previously trained word models. The common pronunciation
dictionary is the publicly available CMU 125K American Eng-
lish dictionary [2]. The WDC system has small requirements
on the word recognizer as shown in the experiments. Further
discussion on the impact of acoustic and language models for
the word recognizer will be presented in Section IV-A.

The word recognizer therefore outputs the word set O with
boundary information. The effective word set W is represented
as

W(k) —O(l), it O(l) € T, 1 =1,2,...

where k is an index variable. After identifying and picking
the words which have the pretrained dialect-dependent word
HMMs, the words are scored and classified using these word
HMMs. Word classification is based on a Bayesian classifier,
where the decision Dyy () is

Dy )y = arg max Pr (W(k)|HMMiW(k.))

Wk)eJ, k=1,2,...,K,i=1,2,....N 2)
where N is the number of dialects, J is the set of common
words across the N dialects, Pr(-|-) is the conditional proba-
bility, and K = |W| is the size of the effective word set W.
The final decision for the utterance classification is obtained by

IThis observation will be shown in Section IV-A.
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a majority vote of the word classifiers Dy 1), k = 1,2,..., K,
as
K
Dy =argmax Y T (Dwy =14), i=12,...,N. (3)
Yok=1

Here, Z(v) is the indicator function defined as

=1

By comparing (1) with (2) and (3), we observe that the WDC
system turns the single text-independent decision problem at the
utterance level into a combination of text-dependent decision
problems at the word level. The WDC framework also provides
options for further modeling and decision space improvement
which will be considered in the following sections.

if v is true
else.

“4)

B. Boosting Word Classifier Dyy 1y in the Probability Space

Let us first consider word classifier Dyy () in (2). For sim-
plicity, let us represent the word W (k) and HMM as

m«— W(k), © «— HMM

and define a probability vector for word m as
p" =log [Pr(m|O1,m)Pr(m|Bay) ... Pr(m|©nm,)]
with a general hypothesis function such as

h(x) = arg 122)\(x| x;. 5)

With this, we can represent (2) as
D,, = h(p™).

Without loss of generality, the word label term m is dropped, so
as to obtain the following relation:

D = h(p). (©)

If there is sufficient training data and the model is an accu-
rate representation of the training data, (6) is the best decision
strategy. However, there are usually limitations on the size of the
training data and the representation ability of the model. There-
fore, it would be useful to explore the classification information
of the training samples more closely and compensate for errors
in the original decision strategy in (6). Given the training sam-
ples (p;,y;), where y; € {1,2,...,N}and j = 1,2,...,T,
where 1" is the total number of training samples of word m
across the IV dialects, the AdaBoost algorithm [6], [33] can be
applied to learn a sequence of “base” hypotheses (where each
hypothesis & has a corresponding “vote power” «;) to construct
a classifier which we expect to be better than the single-hypoth-
esis classifier in (6). By adjusting the weights of the training
samples, each hypothesis h; focuses on the samples misclassi-
fied by the previous hypotheses (i.e., the misclassified samples
have larger weights than other samples). The final classifier is
an ensemble of base hypotheses and is shown to decrease the

classification error exponentially fast as long as each hypoth-
esis has a classification error smaller than 50% [6]. The idea for
applying AdaBoost on word dialect classification is illustrated
as follows:

Given the entire dataset D = {(p,,y;)|li = 1,2,..., T}, for
simplicity, we consider the two-class case (i.e., y; € {-1,+1}),
and note that the multi-label classification can be fulfilled using
a sequence of pair-wise decision modes instead.

1) Initialize weights w; = (1/T), 5 =1,2,...,T.
2) Fort =1 : n:

a) Build a weak learner (a tree stump is used in our
study) h¢(p) € {—1,+1} using the data D weighted
according to wj, j = 1,...,T. The information gain
is used to build the tree stump. In essence, choose at-
tribute A = p;, 7 = 1,2,..., N, and the splitting
threshold ¢ that maximizes

Z @Entropy(Sv)

ve{A<c,A>c} [S]

~wryr}, [S] = ZJT=1 Wy,
and [S,] = 22):1 Wi (m)- Here, T}, is the number
of samples in the set v, and k(m) is the vector of
indices to these samples. The split is conducted on
every dimension of the vector p, and the split which
maximizes Gain(.S, A) is kept. For each dimension 7,
the split value c is obtained by searching in the range
of the values of p; in a certain step size. The entropy
is defined as

Gain(S, A)=Entropy(S) —

where S={w1y1, ways, .

Entropy(S) = —p4 log py — p—log p—
where

py = DN Wd(m) o = DN Wq(m)
ZJT=1 wj Z?:l wj

Here, T is the number of samples in S with y; > 0,
and d(m) is a vector of indices to these samples; 7 is
the number of samples in S with y; < 0, and ¢(m) is
a vector of indices to these samples. The Entropy(.S,,)
is similarly defined.

b) Compute the error e;= (Zle w;Z(y; # he(pj)))/
(Z?:l w;), stopand setn =t — 1if e > 0.5.

c¢) Compute ay = log((1 — &) /ex).

d) Update the weights, w; <« wj;explauZ(y; #

hi(p;))]-
3) The final boosted classifier Dyy () is
+1 if Zn_ Oltht(p) Z 0
Doy =D = ’ t=1
W(k) { —1, else. @

Here, n is the number of iterations and is usually on the order
of several hundred for convergence. This reflects another moti-
vation for us to boost the classifier in the probability space in-
stead of the feature space, which has been previously considered
in [4], [5], and [26] for general speech recognition. The feature
space-based boosting results in HMM training for each itera-
tion, and is therefore computationally expensive.
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C. Boosting Utterance Classifier D, via Dialect Dependency

Individual words typically encode a nonuniform level of di-
alect-dependent information. Essentially, there are a variable
levels of “decision power” in (3) across the words W (k), k =
1,2,..., K. A new boosted version of the utterance classifier
D,, from (3) can be formed as follows:

K

Du = arg mLELXZI (DVV(k) = L) - l‘V(k)w
k=1

i=1,2,...,N
(3

where lyy(x).; is the measure of dialect dependency for word
W (k) in dialect ¢, which is defined as

w1 3 {rret

7j=1
! PT(XJt|HMM])
+ ;k’g Pr(x, ) (0

T’(th|HMMJ)

For simplicity, the word label term W (k) is dropped here, where
T; is the number of training samples of word W (k) in dialect 4;
X is the tth training sample in dialect ¢, = 1,2,..., N, and
N is the number of dialects. This formulation is motivated by a
measure of the model distance as discussed in [17] for general
speech recognition. For our formulation, the larger the model
distance, the greater the dialect dependency (i.e., the higher the
vote power is for word W (k) in utterance classifier D,). We
note that lyy(x).; can be computed during the training stage, so
there is no additional computational cost during evaluation.

D. Context Adaptive Training (CAT) on Small Data Set

If the size of the training set is small or there are many di-
alects for a limited-size training set, it becomes a challenge
to train a robust HMM for each word and each dialect, and
therefore model adaptation techniques should be applied. From
Section III-A, we set the number of states in the word HMM
equal to the number of phonemes contained in the word. There-
fore, the word HMMs can be adapted from the phoneme models,
which can be trained using data from all the dialects, or data that
is independent of the dialect data set. The proposed adaptation
scheme is motivated by the well established maximum likeli-
hood linear regression (MLLR) [21] method. To begin with, we
define the following notation:

T Total number of frames for a word in a dialect.

Ty Total number of training samples for a word in a
dialect.

S Number of states (or phonemes) for a word in a
dialect.

M Number of Gaussian mixtures for each state in the
HMM.

N; ;  Number of frames for the jth training sample in
state .

oy tth observation vector, where the dimension of the

feature is n.

457

ls,m, Mean vector and the diagonal covariance matrix of

Ys,m the mth Gaussian mixture in the sth state, where
diag(zsym) = [Usz,m,l Us2,m,2 te Usz,m,n]l'

Wi Mixture weight of the mth Gaussian mixture (in
state s).

a; Transition probability from state ¢ to state j.

e Initial probability of being in state .

A Entire parameter set of the word HMM for a

particular word in a dialect.
w n X (n 4 1) transformation matrix which must be
estimated in the MLLR method.
Transformed pair, where v is the original variable,
and © is the updated/estimated variable of v.

A

v, U

Using this notation, the mean vector in the HMM is updated
through [21] as

ﬂs,m = Wfs,m (10)
where & ,,, = [1 M.ls,m]l’ and
-1
W/ = (G(’)) Z! (11)

where W, and Z; are the ithrow of W and Z (Z isann x (n+1)
matrix) respectively, and

T S N
Z= Z Z Z ’Ys,m(Ot)E;}nOtfgm (12)
t=1 s=1 m=1
@ _ [,
o[ .
' 5 M
a50 = >0 3wl (14)
s=1m=1 .
viEm) _ [v(s m)an Z%,m 0,)% (15)
(s;m) _ | g(s;m) _
D B [dj’l i|(n+1)><(n+l) =&mlome (10)

Based on previous MLLR studies [7], we choose a diagonal
covariance matrix for the update as follows:
52 Ri02 l=1,2,...,n 17

sml_ s,m,l?

where A 7
e Z< 1 Zm 1 Ys,m(0Ot) (w)
fi= . (18)
Zt 1 Ze 1 Zm 17s, m( t)

The term 5 ,,,(0;) denotes the probability of the tth frame
being observed in the mth mixture of the sth state of the HMM.
In the original formulation of MLLR, this term is computed
through the forward-backward algorithm, whereas here the
Viterbi algorithm is used. The term is defined as

Wi bm (Ot)

P JA) = =2 if S(oy) =
%,m(ot):{ (mlos, ) ST i (ar) if S(o;) = s
0,

else
(19)



458 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 2, FEBRUARY 2007

where S(o;) is the state which generates the frame o;, and
b, (04) is the probability of the ¢th observation vector being gen-
erated by the mth Gaussian mixture (in state s)

_n n —1/2
b (00) = (21) /2 (0102, ) Y

1 o (01,1 = pm1)?
3PP Pyl BECY

X exp

Since the states of the word HMM are the phoneme sequence
of the word obtained from a pronunciation dictionary (the CMU
125K American English dictionary [2] is used in our study), the
HMM structure should be left-to-right. Also, using a one-state-
skip structure will allow for single phoneme deletion (e.g., farm
is pronounced as /F AA R M/ in the CMU dictionary; it is actu-
ally pronounced as /F AA M/ in British English). Since it is diffi-
cult to obtain a pronunciation dictionary which includes the pro-
nunciation variations of all the dialects (further research could
consider this), a phoneme recognizer may be applied to decode
the phoneme sequence in order to capture the phoneme substi-
tution, phoneme deletion and phoneme insertion characteristics.
Therefore, we define three HMM structures in the CAT training.
1) CAT1-a: employs a no-skip left-to-right structure, where the
phoneme sequence is obtained from the CMU pronunciation
dictionary. 2) CAT1-b: employs a no-skip left-to-right structure,
where the phoneme sequence is obtained from the phoneme rec-
ognizer. 3) CAT2: employs a one-state-skip left-to-right struc-
ture, where the phoneme sequence is obtained from the CMU
pronunciation dictionary.

The steps employed for CAT training are summarized as
follows.

1) Given the audio data and word-level transcripts, find the
training samples for the words and phonemes using Viterbi
forced alignment.

2) Train the universal (i.e., across all the dialects we work on)
gender-dependent and/or gender-independent M mixture
GMM for each phoneme using the entire corpus.

3) For each word and each dialect do the following:

a) Initialize the word HMM. The corresponding S
phoneme GMMs are concatenated to form an S state
word HMM. The phoneme sequence of the word can
be obtained by the pronunciation dictionary or by a
phoneme recognizer. The initial state probabilities
are set as

m=1 m=0,1=23,...,5. 2D
If a no-skip left-to-right HMM structure (CAT1-a,
CAT1-b) is used, the initial transition probabilities are
set as follows,

ai,i:ai,i+1:1/27 2'21,2,...,5—1
aqq = 1, i=S5 (22)
ai; =0, i=1,2,...,85 & {i,i+1}.

If a one-state-skip left-to-right HMM structure

(CAT2) is used, the initial transition probabilities are
set as follows:

@ii = @iip1 = a2 =1/3, i=1,2,...,85 -2
@i = aiir1 = 1/2, i=5-1
ai,izl, i =38

ai,j:0, ’iZl,Z,...,S.

j&{ii+1,i+2}.
(23)

b) Use Viterbi forced alignment to obtain the state and
mixture sequences for each training sample.
¢) Update the HMM parameters as follows.
i) Use (10) to update the Gaussian mixture mean
Vector s, m
ii) Use (17) to update the Gaussian mixture diag-
onal covariance matrix X, .,
iii) The mixture weights are updated through

Ty N

= >0 P (o)

PO
j=11Vs.J j=1 k=1

s=1,2,....8 m=1,2,...,M.

“:}s,m
(24)

iv) Here, three alternate methods are used for con-
text adaptive training (CAT1-a, CAT1-b, and
CAT2):

for CAT1-a and CAT1-b, the transition
probabilities are updated through

Ty
oo 2= N
1,0 — Tow
Z]’:1(Ni7j +1)
i=1,2,...,8—1

Qiip1 =1 — Qi (25)

for CAT?2, the transition probabilities are
updated through

T,
. 21 Nij
A5 = Tw—
Z]‘:1(Ni;j +1)
T,
221 Z(Nipa; 2 1)
T.
22 (Nij+1)

aiiye =1 —a;; —

Qiit1 =
Qi g1,

i=1,2,...,8 -2
and

T,
2o Ns-1
T,

> i21(Ns—15+1)

as—1,5s =1—as_1,5-1.

as—1,5-1 =
(26)

d) Iterate between steps b) and c) until a preselected
stopping iteration is reached or a model change
threshold is achieved.

IV. EXPERIMENTS

The speech recognizer used in our studies is the Sonic system
[29], which employs a decision-tree triphone acoustic model
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TABLE I
THREE USED CORPORA
Data Total Training Set Total Test Set Dialects/
Vocab. | Spkrs Size style Spkrs Size Style Accents
WSJ 20K 375 40 hours read 1 hour read 2(American,British)
N4 1159 211 22 hours read/ 43 read/ 4(British,Canadian,
Spontaneous minutes | Spontaneous Dutch,German)
IViE 320 64 5 hours read 86 Spontaneous || 8 British dialects (Belfast,
minutes Bradford,Cambridge,
Cardiff, Leeds, Liverpool,
London, Newcastle)

and back-off trigram language model. The acoustic and lan-
guage models were trained using the WSJ American English
data, which are represented as the AM,, in Fig. 3, and referred
to as the “WSJ AM” and “WSJ LM” in Table IV. The feature
representation used in our study consists of a 39-dimensional
MFCC vector (static, delta, and double delta).

Three corpora containing dialect sensitive material are used
for evaluation, which include the WSJ American and British
English corpora (WSJO and WSJCAMO [38], [44]), the NATO
N4 foreign accent and dialect of English corpus [20], and the
IViE British dialect corpus [15]. Table I shows a summary of
training and test sets used from the corpora. The length of each
test utterance is 9 s in duration for all the corpora. The WSJ
and N4 data sets represent large-size/vocabulary corpora, which
are used to test the basic WDC system from Section III-A, Ad-
aBoost processing from Section III-B, and the dialect depen-
dency approach from Section III-C. The IViE is a small-size/
vocabulary corpus, which is used to test CAT methods from
Section III-D. The CAT approaches are not necessary for much
larger dialect training sets because sufficient training data for
word modeling is available.

A. Basic WDC Algorithms

There are two major phases in the WDC system: word
modeling and word recognition. Tables II and III show
word modeling information from the training stage (using
the training data set shown in Table I) and word usage in
the final decision stage respectively (using the test data
set shown in Table I). Here, we define vocabulary cov-
erage C, and occurrence coverage C, as follows: C, =
(number of modeled words/ total number of distinct words),
C, = (number of occurrences of modeled words/
total occurrences of all words). Table II shows that a small set
of words accounts for a large portion of word occurrences in
the training data, and only this small set of words is required
for modeling (i.e., between 8% and 10% of the unique words
account for 64%—75% of the words occurring in the audio).
Table IIT shows that this observation is also true in the test data.
In Table III, the word usage is the ratio of used words to the
total number of words in the utterance; K is the average number
of words used in the utterance. Throughout our experiments,
the minimum number of used words for dialect classification
of a test utterance is greater than five; the maximum number of
used words for dialect classification of a test utterance is less
than 40. Furthermore, since the language model LM in Fig. 3
is intentionally applied to encourage the word recognizer to

TABLE II
WORD MODELING INFORMATION OF WDC TRAINING

Data | Vocab. | Models | C, C,
WSJ | 20K 1642 8% | 75%
N4 1159 115 10% | 64%

TABLE III
‘WORD USAGE OF THE RECOGNIZED UTTERANCE IN THE FINAL DECISION STAGE

Data | Word Usage | K (in Eq. 3) per Utterance
WSJ 69% 15
N4 1% 17

output words which have previously trained models, the word
usage is high in the test data (Table III), and even higher than
C, in the training data (Table II) for the N4 corpus.

Table IV shows how the acoustic and language model set-
tings impact the word error rate (WER) and the dialect clas-
sification error rate of the basic WDC algorithm using the N4
corpus. The “WSJ AM” and “WSJ LM” are pretrained acoustic
and language models from the Sonic system and are trained
with the WSJ American English data. The “N4 AM” and “N4
LM” are trained with N4 training data (see Table I). “N4-BE,”
“N4-CA,” “N4-GE,” and “N4-NL” are the two dialects (British,
Canadian) and two accents (German, Netherlands-Dutch) of the
NATO N4 English corpus. The word error rate and utterance di-
alect classification error is obtained using the test data from N4
(see Table I). From Table IV, we find that the language model
is much more important than acoustic model for dialect clas-
sification, and the dialect classification error is much smaller
than the word error rate. Therefore, we place more attention
on language model training; whereas for the acoustic model,
we use a previously well-trained model (i.e., AM,, in Fig. 3,
Section III-A) for all the experiments in order to save effort
for retraining acoustic models in a language. The WDC system
does not require an exact match of word outputs from the word
recognizer. For example, if the words “works,” “fridge,” and
“litter” are recognized as “work,” “bridge,” and “letter” incor-
rectly (i.e., it is also the idea that the word recognizer is en-
couraged to output the common words which have previously
trained word HMMs), we expect it will not cause a problem
for the word classifier Dyy () in the WDC system (i.e., par-
tial dialect dependent words are generally sufficient since the
word encodes abundant dialect dependent information). Fur-
thermore, since the WDC system is based on a majority vote
of the word classifiers, it has sufficient tolerance for errors due
to the word recognizer. We feel this represents a key reason why
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TABLE IV
WER(%) AND UTTERANCE DIALECT CLASSIFICATION ERROR (%) OF WDC UNDER DIFFERENT AM/LM SETTINGS IN THE NATO N4 CORPUS

AM and LM Word Error Rate Average || Dialect Classification
Settings N4-BE | N4-CA | N4-GE | N4-NL | WER Error Rate of WDC
WSJ AM, N4 LM 42.1 24.1 21.3 16.1 25 34
WSJ AM, WSJ LM | 101.1 74.2 88.7 77.8 85 174
N4 AM, WSJ LM 80.1 72.0 53.7 70.4 70 9.2
N4 AM, N4 LM 14.0 21.4 7.4 13.1 14 2.6
TABLE V TABLE VI
ADABOOST APPLIED ON THE CORPORA CLASSIFICATION ERROR(%) OF ALGORITHMS
Data | Word | Boosted | Model | Occurrence Data | LVCSR | WDC | WDC+ | WDC+ | WDC+
Models | Models | Coverage | Coverage DD AB AB+DD
N4 115 7 6% 7% N4 5.5 34 1.9 3.0 1.6

the WDC system has only small requirements on the word rec-
ognizer during the evaluation. The first setting in Table IV (i.e.,
uses a previously well-trained task-independent acoustic model
(“WSJ AM”) and train a language model using task-specific
data; this setting is shown in Fig. 3, Section III-A) is used in all
the following experiments. Although it is not the best configu-
ration, this setting can achieve reasonable performance without
retraining acoustic models for each task in the same language
which is required in the fourth setting.

From Tables II-1V, it is observed that the basic WDC algo-
rithm can achieve good dialect classification performance with
small requirements on the word recognizer (i.e., it can use a di-
alect independent acoustic model, and the WER can be high
while achieving good dialect classification performance). We
also note that a small number of word models (compared to the
vocabulary size of the corpora) are sufficient for utterance di-
alect classification.

B. Performance of Boosted Word Classifier Dyy ()

In order to determine the proper number of iterations for
AdaBoost, 75% of the original training data is randomly se-
lected for AdaBoost training, and the remainder of the training
data is used for validation. In order to obtain robust classifiers,
only the words which have sufficient training samples (say,
500 in our study) are boosted. Table V shows the information
of boosted models. The model coverage is defined as the ratio
of the number of AdaBoosted models to the total number of
word models. The occurrence coverage is defined as the ratio of
the number of occurrences of AdaBoosted models to the total
number of occurrences of word models in the original training
data set. From Table V, we observe that the AdaBoosted word
models account for a large portion of word occurrences. There-
fore, the boosted word models will improve the performance of
the utterance classifier even when the number of boosted word
models is small.

Fig. 4 shows the error rate of AdaBoosted word classifier
Dy (1) in the newly partitioned WSJ training and validation
sets. From Fig. 4, we observe that setting the number of iter-
ations to n = 27 = 128 will be appropriate for AdaBoost, and
the absolute word classification error reduction of AdaBoosted
word models to the baseline word models is about 8%.

C. Evaluation on the WDC and Extensions

Section IV-B showed that the AdaBoost algorithm can boost
the word classifier Dyy (1) significantly. Now, the boosted classi-
fiers are applied to the basic WDC (WDC + AB, Section III-B).
The dialect dependency can also “boost” the utterance classifier
D, (WDC + DD, Section III-C). The dialect dependency term
l; in (9) for all the word models are computed in the training
stage, and used as a “vote power” term in the decision stage as
shown in (8). Dyy () and D, can be boosted simultaneously,
and this configuration is referred to as WDC + AB + DD.
We note that there are no specific tuning parameters required
in the WDC algorithm and its extensions. Finally, we employ
the LVCSR-based approach as the baseline system for dialect
classification. Table VI shows the utterance dialect classification
error of the above algorithms using the test data summarized in
Table 1.

From Table VI, the basic WDC significantly outperforms the
LVCSR-based system, which has been claimed to be the best
performing system for language identification [41]. The WDC
requires much less computation, especially in the evaluation
stage since only one recognizer is used instead of N parallel rec-
ognizers. Next, the word classifier Dyy (1) is directly boosted by
the AdaBoost algorithm in the probability space (WDC + AB),
and the utterance classifier D,, is boosted by dialect dependency
(WDC + DD), and these extensions to the basic WDC also show
great performance improvement (see Table VI). Finally, com-
bining both extensions results in a relative error rate reduction
from the baseline LVCSR system to the “WDC + AB + DD”
for dialect classification of 67.8% for the WSJ corpus and 70.9%
for the NATO N4 corpus. Since only a few word models in the
N4 corpus are AdaBoosted (see Table V), the “WDC + AB”
configuration for the NATO N4 corpus does not show the same
level of improvement as experienced in the WSJ corpus.

In our study, the utterance boundaries are normally available.
However, it would be interesting to explore performance for
an on-the-fly condition (i.e., the utterance boundaries are un-
known). Here, a previously formulated T2-BIC[13],[42], [43]
segmentation scheme is used to detect the boundaries. Table VII
shows the classification errors for an on-the-fly condition using
the same test data as in Table VI. The A\ parameter used in the
BICis setto 1 in order to detect as many potential acoustic break
points as possible (i.e., false alarm break points are therefore
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Fig. 4. Word dialect classification error versus number of AdaBoost iterations(n = 2%) in the newly partitioned WSJ training and validation sets.

TABLE VII
DIALECT CLASSIFICATION ERROR OF ALGORITHMS FOR AN ON-THE-FLY CONDITION

Data Segmentation Dialect Classification Error Rate (%)
False Miss | LVCSR | WDC | WDC+ | WDC+ | WDC+
Alarm Rate | Rate DD AB AB+DD
‘WSJ 9.1% 3.2% 10.8 7.8 6.8 6.2 5.3
N4 17.8% 5.6% 8.8 7.0 5.1 6.0 4.3

higher). The threshold for a correct break point is 2 s in duration.
The average length of an utterance after T? —BIC segmentation
is about 8 s in duration. From Table VII, it is observed that the
T2 — BIC algorithm can be applied in the on-the-fly condition,
since the miss rate is quite low, even with an acceptable high
false alarm rate. Compared with the LVCSR-based dialect clas-
sification approach, the “WDC + AB + DD” method achieves
arelative dialect classification error rate reduction of 50.9% and
51.1% for WSJ corpus and NATO N4 corpus, respectively.

D. CAT on Small Size Data Set

From Table 1, it is observed that there is on the average less
than 40 min of training data for each dialect in the IViE corpus.
Therefore, it is hard to train a robust HMM for each word of
each dialect. The CAT algorithm is applied for this limited size
corpus. For the baseline system, we originally implemented
a similar PRLM system as in [40] since the LVCSR baseline
system would not achieve very good performance due to the
limited training data in the IViE corpus. However, the PRLM
system could not distinguish three of the eight dialects at
all, and the overall classification error was larger than 50%.
Since the IViE training data is read speech, and the speakers
in the eight dialects of the training data read basically similar
documents, there is little dialect difference among the phoneme
sequence. We believe this is probably why the PRLM system
does not work well here. Therefore, we still apply the LVCSR
based system as our baseline system.

As shown in Table I, there are 96 IViE speakers in total, where
each speaker has produced both read and spontaneous speech.
We use the read speech of 64 speakers as the training data. The
read speech of the remaining 32 speakers is used to search for
the best HMM topology for the word models, with the result
shown in Fig. 5. The spontaneous speech of the remaining 32
speakers is used in the utterance dialect classification evaluation,
with the result shown in Table VIIL

Fig. 5 shows the word dialect classification error of the three
CAT structures versus the baseline WDC training algorithm
for the eight-dialect IViE corpus. From Fig. 5, we see that
all three CAT-based methods outperform the baseline WDC
training algorithm significantly on the words with three-or-more
phonemes, and the three CAT structures achieve almost the
same performance for word classification. Since all eight di-
alects are from the U.K., there are not many differences across
each dialect for phoneme deletion and phoneme insertion. If
the dialects were from the U.K. and the U.S., we would expect
more differences. This may be the reason why CAT1-b and
CAT?2 do not outperform the CAT1-a structure. Therefore, the
CAT1-a is used in the following experiment.

Table VIII shows the utterance classification errors of dif-
ferent algorithms. “WDC 4 CAT” means that the word models
are trained by the CAT algorithm (CAT1-a is used). “WDC”
means the basic WDC algorithm as in Section III-A. The rel-
ative error reduction from the baseline LVCSR system to the
“WDC + CAT” system is 35.5%. The AdaBoost algorithm in



462

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 2, FEBRUARY 2007

Word classification error of the 8—dialect IViE corpus

T

—©- baseline
—*— CAT1-a
—<— CAT2
0.8H CAT1-b
0.7+
S
i
= 06
ke
©
Qo
G 0.5
K
(@]
0.4r
0.3
02 1 1 1
1 2 3 4

5
Number of phonemes of the words

6 7 8 9 10

Fig. 5. The three CAT and baseline WDC word classification errors versus the number of phonemes in the word.

TABLE VIII
DIELECT CLASSIFICATION ERROR(%) OF ALGORITHMS
ON EIGHT-DIALECT IVIiE CORPUS

LVCSR | WDC | WDC+ | WDC+ | WDC+
DD CAT | CAT+DD
32.4 26.2 23.2 20.9 19.9

Section III-B requires a large amount of training samples, so it
is not applicable here. However, the dialect dependency (DD)
in Section III-C can still be applied in the limited size corpus.
The “WDC + DD” reduces the absolute error rate by 3% from
the “WDC” system. Furthermore, The dialect dependency in-
formation is calculated after the CAT word model training, so
the “WDC + CAT + DD” achieves further error rate reduction
from the “WDC 4 CAT” system. The relative error reduction
from the baseline LVCSR system to the “WDC + CAT + DD”
system is 38.6%.

Therefore, when only a small training corpus is available, the
“WDC+CAT+DD” system is able to provide effective dialect
classification performance.

V. CONCLUSION

In this study, we have investigated a number of approaches
for dialect classification. All the dialects considered showed
great differences existing at the word level. An effective
word-based dialect classification technique called WDC was
proposed. A direct comparison between a LVCSR-based dialect
classifier versus WDC shows that WDC achieves better perfor-
mance with less computational requirements. The basic WDC
algorithm also offers a number of areas for improvement that
included modeling techniques and decision space extensions.

The AdaBoost algorithm and dialect dependency are embedded
into the word classifier Dyy () and utterance classifier D,,
respectively. Further dialect classification improvement is
achieved with these extensions. The relative utterance dialect
classification error reduction from the baseline LVCSR system
to the “WDC + AB + DD” is 69.3% on the average. A CAT
algorithm is formulated and shows promising performance
when only a small size dialect corpus is available. The relative
utterance dialect classification error reduction from the baseline
LVCSR system to the “WDC + CAT + DD” is 38.6%. The
“WDC + AB + DD” system is therefore an effective approach
for dialect classification when sufficient training data is avail-
able, and “WDC 4 CAT + DD is the preferred method when
limited training data is available.
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