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Abstract

In this paper, we present an effective cepstral feature compensation scheme which leverages knowledge of the speech model in order to
achieve robust speech recognition. In the proposed scheme, the requirement for a prior noisy speech database in off-line training is elim-
inated by employing parallel model combination for the noise-corrupted speech model. Gaussian mixture models of clean speech and
noise are used for the model combination. The adaptation of the noisy speech model is possible only by updating the noise model. This
method has the advantage of reduced computational expenses and improved accuracy for model estimation since it is applied in the ceps-
tral domain. In order to cope with time-varying background noise, a novel interpolation method of multiple models is employed. By
sequentially calculating the posterior probability of each environmental model, the compensation procedure can be applied on a
frame-by-frame basis. In order to reduce the computational expense due to the multiple-model method, a technique of sharing similar
Gaussian components is proposed. Acoustically similar components across an inventory of environmental models are selected by the
proposed sub-optimal algorithm which employs the Kullback-Leibler similarity distance. The combined hybrid model, which consists
of the selected Gaussian components is used for noisy speech model sharing. The performance is examined using Aurora2 and speech
data for an in-vehicle environment. The proposed feature compensation algorithm is compared with standard methods in the field (e.g.,
CMN, spectral subtraction, RATZ). The experimental results demonstrate that the proposed feature compensation schemes are very
effective in realizing robust speech recognition in adverse noisy environments. The proposed model combination-based feature compen-
sation method is superior to existing model-based feature compensation methods. Of particular interest is that the proposed method
shows up to an 11.59% relative WER reduction compared to the ETSI AFE front-end method. The multi-model approach is effective
at coping with changing noise conditions for input speech, producing comparable performance to the matched model condition. Apply-
ing the mixture sharing method brings a significant reduction in computational overhead, while maintaining recognition performance at
a reasonable level with near real-time operation.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The mismatch between training and operating environ-

ments is a significant factor that degrades the performance

* Corresponding author. Address: Center for Robust Speech Systems of Speech recognition systems. Additive background noise,
(CRSS), Erik Jonsson School of Engineering and Computer Science, microphone mismatch, and channel distortion are typical
Department of Electrical Engineering, University of Texas at Dallas, 2601 sources of such performance degradation. Bridging the
N. Floyd Road, EC33, Richardson, TX 75080-1407, USA. Tel.: +1 972 environmental mismatch gap for train/test material is one
883 2910; fax: +1 972 883 2710. A . N .
E-mail address: john. hansen@utdallas.cdu (J.H.L. Hansen). of the most essential issues in effectively addressing real-

URL: http://crss.utdallas.edu (J.H.L. Hansen). world applications using speech recognition technology

0167-6393/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.specom.2008.06.004


mailto:john.hansen@utdallas.edu
http://crss.utdallas.edu

84 W. Kim, J.H.L. Hansen| Speech Communication 51 (2009) 83-96

and extensive research efforts from many groups have dri-
ven to realize this goal. Bridging the train/test environmen-
tal noise gap also requires the ability to detect, characterize
and track environmental noise (e.g., Environmental Sniffing
by Akbacak and Hansen, 2007) as well as understanding
the challenges that exist in multiple simulation types of
noise (e.g., SoundScape by Schulte-Fortlcamp et al., 2007).

The algorithms used to minimize the environmental mis-
match can be generally categorized into two groups. One
general class of algorithms focuses on migrating the input
test data to be closer to the original training condition by
compensating the speech signal or extracted features.
Alternatively, the second category would concentrate on
transforming the prior trained acoustic model to be closer
to the test speech acoustics. Speech enhancement and fea-
ture processing such as Cepstral Mean Normalization
(CMN) are examples of how to bring the input operating
environment closer to the original training environment
by suppressing noise or channel in the speech signal or
extracted feature components (Boll, 1979; Ephraim and
Malah, 1984; Lee, 1989; Hansen and Clements, 1991; Singh
et al., 2002; Hansen and Arslan, 1995; Raj and Stern,
2005). Methods belonging to the second category are not
directed at removing noise components, but generating a
speech model which matches better the noisy environment
during the training or decoding steps. The Maximum A
Posteriori (MAP) (Lee et al., 1991; Gauvain and Lee,
1994) and Maximum Likelihood Linear Regression
(MLLR) (Leggetter and Woodland, 1995) adaptation tech-
niques are methods employed to re-estimate the acoustic
models for an improved match to the test environment
using available data. Parallel Model Combination
(PMCQ), originally developed by Varga and Moore (1990)
and refined later by Gales and Young (1996) generates a
noise-corrupted Hidden Markov Model (HMM) by com-
bining separate speech and noise HMM models.

This study focuses on developing an effective front-end
feature compensation method to reduce the impact of addi-
tive background noise for robust speech recognition. A
number of methods have been developed for front-end fea-
ture enhancement/compensation to improve speech recog-
nition. An early approach for cepstral compensation was
MCE-ACC by Hansen (1994) which employed adaptive
cepstral compensation over voiced, transitional, and
unvoiced detected segments over time. The motivation
was to suppress spectral variability due to stress and emo-
tion. Morphological constrained speech enhancement was
employed to suppress noise. Other cepstral feature com-
pensation methods later developed for speaker variability
focused on fixed and adaptive cepstral compensation (Han-
sen and Arslan, 1995; Hansen, 1996) as well as neural net-
work based methods (Hansen and Womack, 1996;
Womack and Hansen, 1996). Various forms of cepstral
mean normalization (CMN) have also evolved to address
channel and microphone mismatch (Acero, 1993; Moreno,
1996). A second area for improving ASR is to use model-
based feature compensation where models are developed

for the speech signal typically using Gaussian mixture
model (GMM). Transitions into noisy environments are
characterized so that a clean speech feature response can
be obtained using the transition compensation.

The model-based feature compensation methods can be
classified into several categories according to how the
noise-corrupted speech model is estimated. The first cate-
gory is a data-driven method such as Multivariate Gauss-
ian-Based Cepstral Normalization (RATZ), Stereo-based
Piecewise Linear Compensation for Environments
(SPLICE), and others (Moreno, 1996; Moreno et al.,
1998; Droppo et al., 2001; Morales et al., 2006). Most of
these methods require a noise-corrupted speech database
to train the noisy speech model where the database is
assumed to have acoustic characteristics identical to test
conditions. In general, the training of the speech model is
accomplished off-line, and therefore implementation is very
efficient with limited required computational resources.
However, when test conditions change from the training
conditions, performance drastically decreases. An alterna-
tive category employs online estimation of the noisy speech
model. Vector Taylor Series (VTS) (Moreno, 1996) and
Interacting Multiple Model (IMM) (Kim, 2002) algorithms
are representative examples for this category, which have
the advantage of reflecting the current noisy condition by
estimating the noise components from the incoming
speech. A disadvantage is that the estimation procedure
requires considerable computational resources. In particu-
lar for VTS, it has been shown that the performance does
not outperform other model-based methods in our subse-
quent experiments. Feature compensation methods based
on model combination can be considered as a third cate-
gory. In these methods, the noisy speech model is estimated
by combining the clean speech and noise model, which was
originally proposed for HMM adaptation (Hansen, 1996;
Womack and Hansen, 1999; Westphal and Waibel, 2001;
Segura et al., 2001; Sasou et al., 2003; Kim et al., 2003;
Stouten et al., 2004). The noise model can be obtained by
off-line training or estimation from incoming speech. Most
existing methods of the last two categories are applied in
the log-spectral domain which have a larger number of
coefficients than the cepstral domain. In addition, the
methods often assume diagonal covariance matrices of
the speech distribution, although the log-spectral coeffi-
cients are more highly correlated than the cepstral coeffi-
cients. These aspects not only increase the computational
expenses, they also degrade the accuracy in estimation of
the speech model.

In this study, we present feature compensation schemes
employing model combination for noise-corrupted speech,
which are applied in the cepstral domain (Kim et al., 2003,
2004). By using model combination, the proposed scheme
eliminates the prior training which requires a noise-cor-
rupted speech database, which is an absolute requirement
in conventional data-driven methods. Independent access
to the noise model makes adaptation in the non-speech
interval possible. The advantages of the proposed method
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will be addressed in terms of model accuracy as well as effi-
ciency applied in the cepstral domain. The novel interpola-
tion method employing multiple environmental noise
models is developed to address time-varying noise condi-
tions. In order to reduce the computational expenses due
to the combination of multiple models, a technique of mix-
ture sharing is also presented.

The paper is organized as follows: the speech model-
based feature compensation scheme is first reviewed and
relevant issues are identified in Section 2. The proposed
feature compensation method is described in Section 3.
The multiple model approaches are presented in Sections
4 and 5. The representative experimental procedures and
results are presented and discussed in Section 6. Finally,
in Section 7, concluding remarks and a discussion of future
work is presented.

2. Feature compensation method using GMM of speech
distribution

Feature compensation employing a speech model has
been considered by Acero (1993), and afterwards, Moreno
designed a data-driven method which motivated similar
schemes (Moreno, 1996; Moreno et al., 1998). In most
speech model-based feature compensation methods, a sta-
tistical transformation of the clean speech’s distribution
under noisy conditions is estimated from the noisy speech,
and then the noisy speech input is reconstructed using the
estimated statistical variation. The speech model is gener-
ally estimated using a Gaussian mixture model (GMM).
Each method has its own mathematical assumption for
the relationship between the clean speech GMM and the
noisy speech GMM. Some methods estimate the transfor-
mation by training the speech database off-line and others
utilize incoming speech inputs.

In the general speech model-based feature compensation
methods, the distribution of the clean speech feature x is
represented with a Gaussian Mixture Model (GMM) con-
sisting of K components as follows:

K
X) = ZwaV(X; ”x,k72x,k)7 (1)
k=1

where the speech feature x can be the cepstrum or log-spec-
trum depending on which method is employed. It is as-
sumed that the noisy environment degrades by moving
the means and the covariance matrices of the clean speech
model of Eq. (1). Therefore, the distribution of the noisy
speech y can be expressed as,

= N (¥ ty 4o Eyi), (2)

k=1
f( ”xk? )a E vk — g(ya.uxkﬂz ) (3)

The functions f and g in Eq. (3) are based on assump-
tions on the transformation of the mean and covariance
which are different for each method. MCE-ACC (Hansen,

1994) assumes a constant bias transform for the mean in
the cepstral domain, while RATZ (Moreno et al., 1998)
and SPLICE (Droppo et al., 2001) assume that the con-
stant bias transform is for the mean and covariance. The
VTS (Moreno et al., 1998) and IMM (Kim, 2002) methods
employ a linear approximation of the relationship between
the model parameters of clean speech and noisy speech
in the log-spectral domain. Extensions to MCE-ACC
(Hansen, 1994) include other methods that utilize model
combination techniques (Hansen, 1996; Westphal and Wai-
bel, 2001; Kim et al., 2003). Based on these assumptions,
the mean and covariance of the noise-corrupted speech
model of Eq. (3) are estimated from either the incoming
noisy speech or a database constructed under an environ-
ment which is identical to the testing condition. In order
to reconstruct the clean speech features from the noisy
input feature vectors, the Minimum Mean Squared Error
(MMSE) estimator is generally employed as follows
(Ephraim and Malah, 1984):

xwmse = E{xly} = > p(kly)E{x|k,y}. (4)

The posterior probability p(k|y) in Eq. (4) is given by

wep(ylk)
Ky) = 2PV 5
PN =5 p(v10) ®)
where p(y|k) = p(y| sy x» Ey.x)-

Data-driven methods such as MCE-ACC, RATZ and
SPLICE have the advantage of being simple and fast com-
putational procedures, however, they require off-line train-
ing using a prior degraded speech database. In addition,
the performance of RATZ and SPLICE is drastically
degraded when the testing condition does not match the
training environment. VTS and other similar methods esti-
mate the noise components from the incoming speech
adaptively without requiring a training procedure. How-
ever, these methods require considerable computation in
order to accomplish the iterative Expectation Maximiza-
tion (EM) algorithm to estimate the noise components.
Additionally, since they are applied to the log-spectral
domain, which generally has higher dimension than the
cepstral domain, the computational requirements become
increasingly complex.

These previously developed feature compensation meth-
ods based on model combination are accomplished in the
log-spectral domain, leading to an increase in computa-
tional expenses. The fact that most of these employ a
log-add method for model combination to estimate the
noise-corrupted speech model implies that they do not guar-
antee significant performance improvement because only
the mean parameters of noisy speech model are estimated.

For feature compensation methods applied in the log-
spectral domain, the speech models are estimated using
covariance matrices which only have diagonal components.
However, the log-spectral coefficients are more highly
correlated with each other compared to the cepstral



86 W. Kim, J.H.L. Hansen| Speech Communication 51 (2009) 83-96

coefficients which are obtained through the Discrete Cosine
Transform (DCT). Therefore, the presentation of the
GMM for speech using a diagonal covariance in the log-
spectral domain, which many current feature compensation
methods employ, is a drawback which limits performance
gain.

3. Feature compensation employing model combination

In this section, a novel feature compensation method is
proposed in the cepstral domain which is based on a com-
bination of Gaussian mixture models. First, we review the
model combination method employed for generating the
noise-corrupted speech model. Next, the details on how
the model combination method is incorporated into the
proposed scheme will be described.

3.1. Review of parallel model combination

Parallel model combination (PMC), first developed by
Varga and Moore (1990) and later refined by Gales and
Young (1996), assumes that a recognition system exhibits
optimal performance when the training and test conditions
are identical and the clean speech model is transformed
into the noise-corrupted speech model to approximate the
actual noisy environment. In order to generate the noise-
corrupted speech model, the clean speech model and noise
model are used independently. PMC is known to have
many advantages, assuming the prior noise model and
present noise environment have similar spectral and corre-
lation properties.

Combining the speech and noise models is accomplished
using the following mismatch function:

r{8 (2) = 7 (X9 (0), N (1))

=log (exp (Xfl"g}(r)) +g-exp (Nf"’g}(r))).
(6)

Here X ¢ (1), N (1), Y[¢)(7), and g denote the ith ele-
ment of the clean speech, noise, noise-corrupted speech,
and the gain respectively in the log-spectral domain. The
random variables whose probability distribution is Gauss-
ian in the log-spectral domain have a log-normal distribu-
tion in the linear spectral domain due to the exponential
transform. In the log-normal approximation method, it is
assumed that the addition of two log-normal distributions
also results in a log-normal formulation. The mean and
covariance of the corrupted speech are thereby computed
by Eq. (7) based on this assumption and the mismatch
function in Eq. (6)

”){Ilin} _ ”){(lin} +gﬂl{1hn}7

lin) _ ylin} | g2y (lin) (7)
y X n

Here p!'™, p{'™, and il refer to the mean vectors of the
corrupted speech, clean speech and noise, respectively and

Zih“}, x!in) and £ denotes their corresponding covari-
ance matrices of the log-normal distributions in the linear
spectral domain. The mean and covariance of the linear
spectrum with a log-normal distribution are obtained from
the mean and covariance of the log-spectrum using the fol-
lowing equations:

'ul{nn} —exp ('ul{log} n Z]{ilog}/z)’

Z,-{}i"} _ Hl_{lm}ﬂ{_nn} [ex P (Zi{}og}) _ 1]

J

(®)

Finally, the mean and covariance of the corrupted speech
in the linear spectral domain obtained from Eq. (7) must
be converted back to the log-spectrum. The mean and
covariance of the corrupted speech’s log-spectrum are
approximately calculated from the parameters estimated
in the linear spectral domain using the following equations:

{log} {lin} 1 Et{ihn}
M %log(u,- >—§10g W‘Fl )
()

: )
lin
sliog) | =Y
i ~log |l T
Wi "l

3.2. Feature compensation via parallel combined Gaussian
mixture model

In the proposed feature compensation method, the par-
allel model combination described in the previous section is
employed to generate the GMM of the noise-corrupted
speech (Kim et al., 2003). The proposed method is referred
to as feature compensation based on Parallel Combined
Gaussian Mixture Model (PCGMM) method. The pro-
posed algorithm is based on the statistical distribution of
speech features in the cepstral domain. The relationship
between the cepstral feature vectors of clean speech x, addi-
tive noise n and noise-corrupted speech vy, is presented as
follows:

y=x+Clog(1+exp(C'(n—x))) =x+g(x,n), (10)

where C and C~' denotes the DCT and its inverse trans-
form, respectively. Based on Eq. (10), the relationship be-
tween the means of the clean and noisy speech can be
derived as shown in Eq. (11). It is assumed that there is a
constant bias transformation of the mean parameters of
the clean speech model in the cepstral domain under the
additive noisy environment, which is the assumption taken
by other data-driven methods (Hansen, 1994; Moreno,
1996),

ny = E{x} + E{g(x,n)} = p, +. (11)

The relationship in Eq. (11) can be applied to each Gauss-
ian component which composes the GMM of speech as
follows:

-uy,k = -ux«,k + T. (12)
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The bias terms ry are used for reconstruction of the speech
features. These values can be estimated with Eq. (12), once
the mean parameters of the clean speech model and corre-
sponding noise-corrupted speech model are obtained.

The clean speech model in the cepstral domain is esti-
mated as a GMM through training on the clean speech
database as shown in Eq. (1). The noise model is estimated
as a single Gaussian model using the silence duration of the
incoming speech or noise samples off-line. The noise-cor-
rupted speech model is then obtained using the log-normal
approximation method from Section 3.1. In order to com-
bine the clean speech and noise models, it is required to
convert the model parameters from the cepstral domain
to the log-spectral domain. The mean and covariance of
the cepstral domain are transformed to those of the log-
spectral domain using an inverse DCT,

ploeh =C'p,

E{log} _ C712<C—])T' (13)

In this study, the row and column of the DCT matrix C
will have the same size as the number of log-spectral coef-
ficients. Since the number of log-spectral coefficients is lar-
ger than the cepstrum, the mean and variance of the
cepstrum in Eq. (13) will have additional padded zero val-
ues. After both models for clean speech and noise are con-
verted into the log-spectral domain by Eq. (13), the model
parameters of the noisy speech distribution can be esti-
mated using the model combination procedure. Finally,
the parameters of the noisy speech model must be returned
to the cepstral domain via the DCT transform, which is the
inverse process of Eq. (13). Now, the GMM of the noise-
corrupted speech {wy, pty 1, Ly «} is obtained in the cepstral
domain and the constant bias term r; of each component is
estimated with Eq. (12). The MMSE equation for recon-
struction of the clean speech in Eq. (4) is approximated
with Eq. (14) in a manner similar to the method which
was also used in (Moreno, 1996),

[ xotxtvax = [ (v glxm)ptly) ax

2

XMMSE

1%

y— > _rp(kly). (14)

In Eq. (14), the variation of the cepstral feature represented
by the function g(x,n) is replaced with the constant bias
term r, that depends on the Gaussian component index.
Here, p(kly) can be calculated with Eq. (5), where the
parameters of the noisy speech GMM {wy, py i, Xy i} are
obtained via model combination. Fig. 1 presents the result-
ing block diagram of the PCGMM-based approach as
described here.

At this point, the distinguishing properties of the pro-
posed method are considered, and compared with prior
techniques. First, the new method does not require an addi-
tional training procedure using a noise-corrupted speech
database. After obtaining the estimated noise model from

Clean speech
GMM

Noise ¢

NOISE MODEL MODEL
ESTIMATION "| COMBINATION

No Y Noisy speech GMM

FEATURE
COMPENSATION
(MMSE)

RESTORED
OUTPUT

NOISY Yes
INPUT

Fig. 1. Block diagram of the PCGMM-based feature compensation
method.

the available noise samples, the distribution model of the
noise-corrupted speech can be generated via the proposed
model combination procedure. This results in a compensa-
tion method without the need of prior training data as seen
in existing data-driven methods such as MCE-ACC (Han-
sen, 1994), RATZ (Moreno, 1996), SPLICE (Droppo et al.,
2001) and others.

The proposed PCGMM-based method employs a simple
model combination procedure using noise model which is
generally estimated as a single Gaussian model. Therefore,
the proposed method does not require considerable compu-
tational expenses compared to VIS and other methods
which estimate noise components by using an iterative
EM process (Moreno, 1996; Kim, 2002) or utilize HMM
update/decoding (Sasou et al., 2004).

In our proposed method, estimation of the GMMs for
clean speech, noise, and noisy speech as well as the recon-
struction procedure are accomplished all in the cepstral
domain. The vector size of the cepstral coefficients is gener-
ally smaller than that of log-spectral coefficients, therefore,
the PCGMM method has the explicit advantage of a lower
dimensional space (e.g., reduced computation and storage)
compared to other methods which operate in the log-spec-
tral domain (Moreno, 1996; Segura et al., 2001; Sasou
et al., 2003). In particular, the cepstral coefficients are less
correlated with each other compared to the same coeffi-
cients in the log-spectral domain, therefore it is reasonable
to employ diagonal covariance matrices for the GMMs in
representing the models. The movement from a full
covariance matrix needed for the log-spectral domain to

Clean speech Noise Clean speech Noise Clean speech Noise

GMM model 1 GMM model 2 GMM model E
MODEL MODEL MODEL
COMBINATION COMBINATION| ® ® ® |COMBINATION

Noisy speech Noisy speech Noisy speech

GMM 1 GMM 2 GMM E
FEATURE
NOISY ) MODEL > RESTORED
INPUT INTERPOLATION > COM(FI:,IIEI\I:SSI'ION OUTPUT

Fig. 2. PCGMM-based method employing the interpolation of multiple
models.
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a diagonal covariance matrix in the cepstral domain has a
major reduction in both computational costs and input data
requirements for more accurate model estimation. These
advantages are demonstrated in the following sections.

4. PCGMM-based feature compensation employing multiple
environmental models

In the proposed PCGMM-based method, model adapta-
tion can be applied in order to address the time-varying
background noise. In such a framework, the noise model
is updated during silence periods via adaptation followed
by combination of models, which again more accurately
reflects the true noise for the GMM of the noisy speech.
Such a framework however, requires considerable compu-
tational resources due to the conversion between the linear
spectrum, log-spectrum and cepstral domain. Therefore,
applying a model adaptation technique for the noise model
may not be appropriate for small resource systems such as
PDAs, navigation devices and other mobile systems. In this
section, we consider the PCGMM-based method that
employs a combination of environmental models for low
resource based ASR applications. Utilizing multiple models
estimated off-line can be effective for compensating input
features adaptively under time-varying noisy conditions
and eliminating the need for online model combination.
Fig. 2 shows the proposed flow diagram which will be
employed in the following section.

4.1. Interpolation of multiple models

Feature compensation with a single noise-corrupted
speech model assumes that the recognition environment
is known, and therefore employs a single previously trained
noise model. However, this may not be possible in actual
ASR environments, because noise conditions typically
change over time. In a multiple-model method, the a poste-
riori probability of each possible environment is estimated
over the incoming noisy speech. Utilizing multiple models
which reflect the mixing of noisy environments represents

p( Gnoisy | Yt) -

P(Gnoisy)p(Yt—l |Gnoisy )p(yf|Gnoisy)

where  p(Y-1|G;) = p(Y,2|Gi)p(y,|Gi) = Hi;llp(yT|Gl-)
and P(G;) is a prior probability of each environment i rep-
resented as a GMM. Based on Eq. (14), the clean feature at
frame ¢ is reconstructed using the interpolated compensat-
ing terms as follows:

E K
Kommse 2 Y, — > p(GelY) D reup(k|Ge.y,), (16)

e=1 k=1

where 1, is a constant bias term from the kth Gaussian
component of the eth environment model (G, and
p(k|G,,y,) is the posterior probability calculated from Eq.
(5) for environment G..

When the background noise is from an environment
where the number of unique types is finite, such as for in-
vehicle condition (e.g., engine noise, wind noise, turn signal
noise, wiper blade noise, etc. (Akbacak and Hansen,
2007)), the multiple-model method is more effective than
adaptation techniques or online estimation of noise com-
ponents in terms of computational complexity. In time-
varying scenarios, it is also possible to employ Environ-
mental Sniffing to detect, track, and characterize the noise
types (Akbacak and Hansen, 2007). If a clean GMM is
considered as one of multiple models, the performance of
the recognition system can be maintained under high Sig-
nal-to-Noise Ratio (SNR) conditions. In addition, the
interpolation of the clean and noise models effectively
results in adaptation in time-varying or unknown SNR
conditions for a particular background noise.

4.2. Special case: single noise and clean speech conditions

In particular, if a system is operating in either a clean or
a single noise degraded condition, only two posterior prob-
abilities of the clean and noisy conditions (e.g., p(Gelean| Y,)
and p(Ghoisy| Y,)) are necessary for the multiple-model inter-
polation method. This represents a special case of the
PCGMM multiple model approach from Section 4.1. The
two posterior probabilities are re-written from Eq. (16) as
follows:

a solution for time-varying situations.

In our work, the feature reconstruction procedure is
modified using a frame-by-frame formulation for real-time
processing by defining the sequential posterior probability
of the environment (Kim et al., 2004). Given the incoming
noisy speech feature vectors Y,=][yi,y2,... ,y,]T, the
sequential posterior probability of a specific environment
GMM G; among E models over the input speech feature
Y, can be re-written as,

_ P(G)p(Yi1|Gp(y.|G))
SE P(Gp(Y1|G)p(y,|Ge)

p(GilY,) (15)

P(Gnoisy)p(Yt—l |Gnoisy)p(y;|Gnoisy) + P(Gclean)p(Yt—l |Gclean)p(y[|Gclean) ’

(17)

p(Gclean|Yt) =1.0 _p(Gnoisy|Yt)7 (18)

where p(yz|Gnoisy) = Zfﬂwkﬂf(y;; By s z"y,k) and p(Yt|G01€aIl)
= >k N (¥, By, Exk)- The summation of their prior
probabilities  is  unity, that is,  P(Geean) +
P(Ghoisy) = 1.0. Therefore, if the a priori probabilities are
assumed to be equal, Eq. (17) can be simplified as follows:

p( Gnoisy |Yt)
_ P(Yi-1|Gioisy)P(Y,| Gnoisy ) '
p(Yt—l |Gnoisy)p(yz|Gnoisy) + p(Yz—l |Gclean)p(yt ‘ Gclean)
(19)
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Finally, the estimated clean feature is obtained by the fol-
lowing equation:

K
f‘t,MMSE = yt _p(Gnoisy|Yt) Z rkp(k|yz)a (2())

k=1

where ry = py ;. — py . From Eq. (20), when there is a bi-
modal clean and noisy speech sequence, for the clean sec-
tions compensation is no longer required, since the clean
speech model does not contain the constant bias term.
Therefore, the change of environment between clean and
noisy speech conditions can be addressed by estimating
the sequential posterior probability of the noisy environ-
ment without explicit detection of the condition. The inter-
polation between the clean speech model and noisy speech
model brings in the adaptation effect under unknown SNR
conditions for the specific noisy environment.

5. Computational reduction via sharing components

The amount of computation for model-based feature
compensation depends primarily on the number of Gauss-
ian components to be computed. Consequently, the com-
putational expense increases in proportion to the number
of multiple models employed for the model interpolation
method described in Section 4. However, more accurate
modeling for noisy conditions requires a larger number
of GMMs with sufficient sized pdfs. In this section, we
describe a technique of sharing the statistically similar com-
ponents among the multiple environment models in an
effort to reduce the computational complexity.

In the proposed method, the Gaussian components
which are statistically similar to each other are selected
and the common components for sharing are generated
through a combining step of the similar components
(Kim et al., 2004). The Kullback—Leibler distance is used
to represent the separation between multi-component
GMMs. The procedure of selecting the similar components
is presented as follows in pseudo code, where D is the set of
distances between Gaussian components, and Cg is the set
of shared Gaussian components:

e Step 0: D = {d,,d>,...,dx}, Cs=10

E
dy =) kldist(g,;,8.4), 1<k<K. (21)

e=2

e Step 1: k= arg mingd; € D.
e Step 2: Cs =C;U{k},D=D — {d/k\}
e Step 3: if N(Cg) = K, then stop, else go back to Step 1.

In the steps, dj is the sum of Kullback—Leibler distances
of the kth Gaussian component of each environmental
model g., from the kth Gaussian component of the first
environment g x, and N(-) denotes the number of resulting
shared elements. The first environmental model plays the
pivot role in computing the distance to the Gaussians in
the models. The order of the environments from /st to

Eth can be arbitrarily determined. Each environmental
model is generated by the parallel model combination using
an identical clean speech model as discussed in Section 4,
so each kth Gaussian component of the environmental
models is transformed from same kth component of the
clean speech GMM (i.e., there is a direct pdf alignment
between the environmental models). Therefore, all environ-
mental models have the same K size GMM and it is reason-
able that the Gaussian component distance across
environmental models is calculated at each index k.
Finally, the Gaussian search process is halted when the
combined Gaussian set Cg reaches the desired Kg number
of Gaussian components, which are now tagged as similar
pdfs across the noisy speech models. The parameters of the
merged Gaussian components which are shared are com-
puted as follows:

1 E
myi = Zﬂy,e,k, ke Cs, (22)

l E
N N ST
Zi’,k} = E Z (Ey,c«k + (.uy,e,k - ”i,k})(”y,ak - ”irk}) ) ) ke CS'

e=1

(23)

The likelihood functions which contain the unique Gauss-
ian components included in set Cg are replaced by the
merged Gaussian components,

ply; uSL 8D, if k € Gy,

24
P(Y; By oss Zyek); Otherwise. (24)

p(}’|€7 k) = {

The constant bias terms used for feature reconstruction in
Eq. (16) are also shared if their indices are included in set
CS’

{sy _
rak _ { ”y,k ﬂx‘ka

.uy,e.,k - uux.,kv

if k € Cy,

. (25)
otherwise.
The computations over the E x K number of Gaussian
likelihood functions can be reduced to Kg+ E(K — K),
leading to a computational reduction by as much as
(E — 1)K via sharing the components. If too many compo-
nents are shared, performance degradation can result and
therefore the number Kg must be selected to balance com-
putational savings versus system performance. Fig. 3 illus-
trates the concept of the mixture sharing technique. We

env 2 env 2

env 1 env 1

env 3
env 3

clean clean

Fig. 3. Illustration of PDF mixture sharing.
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should also note that Environmental Sniffing (Akbacak and
Hansen, 2007) could be used to track and detect the com-
plexity of the time-varying noise, which in turn could be
used to help select the Kg degree of mixture sharing.

6. Experiments and results

6.1. Experimental conditions and baseline performance
evaluation

The Aurora2 evaluation framework from the European
Language Resources Association (ELRA) was employed to
evaluate system performance (Hirsch and Pearce, 2000).
The evaluation task is connected English-digits consisting
of 11 words. Each whole word is represented by a contin-
uous density HMM with 16-states and 3-mixtures per state.
In addition to the digits, two silence models (i.e., normal
silence and short pause) are used.

The feature extraction algorithm suggested by the Euro-
pean Telecommunication Standards Institute (ETSI) was
employed for the experiments (ETSI, 2000). An analysis
window of 25 ms duration is used with a 10 ms skip rate
for 8-kHz speech data. The computed magnitude spectrum
is passed through a Mel-scaled filter-bank and 23 Mel-fil-
ter-bank outputs are transformed to 13 cepstral coeffi-
cients. The Oth cepstral coefficient was used instead of the
log energy, for the sake of convenience in model combina-
tion implementation. After extracting the 13th order cep-
strum, the first and second order time derivatives are
included during the decoding procedure (a total of the
39th order feature vector).

According to the Clean-condition Training and Multi-
condition Testing of Aurora2, the HMM parameters were
estimated using 8840 clean speech training samples and per-
formance was evaluated with respect to each noise condi-
tion for SetA (Subway, Babble, Car and Exhibition), SetB
(Restaurant, Street, Airport and Station), and SetC (Sub-
way MIRS and Street MIRS). In SetC, the channel distor-
tion which simulates the telecommunication terminal is also
included together with the additive background noise. Each
testing set consists of 1001 samples at seven different SNRs.
The recognition performance cited here in the tables and
figures indicate word accuracy rate, and the average value
in each table was calculated based on the standard method
outlined in Aurora2 (Hirsch and Pearce, 2000).

The performance of the baseline system (no compensa-
tion) is examined with comparison to several existing pre-
processing algorithms in terms of environmental
robustness for speech recognition. Spectral Subtraction
(SS) and Cepstral Mean Normalization (CMN) were
selected as the conventional algorithms. They represent
the most commonly used techniques for additive noise sup-
pression and removal of channel distortion, respectively. In
spectral subtraction, the subtraction factor and flooring
factor are set at 4.0 and 0.2, respectively, and background
noise is estimated using the minimum statistics method
with a time delay of approximately 250 ms (Martin,

Table 1
The recognition performance of the baseline system and conventional
methods on Aurora? test sets (word accuracy, %)

SetA SetB SetC Average
Baseline 58.56 56.67 66.16 59.32
SS 66.08 62.07 75.91 66.44
CMN 61.65 66.76 62.30 63.82
SS + CMN 73.65 77.00 74.84 75.23
PMC 81.04 81.45 76.86 80.37
AFE 85.77 84.40 84.60 84.99

1994). For cepstral mean normalization, the average value
of the cepstrum over the current input utterance was sub-
tracted from each frame. As one of conventional model
adaptation methods, PMC (Gales and Young, 1996) was
examined here.! In the PMC method, the model combina-
tion procedure is applied to the HMM speech recognizer,
while the combination procedure is applied to the GMM
for feature compensation in our proposed method. AFE
(Advanced Front-End) algorithm suggested by ETSI was
also evaluated as one of state-of-the-art methods, which
contains an iterative Wiener filter and cepstral histogram
equalization (ETSI, 2002). Tables 1 and 2 demonstrate per-
formance of the baseline system and existing algorithms.
From these results, we see that the combination of SS
and CMN result in better performance than either method
individually, and the PMC and AFE methods showed sig-
nificant improvements compared to baseline and other
methods.

6.2. Performance evaluation of the PCGM M-based method

The performance of the proposed PCGMM-based
scheme is compared with other model-based feature com-
pensation methods using identical conditions to the base-
line test in Section 6.1. The GMM of the clean speech
was estimated using clean speech samples identical to those
used for training the HMM. The clean speech model con-
sists of 128 Gaussian components with diagonal covariance
matrices. The noise models used for model combination
have a single Gaussian model and were obtained by off-
line-training. The noise signals for training the model were
obtained from the noise samples of Aurora2. The single
Gaussian noise model was trained for each noise type
and SNR condition. The speech and noise models were
obtained both in the cepstral domain and in the log-spec-
tral domain for different model-based schemes. The
model-based feature compensation methods considered
for comparison are as follows:

¢ PCGMM: PCGMM-based feature compensation
method using model combination of the clean speech
model and prior noise model trained off-line.

! Here, the model combination is applied to the static and delta cepstral
coefficients. The mismatch function for delta-delta cepstrum is not
available, because the delta—delta coefficients are obtained by a linear
regression in the ETSI standard.
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Table 2
The recognition performance of the baseline system and conventional methods over various SNR conditions of Aurora2 (word accuracy, %)
Clean 20 dB 15dB 10 dB 5dB 0dB —5dB Average

Baseline 98.82 95.39 87.33 65.76 33.81 14.35 8.16 59.32
SS 98.71 95.79 90.66 76.77 49.76 19.22 5.13 66.44
CMN 98.93 96.58 90.81 71.62 38.98 21.13 11.74 63.82
SS + CMN 98.91 97.02 94.32 86.63 64.64 32.52 15.20 75.23
PMC 98.82 97.17 95.30 90.09 74.94 44.33 19.88 80.37
AFE 99.11 97.55 95.93 91.22 81.41 58.81 27.83 84.99

e PCGMMm: the mean of noise model is updated with
the sample mean of silence interval of each test utterance
for PCGMM-based feature compensation. Approxi-
mately 200 ms duration of the silence is assumed to exist
prior to the beginning of speech in every test utterance
(i.e., no silence detection used). While the silence detec-
tion is important for performance assessment in real
environments, the practical trade-off in WER based on
speech/silence (VAD, SAD) is suggested for future
work.

e PCGMMmv: both the mean and variance of the noise
model are updated using the samples of silence duration
of each utterance for PCGMM.

e FCLS1(Feature Compensation in the Log-Spectral
domain): model combination-based feature compensa-
tion method in the log-spectral domain (Sasou et al.,
2003). The means of noise-corrupted speech GMM are
estimated by combining the means of the clean speech
model and sample mean of silence duration using the
log-add method. The variances of the noisy speech
model are replaced with those of the clean speech model.

e FCLS2: model combination-based feature compensa-
tion in the log-spectral domain (Segura et al., 2001).
The means and variances of the noise-corrupted speech
GMM are estimated using the log-normal approximation

Table 3
The recognition performance of PCGMM-based methods and other
model-based methods on Aurora2 test sets (word accuracy, %)

SetA SetB SetC Average
PCGMM 84.29 82.34 72.18 81.09
PCGMMm 85.48 84.51 81.20 84.24
PCGMMmv 79.44 78.91 82.30 79.80
FCLSI 78.90 78.64 75.64 78.14
FCLS2 83.52 84.01 76.52 82.32
VTS 75.80 77.53 76.95 76.72

method. The mean of noise model for combination is
updated using the sample mean of the silence duration
of the test utterances and the variance of the prior noise
model.

e VTS(Vector Taylor Series) algorithm: feature compen-
sation algorithm in the log-spectral domain. The noisy
speech model is adaptively estimated using the EM algo-
rithm over each test utterance (Moreno, 1996).

As presented in Tables 3 and 4, the proposed PCGMM-
based feature compensation method is effective in noisy
conditions and superior performance of the PCGMM
method is demonstrated compared to spectral subtraction
combined with CMN and the PMC method. The results
prove that the model combination used for the estimation
of noisy speech GMM is effective in representing the noise
corruption process. Absolute average improvements of
24.92% over baseline, and 3.15% over the basic PCGMM
in word accuracy were obtained through updating the
mean of the noise model (PCGMMm). This demonstrates
that obtaining the sample mean from the silence interval
appropriately reflects the change of noise at each utterance.
However, updating the variance of the noise model
resulted in a decrease in performance (PCGMMm vs.
PCGMMmv). It is believed that a silence duration of
approximately 200 ms was not sufficient to reliably esti-
mate the noise variance. The comparison to other model-
based methods demonstrates that the PCGMM-based
compensation method in the cepstral domain is superior.
In particular, FCLS2 is applied in the log-spectral domain
while PCGMMm is applied in the cepstral domain. There-
fore, it is suggested that the decrease in performance of
FCLS2 is due to the diagonal matrices for the GMM vari-
ances in the speech distribution. The speech model in the
log-spectral domain is more reliable when it has full covari-
ance matrices, because the log-spectral coefficients are

Table 4
The recognition performance of PCGMM methods and other model-based methods over various SNR conditions of Aurora2 (word accuracy, %)
Clean 20 dB 15dB 10 dB 5dB 0dB —-5dB Average

PCGMM 98.82 97.42 95.30 89.38 75.23 48.10 21.24 81.09
PCGMMm 98.81 97.79 96.31 92.01 80.22 54.85 25.09 84.24
PCGMMmv 98.79 97.40 95.40 89.83 74.19 42.17 9.78 79.80
FCLS1 98.81 97.08 94.12 86.77 69.91 42.86 19.07 78.14
FCLS2 98.84 97.25 95.40 90.55 71.72 50.65 22.88 82.32
VTS 98.64 96.76 94.01 86.84 69.06 36.95 15.70 76.72
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Table 5

The recognition performance of PCGMM-based methods and other
model-based methods combined with SS and CMN on Aurora?2 test sets
(word accuracy, %)

SetA SetB SetC Average
PCGMMm + SS 85.70 84.28 84.61 84.91
PCGMMm + SS + CMN 87.21 86.03 87.18 86.73
FCLS2 + SS + CMN 85.71 86.29 80.47 84.89
VTS +SS + CMN 81.06 83.75 83.48 82.62

more highly correlated with each other relative to the ceps-
tral coefficients. The proposed method in the cepstral
domain requires less data and is also more efficient than
other log-spectral domain approaches due to feature
dimension reduction from 23 to 13.

Tables 5, 6, and Fig. 4 present the performance of the
PCGMM-based feature compensation method and other
model-based methods when combined with spectral sub-
traction and CMN. Spectral subtraction generally increases
the SNR of the noisy speech, and enhancing SNR prior to
feature compensation results in more accurate discriminat-
ing posterior probabilities for reconstruction among the
Gaussian components. In model combination for the
PCGMM and FCLS approaches, convolutional noise such
as channel distortion was not considered. Therefore, com-
bining CMN is expected to improve performance by sup-
pressing the channel variation across the speakers. In
comparison to PCGMMm from Tables 3 and 4, combining
with spectral subtraction results in a 0.67% increase in
word accuracy, and combining with spectral subtraction
(SS) and CMN increases the performance by 2.49%. In
addition, also in other GMM-based feature compensation
methods (FCLS2, VTS), combining spectral subtraction
and CMN was helpful for increasing overall performance.
The results demonstrate that the PCGMM-based method
is superior to other model-based methods in isolation and
in combination with spectral subtraction and CMN. It is
also encouraging that the combined PCGMMm +
SS + CMN outperforms the AFE across a wide range of
SNR levels for all AURORAZ2 noise types in Fig. 4 (i.e.,
average relative WER reduction from AFE: 11.59%). Note
that AFE showed the best performance when it was used in
isolation without either SS or CMN.

6.3. Performance evaluation of multiple model approaches

Using the same experimental setup from Section 6.2,
performance evaluation of the proposed multi-model
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Fig. 4. The performance comparison of the PCGMM-based method and
other methods combined with SS and CMN over various SNR conditions
of Aurora2 (word accuracy, %).

schemes for feature compensation was also conducted. In
the interpolation of multi-model PCGMM method, three
different SNR-dependent noisy speech GMMs were gener-
ated using the model combination method, which are
17dB, 7dB, and —2 dB SNR for each noise condition.
While testing a particular noise condition, different collec-
tions of noise models of the same set (A, B, and C) were
used for multi-model interpolation. For example, when
the test utterances of SetA were evaluated, three different
SNR models in SetA (Subway, Babble, Car, and Exhibi-
tion) were employed for model interpolation. In consider-
ing the clean speech model as one environment, the
number of the multiple environmental models are 13, 13,
and 7 for SetA, SetB, and SetC respectively. For compari-
son, performance in the following combinations were
examined,

¢ IM-PCGMM: Interpolation of Multiple Models for
PCGMM-based feature compensation.

e IM-PCGMM + SS: IM-PCGMM combined with Spec-
tral Subtraction.

e IM-PCGMM + SS + CMN:
with  Spectral Subtraction
Normalization.

e IM-PCGMM32 + SS + CMN: IM-PCGMM sharing 32
Gaussian components combined with Spectral Subtrac-
tion and CMN.

IM-PCGMM combined
and Cepstral Mean

Table 6

The recognition performance of PCGMM-based methods and other model-based methods over various SNR conditions of Aurora2 (word accuracy, %)
Clean 20 dB 15dB 10 dB 5dB 0dB —-5dB Average

PCGMMm + SS 98.73 97.31 95.54 91.43 81.03 59.35 29.28 84.91

PCGMMm + SS + CMN 98.87 97.76 96.30 92.77 83.58 63.24 3143 86.73

FCLS2 + SS + CMN 98.89 97.91 96.61 92.80 82.02 55.14 23.46 84.89

VTS + SS + CMN 98.86 96.34 95.43 90.44 77.91 51.99 21.79 82.62
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Table 7
The recognition performance of PCGMM-based methods using the
interpolation of multiple models on Aurora2 test sets (word accuracy, %)

SetA SetB SetC Average
IM-PCGMM 85.13 83.49 70.97 81.64
IM-PCGMM + SS 85.76 83.55 80.84 83.89
IM-PCGMM + SS + CMN 87.17 85.49 85.14 86.09

e IM-PCGMM64 + SS + CMN: IM-PCGMM sharing 64
Gaussian components combined with Spectral Subtrac-
tion and CMN.

As presented in Tables 7 and 8, we see that PCGMM-
based feature compensation schemes with the interpolation
method of multiple models are effective across a range of
noisy conditions, with superior performance over existing
conventional algorithms. The PCGMM-based feature
compensation with interpolated models (IM-PCGMM)
presents similar (or even better) performance to the SNR-
matched single model approach (PCGMM) which is shown
in Tables 3 and 4. This proves that interpolation of multi-
ple models is very effective for compensating the feature
adaptively under blind noisy environments and changing
SNR conditions in every utterance. A significant improve-
ment was obtained by combining the IM-PCGMM method
with spectral subtraction. This demonstrates that the pro-
posed multi-model scheme is suitable for unknown SNR
situations resulting after spectral subtraction. The IM-
PCGMM + SS + CMN still shows better performance
compared to the AFE resulting in a 7.33% average relative
WER reduction compared to the AFE. Fig. 5 illustrates
that the performance of the proposed multi-model
approaches are comparable to noisy condition-matched
single model approaches.

Tables 9 and 10 present the performance of the IM-
PCGMM-based method employing the mixture sharing
technique described in Section 5. Since the combination
with spectral subtraction and CMN shows a significant
improvement (see Tables 7 and 8), the performance of
the mixture sharing method was also considered in combi-
nation. From these results, the IM-PCGMM with the mix-
ture sharing method (IM-PCGMM32, IM-PCGMMG64)
demonstrates lower performance compared to the non-
sharing case. From the experiments, however, it is clear
that mixture sharing is useful for reducing the computa-
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Fig. 5. The performance comparison of the PCGMM-based method using
the interpolation of multiple models over various SNR conditions of
Aurora2 (word accuracy, %).

Table 9
The recognition performance of multi-model PCGMM-based methods
with mixture sharing on Aurora2 test sets (word accuracy, %)

SetA SetB SetC Average
IM-PCGMM + SS + CMN 87.17 85.49 85.14 86.09
IM-PCGMM32 + SS + CMN 86.46 85.11 84.44 85.52
IM-PCGMM64 + SS + CMN 85.57 84.41 83.45 84.68

tional complexity while holding the original performance
at reasonable levels.

In order to investigate the relationship between perfor-
mance and computational expense brought by mixture
sharing, the relative WER and number of Gaussian com-
ponents to be computed are summarized in Table 11. The
“Difference” in the second column is the performance dif-
ference in terms of relative WER compared to the non-
sharing case. The numbers in the third column (“# of
Gaussian”) are the number of Gaussian components to
be computed for IM-PCGMM processing. In the non-shar-
ing cases, to calculate the Gaussian probability requires
1664 (=128 x 13) components for SetA and the same num-
ber for SetB, which have 13 different noise-corrupted mod-
els. For SetC, which has seven different environment
models, 896 components are needed, and therefore the

The recognition performance of PCGMM-based methods using the interpolation of multiple models over various SNR conditions of Aurora2 (word

accuracy, %)

Clean 20 dB 15dB 10dB 5dB 0dB —-5dB Average
IM-PCGMM 98.82 97.70 95.74 90.36 75.82 48.60 19.71 81.64
IM-PCGMM + SS 98.71 97.02 95.37 90.96 79.95 56.16 25.89 83.89
IM-PCGMM + SS + CMN 98.91 97.51 96.18 92.59 83.17 61.02 30.03 86.09
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Table 10

The recognition performance of multi-model PCGMM-based methods with mixture sharing over various SNR conditions of Aurora2 (word accuracy, %)
Clean 20 dB 15dB 10dB 5dB 0dB —-5dB Average

IM-PCGMM + SS + CMN 98.91 97.51 96.18 92.59 83.17 61.02 30.03 86.09

IM-PCGMM32 + SS + CMN 98.91 97.23 96.00 92.29 82.67 59.40 28.79 85.52

IM-PCGMM64 + SS + CMN 98.91 97.07 95.65 91.87 81.56 57.27 27.14 84.68

Table 11

The relationship between performance and reduction in the number of Gaussian components to be computed on Aurora2 test sets

Relative WER

Computational complexity

Word accuracy (%)

Difference (%) # of Gaussian Difference (%)

IM-PCGMM + SS + CMN @ 86.09
IM-PCGMM32 + SS + CMN (®) 85.52
IM-PCGMM64 + SS + CMN (© 84.68

- @ 1510 -
-4.10 (@ - ©®) © 1165 22.88 (@ - ©)
~10.14 (@ - ©) @ 819 45.76 () - (D)

average number of Gaussian components to be computed
becomes 15107 (=0.4 x 1664 + 0.4 x 1664 + 0.2 x 896)
considering the proportion of the amount of test samples
in Aurora2. The numerical values in the fourth column
(“Difference”) are the percentage of reduction in the num-
ber of Gaussian components to be computed compared to
the total number of components. In the case of 32-compo-
nent sharing, a 22.88% reduction in computation complex-
ity was obtained with a 4.10% relative increase in overall
WER. When 64 components are shared, a 45.76% compu-
tational reduction was achieved with a 10.14% relative
increase in overall WER. As discussed in Section 5, perfor-
mance decreases when the number of shared components
increases. However, the experimental results demonstrate
that a reasonable selection of the number of shared compo-
nents will result in a significant reduction in computational
complexity with an acceptable change in overall perfor-
mance. This can be helpful for small footprint size mobile
devices with limited storage and computational resources.

6.4. Performance in real car-driving conditions

In order to verify the effectiveness of the proposed multi-
model approach in practical situations, recognition testing
was accomplished on a speech corpus collected under real
car-driving conditions. A number of in-vehicle corpora
are available including CU-Move (Hansen et al., 2004),
UTDrive (Angkititrakul et al., 2007), CIAIR (Kawaguchi
et al., 2004), and SITEC (http://www.sitec.or.kr). Here,
we use the CarOl and CarNoise01 corpus released by the
Speech Information Technology and Industry Promotion
Center (SITEC). Car01 contains Korean speech utterances
recorded in a car-driving at a speed of 80 km/h. Car-
Noise01 contains noise samples recorded in various driving
situations.

For recognition testing, a 548 vocabulary set was chosen
in Car01 consisting of control command words in the vehi-

2 This value is a fraction, but we take the largest integer to represent the
number of Gaussian components.

cle. Fig. 6 presents the locations of microphones used for
recording the Car0Ol database. A total of 4384 utterances
recorded via a head-set microphone (channel 1) were used
for clean HMM training and 1096 utterances for noisy con-
dition testing which were recorded via a directional micro-
phone located at the center of driver’s sun visor (channel
4). Table 12 presents the performance of the baseline sys-
tem and conventional methods with Car01 data. The per-
formance of the PCGMM-based feature compensation
methods are presented in Table 13. PCGMM denotes the
PCGMM-based feature compensation method with a sin-
gle model and the noise model for model combination

Fig. 6. The locations of microphones used for collecting the speech
database Car(Ol under real car-driving condition.

Table 12
The recognition performance of the baseline system and conventional
methods in the real car-driving condition Car01 database (word accuracy,
%)

Clean (chl)

94.16

Noisy (ch4)
58.76

SS (ch4)
82.94

SS+CMN (ch4)
88.96
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Table 13

The recognition performance of the PCGMM-based methods using single and multiple models in the real car-driving condition, channel 4 microphone of

Car01 database (word accuracy, %)

PCGMM IM-PCGMM IM-PCGMM + SS + CMN IM-PCGMM64 + SS + CMN
88.96 88.96 91.33 91.24
Table 14

The relationship between performance and reduction in the number of Gaussian components to be computed in the real car-driving conditions, channel 4

microphone of Car01 database

Relative WER

Computational complexity

Word accuracy (%)

Difference (%)

# of Gaussian Difference (%)

IM-PCGMM + SS + CMN
IM-PCGMM¢64 + SS + CMN

@91.33
® 91.24

—1.04 (@ — @)

© 512

@ 320 57.50 ©-@

was estimated from the noise samples in CarNoise0l
recorded while driving at a speed of 80km/h. For
PCGMM with multi-model interpolation (IM-PCGMM),
three kinds of noise models were used, which were esti-
mated from the noise samples of 50 km/h, 80 km/h and
100 km/h. From the table, we see that the proposed
multi-model scheme (IM-PCGMM) showed comparable
performance to conventional methods (SS or SS + CMN)
and condition-matched single model method (PCGMM)
in real-life environments. The comparable performance of
the spectral subtraction method (SS + CMN) to the pro-
posed methods (PCGMM, IM-PCGMM) here is consid-
ered due to the background noise characteristics of Car0l
database which has a relatively high SNR (i.e., 7-8 dB)
and is highly stationary with low-frequency content during
each test utterance. The multi-model scheme combined
with SS and CMN (IM-PCGMM + SS + CMN) outper-
forms all other methods/combinations. This illustrates that
multiple noisy speech models at different speeds is effective
in reflecting the range of background noise at unknown
speeds for in-vehicle conditions. The results in Table 14
show that the proposed mixture sharing technique pro-
duces significant reduction in computational complexity
(e.g., 37.50%) while maintaining recognition performance
(e.g., only a 1.04% reduction). The performance “Differ-
ence” in the second column was calculated in terms of rel-
ative WER compared to the non-sharing case (IM-
PCGMM + SS + CMN).

7. Conclusions

In this study, a feature compensation algorithm employ-
ing a combination of GMMs operating in the cepstral
domain was developed. The proposed scheme eliminates
the need for a prior noisy speech database in the training
procedure, by applying model combination to the estima-
tion of the noisy speech model across a range of SNRs
and noise types. The proposed scheme has several advanta-
ges including computational reduction and more accurate
modeling, as applied in the cepstral domain. The interpola-
tion method of multiple noise environmental models was

employed to address time-varying noisy conditions. In
order to reduce the computational expense due to multiple
models, a sharing technique for similar noisy Gaussian
speech components was also proposed. In order to evaluate
the performance of the developed schemes, speech recogni-
tion experiments were performed using both simulated
adverse environments (e.g., Aurora2), and actual in-vehicle
conditions. The experimental results consistently demon-
strated that the cepstral feature compensation method
based on model combination is more effective, compared
to other existing feature compensation methods. Employ-
ing multiple models proved to be effective in addressing
changing noisy speech conditions comparable to the envi-
ronment-matched model. The mixture sharing technique
was helpful in significantly reducing computational
expenses while holding recognition accuracy at an accept-
able level.

Future work could consider applying this method in
conjunction with Environmental Sniffing (Akbacak and
Hansen, 2007) in order to prune a much larger library of
noise environments, resulting in a more focused noise com-
pensation scheme. For example, if there were 1000 noise
GMMs, an environmental sniffer could prune this library
to a sub-set of car, truck, or mobile environment of inter-
est. The method could also be applied for other speech
applications such as speaker 1D, language 1D, and others.
Finally, it could be employed for automatic transcript gen-
eration in spoken document retrieval using speech recogni-
tion requiring sustained performance over a wide diversity
of acoustic conditions (Hansen et al., 2005).
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