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Abstract—Speech babble is one of the most challenging noise
interference for all speech systems. Here, a systematic approach
to model its underlying structure is proposed to further the ex-
isting knowledge of speech processing in noisy environments. This
paper establishes a working foundation for the analysis and mod-
eling of babble speech. We first address the underlying model for
multiple speaker babble speech—considering the number of con-
versations versus the number of speakers contributing to babble.
Next, based on this model, we develop an algorithm to detect the
range of the number of speakers within an unknown babble speech
sequence. Evaluation is performed using 110 h of data from the
Switchboard corpus. The number of simultaneous conversations
ranges from one to nine, or one to 18 subjects speaking. A speaker
conversation stream detection rate in excess of 80% is achieved
with a speaker window size of +1 speakers. Finally, the problem
of in-set/out-of-set speaker recognition is considered in the context
of interfering babble speech noise. Results are shown for test du-
rations from 2-8 s, with babble speaker groups ranging from two
to nine subjects. It is shown that by choosing the correct number
of speakers in the background babble an overall average perfor-
mance gain of 6.44% equal error rate can be obtained. This study
represents effectively the first effort in developing an overall model
for speech babble, and with this, contributions are made for speech
system robustness in noise.

Index Terms—Babble, multispeaker babble, noise analysis, noise
characterization, speech analysis.

1. INTRODUCTION

HERE has been significant research in the past to ensure
T speech system reliability in adverse conditions. Extensive
work has been performed on robustness for automatic speech
recognition (ASR) [1], speaker-ID [2], and other speech do-
mains. Most studies consider robustness across variations in
noise, stress, accent, dialect, and emotion. Hansen et al. [3]
and Varadarajan et al. [4] developed algorithms for speech
recognition and speaker identification systems that are robust to
speech in noise (i.e., Lombard effect), stress and emotion. One
of the most important aspects for system reliability is robust-
ness to environmental noise. Approaches that utilize separate
models for noise are explored in Akbacak and Hansen [5] and

Manuscript received May 28, 2008; revised December 25, 2008. Cur-
rent version published July 31, 2009. This work was supported by the Air
Force Research Laboratory under a subcontract to RADC, Inc., Under Grant
FA8750-05-C-0029. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Malcolm Slaney.

The authors are with the Department of Electrical Engineering, Erik Johnson
School of Engineering and Computer Science, Center for Robust Speech Sys-
tems (CRSS), University of Texas at Dallas, Richardson, TX 75083-0688 USA
(e-mail: john.hansen @utdallas.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASL.2009.2015084

Varga and Moore [6]. These models use environment specific
characteristics to provide robust speech system performance.
One of the most challenging noise conditions is multispeaker
or babble noise environment, where the interference is speech
from speakers in the vicinity. This noise is uniquely chal-
lenging because of its highly time evolving structure and its
similarity to the desired target speech. These difficulties have
been well documented in many studies for robustness. Cooke
[7] modeled consonant perception in babble with varying
number of speakers. Li and Lutman [8] model the change in
kurtosis as a function of speakers in babble. These studies
have explored the nature of babble and its characterization for
improved speech recognition and the impact of the number
of speakers on speech recognition. The primary focus of this
study is to develop a foundation to address babble, and in
particular, a framework is proposed to detect the number of
speakers in babble. Also, there have been a number of studies
on the perception of multi-speaker babble in the field of audi-
ology and hearing sciences. Loizou in [9, Ch. 4] describes the
perceptual aspects of multispeaker babble, where it is noted
that as the number of speakers increase, the ability to recognize
monosyllables from individual speakers increase. Listeners
exploit gaps or dips present in speech to recognize speech
corrupted by multispeaker babble. For a lower background
speaker count, speech recognition is better since there are more
gaps in the speech voices. As the number of speakers increase,
there are fewer gaps in the spectrogram making identification
of individual speech difficult. For robust speech recognition
in babble, Morales et al. [10] notes the special properties of
speech masked with babble. There, it is shown that it is possible
to improve speech recognition performance in unknown noisy
conditions by masking the noise with known noise types. Of
special interest was the competing speaker case that provided
better performance when the competing speaker was masked
with babble, suppressing the competing speaker in babble.
Previous studies have shown how human and machines behave
differently under different babble scenarios.

In the present study, we propose to formalize a framework to
analyze babble (Section II). The focus here is not on competing
speaker separation [11], where information from multiple mi-
crophones is used to separate speech from individual speakers,
but on characterizing babble as observed using a single mi-
crophone. Here, the differences between real babble (e.g.,
collecting babble in real-life settings) and synthetic babble
(e.g., adding separate single speaker speech files together)
are considered. Next, we study the impact of multispeaker
babble on in-set/out-of-set speaker identification systems.
It is demonstrated that as expected, by choosing matched
test-train conditions, better performance is obtained than with
mismatched test-train conditions. Knowledge estimated from
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Fig. 1. Babble Noise: the left block shows five streams (five speakers) are overlapped and the right block shows the case where two conversations (two speakers

and three speakers) are overlapped.

babble noise is shown to improve speech system performance
under babble noise conditions.

II. ANALYSIS/MODELING OF BABBLE

The common notion of babble in speech systems is the noise
encountered when a crowd or a group of people are talking
together. An approximation to real babble is to add streams
of speakers speaking individually, rather than adding conversa-
tions. There are some significant differences between such an
approximation and real babble which, to our knowledge has not
yet been considered. Consider a scenario with five speakers as
shown in Fig. 1. Individual streams of five speech utterances are
shown in Case 1 on the left, where s represents speech activity,
and # silence. The speech frames are labeled 1 and the silence
frames are labeled 0. If five speech streams are added, this im-
plies all five subjects will speak simultaneously, but no two will
be engaged in a conversation. In Case 2, it is assumed that in the
room, the five are divided into two groups, one consisting of two
subjects and the other of three subjects who are involved within
two separate conversations. Over time, there will be babble from
two conversation groups, where most of the time there would
be simultaneous speech from two speakers, one from each con-
versation. Speakers involved in a conversation would change
over time since they take turns to speak within each conversa-
tion. In Case 1, there would be five subjects talking simultane-
ously, whereas, in case 2 there would be two subjects talking
simultaneously most of the time, and these two subjects would
change with time, depending on the dynamics of each conversa-
tion. Fig. 2 shows the difference in the distributions (pdfs) of the
number of speakers speaking per frame when two speakers are
added versus two conversations are added. As observed from the
pdfs, when speech from individual speakers are added there is
no possibility of more than two speakers speaking at the same
time whereas, when two conversations are added most of the
time two speakers are speaking but at times it is possible that
all four speakers speak simultaneously. So, to model babble
noise, it is more accurate to employ a model consisting of a sum
of conversations rather than individual speech streams of con-
versations overlapped with each other. When individual speech
streams are overlapped under the assumption of independence,
it is an inaccurate model for actual babble noise since speech
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Fig. 2. Difference in pdfs of number of speakers talking simultaneously when
(a) two conversations are added, and (b) two speakers speaking individually are
added.

from each speaker in a conversation is correlated to the other
(i.e., turn-taking within each conversation). The next section
identifies the variables that influence babble in a given environ-
ment.

A. Factors Influencing Babble

Babble noise is a function of the number of speakers in
an acoustic environment. The number of conversations and
grouping of the speakers impact the acoustic variability of the
babble. In a conversation, there can be more than two subjects
participating, but usually there is only one subject speaking at
any given point in time. In a conversation, the speaker might
change with time, but in general there will be only one speaker
speaking. The number of conversations dictate the number
of subjects speaking simultaneously in babble. Reducing the
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number of subjects speaking simultaneously will result in an in-
crease in the acoustic variability. The number of conversations
in the given environment influences the number of possible
speakers speaking at any instant of time. In addition to the
number of speakers, the emotion/stress levels in the individual
conversations [12] play a role in the spectral structure of the
individual data streams. The language of the individual con-
versations will also contribute to the structure of the individual
conversations. The acoustics of the environment play a role in
deciding if the individual sources contribute additively, or if
there is a convolution/reverberation effect in the babble noise.
The placement of the microphone relative to the individual con-
versations establishes the dominance of individual speakers in
the recorded data. Another factor influencing babble noise in an
environment is the timing/turn-taking nature of speakers within
each conversation group. This will depend on the conversation
topics and the number of individual speakers who contribute to
each conversation. Within each conversation, the dominance
of individual speakers will affect the nature of babble from a
given environment. Given these factors, it can be deduced that
the approximation of real babble data by adding individual
sentences therefore depends upon the speech application and
the specific kind of babble environment. Here, we focus on
babble as a sum of conversations.

B. Analysis of Turn-Taking Within a Conversation

In this section, a model of babble as a sum of conversations is
proposed. Here, the pdf distribution of the speech from a person
A'is p(a), and it is assumed that speech streams are statistically
independent and identically distributed. With this, the joint pdf
of n streams is given by

Plar +as+az -+ an) = h(w,)" (1)

where 1 is the characteristic equation of the individual pdfs. Al-
ternatively, if babble is modeled as a sum of n conversations,
then the pdf of the speech stream output of the conversation
is given by 9(ai,a?), This can be written as 1)(a;) since the
speech from the speakers will be correlated. If babble is mod-
eled as a sum of n conversations assuming conversations to be
independent, then the joint characteristic equation of n conver-
sations is given by

(p(w))". )

If each conversation is restricted to be between two people, the
conversation output can be modeled as a sequence of 0's, 1’s,
and 2’s. Here, 0 denotes silence, 1 denotes one subject talking,
and 2 denotes both subjects talking. This decision is made on
a frame-by-frame basis. Such a scheme lends itself to Markov
modeling where each state is a conversation mode. In a con-
versation involving two subjects, it is expected that a single
person talks most of the time, with silence between turn-taking
and occasionally small instances where both speakers speak
simultaneously. The situation where both produce speech si-
multaneously occurs when there is a short pause between turn
taking and the frame overlaps at the end of one speaker and start
of another. A separate case occurs when both are laughing, or
agreeing, or if there is back-channel feedback, etc. If Py, P, and

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 7, SEPTEMBER 2009

P are the probabilities of observing 0, 1, and 2 then intuitively,
P, > Py > P,. If we model babble as a sum of N conversa-
tions, then 2V + 1 states are possible (0 speakers to 2V subjects
speaking per frame), the probabilities of each state individually
is

PN =P)N x P} x P
N

N _
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For a two-speaker case, it can be seen that unless P» > 0.5 *
Py, PZ will be the most probable event when two streams are
combined. This situation can be extended to N conversations
where Py is the most probable event. This observation is used
to detect the number of speakers in babble conditions.

where

C. Analysis of Babble as a Function of Number of Speakers

For analysis of speech babble, babble is studied as three sep-
arate acoustic cases. Here, babble is categorized based on the
number of speakers speaking instantaneously with the following
three classes.

* Competing speaker (COMPSPKR): having only two sub-

jects talking simultaneously.

* Babble (BAB): In this condition individual speakers can be
heard and at times, individual words can also be heard.

» Large-crowd (LCR): Sounds like a diffused background
rumble, where individual conversations or speakers are not
distinguishable.

The boundaries between BAB and LCR are fluid and depending
on various factors such as the relative distance of the conversa-
tions from the microphone, the category of babble noise can be
decided. To obtain an estimate of the boundaries between BAB
and LCR, a perceptual experiment was carried out. Here, each
subject was given the definitions of BAB and LCR and asked
to classify 18 samples as babble as BAB or LCR. In the sound
samples, the number of speakers in babble was varied from two
to ten. Three instances of sounds for each speaker count were
generated. A total of 12 subjects were a part of the experiment.
The results are shown in Table I. Each of the above mentioned
babble scenarios have their unique features. In the babble sce-
nario (BAB), individual speakers are generally not discernible
but occasionally, individual words along with the speaker can
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TABLE I
PERCEPTUAL CLASSIFICATION OF BABBLE (BAB)
AND LARGE CROWD NOISE (LCR)

| Number of Speakers in Babble || Babble || LargeCrowd |

<3 100% 0%
4 66% 34%
5 18% 82%
6 27% 73%

>7 0 100%

be identified. The regions between four to six speakers in babble
are the most confusable babble types; this is the transition region
from babble to large crowd noise. As the number of speakers in-
crease the probability of observing individual words reduces. In
the large crowd scenario (LCR), individual speech or speaker
information cannot be identified. In this case, LCR-Babble con-
sists of speaker rumble where no specific information can be ob-
tained (e.g., speaker count, conversation, individual words, etc.).
As the number of subjects in babble increase, the time varying
nature of the babble reduces. The change in properties of babble
with an increase in the number of speakers is studied in the fol-
lowing sections.

III. BABBLE AND ACOUSTIC VOLUME

In the previous section, babble is modeled as audio streams
from individual speakers. This section studies the impact of
the overlap of phone sequences on the resulting acoustic space.
As the number of overlapping phones increase within a given
babble utterance, the differences between individual frames
are averaged and their identity becomes blurred. This removes
the ability to distinguish individual phones in a babble utter-
ance. Fig. 3 demonstrates this aspect using the reduction in
Itakura—Saito (IS) [13] distance. This distance reduces between
waveforms when the number of distinct phones superimposed
increases. The symmetric IS measure is defined as

1 — — RN
dis(j) = 5{d;(as, dj(a5)) + dj(as, @)} “)

~

where @, and a, are the all-pole model parameters from the
gain normalized spectra of the two waveforms to be compared,

and d; (@, @ ) is the IS distance given by

dj(as,a;;) = L/Tr [e”(“) —v(w) — 1} dw 3)

T oor.
where
O'_A) —
v(w) = log s 5 | —log 7(s) (6)
—
| A(a,w) | | A(as,w) |

The experiments are conducted using synthetic phones from
the same speakers generated by the Festival Speech Synthesizer
system. The phones generated are @, A, Y, U, i, where phones
are represented using Single-Symbol ARPAbet version [14,
pg. 117]. These phones are generated with 16-kHz sample rate
for 12 ms. These waveforms are modeled using 12th-order
linear prediction coefficients (LPCs) [15]. Fig. 3 illustrates
the frequency response of the LP models as the number of
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overlapping phones is increased. Two observations can be
made from this experiment: First, as the number of overlap-
ping phones increase, the ability to distinguish between the
phoneme spectra decreases implying that the resulting sounds
are similar. This observation is also reflected in the IS measures
between waveforms. Second, the resolution of resonating poles
in the LP spectra are less distinct as the number of speakers
in babble increase. As the number of speakers increase, the
spectrum of babble converges to an aggregate model of the
vocal tract configuration across different phones. Fig. 4 shows
the mean IS distances and the variance in those distances as a
function of number of overlapping phonemes. As the number of
phonemes k increase, various combinations of five phones are
chosen and superimposed. This process can be extrapolated to
K — oo, with an infinite number of phonemes overlapping, the
resulting spectra approximates speech shaped noise. There is a
monotonic decrease in the mean and variance of the distances
between the averaged phones as the number of phones in babble
utterance increases. This suggests that with an increase in the
number of speakers in babble, the noise becomes localized in
the acoustic space. Here, the acoustic space is characterized by
the LP coefficients. This observation can also be extended to
general acoustic spaces. Let X1, ......, X} be N-dimensional
vectors describing the acoustic space of the given data. It is
assumed that the centroids of the vector quantized acoustic
features sufficiently describe the acoustic space. It is noted that
most speech systems are based on some form of classification
for which a prerequisite step is quantization of the available
acoustic space. For any acoustic space, the farther the entities
to be classified, the better is the classification accuracy. An NV
dimensional cube is used to model the acoustic space enclosed
by these centroids. Fig. 5 describes the construction of this
space in two dimensions. The vertices of this figure are given by
(T max; Ymax), (Tmins Ymax)s (Tmins Ymax)s AN (Tmax, Ymin)-
In this N-dimensional space, the hyper-cuboid would have 2V
vertices, where the cuboid space is totally characterized by the
following set of points:

{argmax zq,argmin zy,...,argmax &y, arg min x y }.

(N
Here, the maxima and minima are evaluated for each dimen-
sion separately across all centroids. The entire acoustic space
of the data is enclosed within a volume bounded by these ex-
treme points. Since the space is modeled using a cuboid, all the
centroids are either on the edges or within the volume enclosed
by the cuboid. The volume of this cuboid is measured, and this
volume will be an indicator of the acoustic variation of the data.
The volume of this enclosed /V-dimensional cubiod with adja-

cent edges e, €2, €3,...,en is given by
V=el*xey*ez*...... * en ®)
where
€1 = argmaxx, — arg min z. )

Here, it is noted that a large acoustic volume implies an ex-
pansive acoustic variation in the data. Conversely, a small
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Fig. 3. IS measure decreases as the number of superimposing phones increase.

acoustic volume would mean less acoustic variation. For a
single speaker, a larger acoustic space is expected since distinct
phonemes would be present. Whereas, for babble with multiple
simultaneous speakers, the expected acoustic volume should be
smaller. Furthermore, as the number of speakers in the babble
increase, a shrinkage in the acoustic space is expected. Another
measure of this spread of the acoustic space is the distance
between the pdf centroids. These centroids are an estimate of
the compactness of the acoustic data clusters. This scheme is
illustrated for one centroid in Fig. 6. The Euclidean distance
between two points in the N-dimensional space is

=

dry) = (3 ((0) = u(0) (=) — w(@)T)F  (10)
These distances are calculated for all centroids describing the
acoustic space. As the number of speakers increase within
babble, the centroid clusters will move closer (e.g., the points
A, B, C, D, E in Fig. 5 will move closer together). This metric
therefore provides additional information on the distribution of
the centroids (i.e., information pertaining to relative closeness
of the centroids in the acoustic space). These volume and
acoustic space characteristics are evaluated on a synthetic
babble corpus constructed using the test corpus of TIMIT
consisting of both male and female speakers. The number of
speakers is varied uniformly from one to nine subjects speaking
at a time. Here, 19-dimensional Mel Frequency cepstral coeffi-
cients (MFCCs) are then extracted from 125-ms (1000 samples
at 8-kHz sample rate) frames. The large frame size has been
chosen to analyze the aggregate spectral structure of babble.
These MFCC vectors are assumed to characterize the acoustic
space of babble by clustering and employing Gaussian mixture
models (GMMs). The pdfs are given as

px) = wiN(x|p;,0;) (11)
j=1

where (N()) is the conditional 19-dimensional Gaussian.
The GMM model parameters are estimated using the EM
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Fig. 4. As the number of superimposing phones increase, the mean spectral
distance reduces. The individual spectra of superimposed phones are less dis-
tinguishable as seen from the drop in variance.

algorithm, where the data is split into 32 mixtures! and the
means of each mixture is used to characterize the acoustic
space. The acoustic volume is evaluated using these centroids.
Fig. 7 shows the resulting monotonic decrease in the acoustic
volume as the number of speakers in babble increases. Here,
there is an exponential reduction in volume as the number of
speakers in babble increase. To process speech in noise, ideally,
noise should be localized in this space and separated from the
acoustic volume. However, noise and speech share the same
acoustic space when described using MFCC spectral features,
therefore distinguishing speech versus babble becomes dif-
ficult. Moreover, the acoustic space of babble is a subregion
of the entire acoustic space occupied by speech from a single
speaker. Fig. 8 shows the histograms of distances between the
centroids for a speech signal with one, four, and nine speakers.
The distance histograms with one speaker is more broad and
flat, with distributions approximating Gamma distributions as
the number of speakers increases. The variation of the mean
distances is shown in Fig. 9, where as the number of speakers
increase, the mean distance between the centroids decreases,
which implies the acoustic features are clustered tightly. As
is evident from the volume and distance plots, in cases where
there is a reduced number of speakers in babble, the centroids
enclose a larger volume, and they are uniformly distributed.
With an increase in the number of speakers, the mean distance
reduces and the volume also decreases. The acoustic volume
describes the reduction in the acoustic space of babble with an
increase in the number of contributing speakers. Also, another
impact of the increase in the number of speakers is an increase
in the abruptness in the spectral movement for babble which is
studied in the next section.

IV. ACOUSTIC MOVEMENT IN BABBLE

As observed in the previous section, the amount of acoustic
variability of babble depends on the number of subjects con-
tributing to the babble. If speech from a subject is modeled as
a sequence of phoneme utterances, multispeaker babble can be

1Tt is noted that 19 dimensions were used in [16], and with 32 Gaussian mix-
tures the likelihoods were found to converge.
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Fig. 6. Inter-centroidal distance between centroids of a four-mixture GMM.
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Fig. 7. As the number of participating speakers in babble increase, the volume
enclosed by their GMM centroids reduces.

viewed as a layering of phonemes and silence periods from indi-
vidual subjects. The acoustic trajectory of speech from a single
subject is expected to be smooth for a majority of the portions
since the inertial nature of the physiology of speech production
would not allow for frequent abrupt movement in the acoustic
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Fig. 8. Skewness in the pdfs of the inter-centroidal distance increases as the
number of speakers in babble increase showing the nonuniform spread of data
in acoustic space.

L 4 A A
. - ¢ - Mean Inter-Centroidal Distances|
o .
O 3 ’.
& AT 3
® R T
s} """"""--0-.__0
T2 B
o
e
=
c
[0]
01
0
[0]
9
=
0
0 1 2 3 4 5 6 7 8 9 10

Number of Speakers

4 Speakers

1 Speaker 8 Speakers

Fig. 9. Top: centroids cluster closer as the number of speakers in babble in-
crease. Bottom: figure illustrating the resulting compactness of the acoustic
space with an increase in the number of speakers in babble.

space. Trajectory models of speech capitalize on this phenom-
enon. Gish [17] considered this acoustic trajectory as movement
in the feature space (the trajectory is modeled as a polynomial
to fit features in a window parametric trajectory modeling) and
Gong [18] considered this as movement within the states of an
HMM (this is done by assigning Viterbi paths within HMMs
stochastic trajectory modeling). If we consider the acoustic tra-
jectory of babble, abrupt and uneven trajectories are expected
in contrast with natural speech from a single speaker. It is sug-
gested that this is due to the layering of individual speech trajec-
tories, resulting in conflicting articulatory responses from simul-
taneous speakers. A direct consequence of the trajectory being
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Fig. 10. Illustration of the reduction in the contiguity of adjacent frames as number of subjects in babble increase.

smooth is that individual features would be localized in the fea-
ture space. The abrupt or random nature of babble would lead to
a relatively smaller localized acoustic space. The acoustic tra-
jectory is a time function of the variation of acoustic features
given by

f(Z) :d(....7xi+1,$i7xi_1, ......... ) (12)
where d is a function that maps the feature space to the trajec-
tory space. In a quantized acoustic space, the features from the
same acoustic region will share similar acoustic properties. The
function d is defined as

) 1,

d(i) = { 0

and is an indicator of movement between quantization regions.
Here, a “1” indicates movement across quantized regions and
a “0” means that the current frame is in the same quantization
region as the previous frame. Acoustic features are thus mapped
into a sequence of zeros and ones, where a large number of 0’s
would signify blocks of contiguous speech from a consistent
speaker, while a series of 1’s suggests more random movement
between speakers and phoneme content. Fig. 10 illustrates
the acoustic movement for a single speaker and multispeaker
babble. Here, A-B-C-D are adjacent frames of babble. Each
frame is associated with a mixture in the aggregate speech
model which are modeled by GMMs. Each mixture represents
an acoustic region. For speech from a single subject as shown
on the left, adjacent acoustic features (e.g., A-B-C, D-E-F,
G-H-I) will have movement in the same acoustic region (e.g.,
A-B-C to mixture 1). For multispeaker babble, adjacent frames
reside will move randomly across acoustic regions (e.g., A to
mixture 3, B to mixture 2, and C to mixture 2). Therefore, it
is expected that a measure of speaker babble can be obtained
by determining how long we stay within a pdf over the time

when Ty = Ti—1

otherwise (13)

using a general GMM. If we hop frequently within mixtures
for adjacent frames, there is greater spectral variation and we
expect it to be babble. If consecutive frames appear to stay
with the same GMM mixture longer, less spectral variability is
present and it is more likely a single speaker. UBM is employed
for analyzing the movement in the acoustic space. UBMs have
been used for modeling background speakers for the speaker
verification task [19]. A UBM is a GMM trained with speech
streams from individual speakers. This represents an aggregate
model for speech by a single speaker. If features from a single
speaker are assigned to the largest scoring Gaussians in the
UBM based on the maximum-likelihood criterion, contiguous
blocks would reside in the same Gaussian. As the number
of speakers increases, movement between acoustic regions
should result for adjacent frames across babble data streams.
The UBMs in our case are trained with speech from individual
speakers, similar to the models used for speaker identification
systems.

A. Analysis of Acoustic Movement

To demonstrate the impact of the number of speakers on
the acoustic variability of babble, a 256-mixture UBM is
constructed using all the training data from the TIMIT corpus.
From this data, 19-dimensional MFCCs are extracted using a
20-ms window with a 10-ms skip between adjacent frames.
Individual Gaussians in the UBM can be viewed as models of
acoustically similar phone blocks in the training features. If the
test audio stream contains speech from a single speaker, con-
tiguous frames are expected to be acoustically similar, resulting
in contiguous frames associated with the same Gaussian. As
the speaker count in the babble increases, there is an increased
hopping between Gaussians due to the acoustic variation in the
data. To quantify the degree of abruptness in babble, a measure
of the number of hops per audio segment frame of data is
proposed. A hop is defined as a movement between Gaussians
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Fig. 11. As the number of speakers in babble increase, nhops increases due to
decrease in frame contiguity.

in the UBM2. The average number of hops per frame is defined
as

Total number of hops for the utterance
Number of frames in the utterance

meanhops = (14)
The value of meanhops is between 0 and 1. If the value of nhops
is 1, it implies that the average residence time for a frame in
the Gaussian is 1 frame, which corresponds to every consec-
utive frame being associated with a different Gaussian. When
nhops is 0.5, a single hop between Gaussians occurs every two
frames. Fig. 11 shows the relation between the number of hops
(meannhops) versus an increase in the number of speakers in
the babble instance of duration 1 min. The average residency
monotonically decreases (i.e., hops increase) with an increasing
number of speakers in the babble. The relative change in mean-
hops is more for a smaller number of speakers (one to two
speakers), as compared to when more subjects are in babble,
where the babble is less time varying and nhops becomes con-
stant. When the number of speakers approaches oo, it is ex-
pected that the number of hops will reduce as babble will tend
to be stationary. In the previous section, two aspects of babble
were analyzed with the first being the shrinkage of the acoustic
space as the number of speakers increase, and the second is
the increased chaotic structure in babble with an increase in the
number of participating subjects in babble. It is important to note
the different time-domain analysis frame-lengths chosen for the
two experiments.

These two aspects of babble are complementary; A decrease
in acoustic volume indicates that with an increasing number
of speakers in babble, the babble is less time varying in the
long term, but for shorter segments the chaotic nature of babble
increases. It should be noted that for analysis of the acoustic
space, large frames of duration 125 ms are chosen versus 20 ms

2Here, we assume that each Gaussian in the GMM corresponds to a unique
phoneme. As the number of speakers in the UBM increases it is possible that
more than one pdf will be used to represent the shoulder of a phoneme distribu-
tion
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are chosen to assess durational continuity. Another observation
from the second experiment is that UBMs constructed from
speech utterances of individual speakers do not necessarily
model the exact time varying nature of babble. Next, a system
to detect the number of speakers is proposed based on the
observation that the acoustic volume becomes concentrated
as the number of speakers in babble increases. As observed
in Section II, the number of speakers at any given time is
approximately the number of conversations. Fig. 1 describes
the construction of a two conversation babble audio stream.
As shown in the figure, each stream consists of data from a
single conversation. The babble stream from two conversations
is constructed by overlapping individual conversations from
Switchboard. In a babble data stream, the identity of the indi-
vidual speakers is lost. Fig. 12 shows the histograms of frame
count for a fixed number of speakers for two, four, six, and
nine conversations. These histograms are oracle histograms
constructed from the transcripts of the Switchboard corpus.
Switchboard is a corpus of over 240 h of spontaneous telephone
speech. It contains both A and B sides of telephone conversa-
tion, making it suitable to simulate babble conversations. Under
the assumption that each conversation has only one speaker
speaking at any point in time, the average number of speakers
detected is equal to the number of conversations.

The pdf distributions for the number of speakers speaking per
frame in babble is shown in Fig. 12. From the model for babble
described in Section II, the number of conversations reflects the
number instantaneous speakers in babble, under the assumption
that there are two subjects participating in any single conversa-
tion, the total number of speakers would be twice the number
of conversations. If the number of speakers speaking at a given
instance is close to the number of conversations, detecting the
number of speakers in babble requires a known relationship be-
tween the number of conversations in the acoustic environment
and the number of speakers. The number of speakers speaking
at a time is a function of the following variables:

* the topic of conversation;

* how the speakers provide input in the conversations (e.g.,
some speakers are active and contribute, while others are
passive and spend more time listening).

Depending on the individual nature of each conversation, the
resulting babble will take on many forms. As illustrated in Fig.
13, a two-stage detector for detecting the number of speakers
at a given time is proposed. The first stage detector estimates
the number of speakers for each frame. A speaker number his-
togram is generated for each frame in the data stream. This his-
togram is expected to have considerable fluctuation since the
number of speakers active can vary from zero to the total number
of participants in all conversations. In the second stage, the his-
togram is then considered as a feature, with its dimension NV
being a function of the maximum number of conversations to
be detected (the maximum value of NN is restricted by acoustic
variability). Next, the histogram is normalized using the total
number of frames in the data stream. This feature is seen to be
highly correlated for a babble sequence. Finally, a discrete co-
sine transform DCT is applied and the first ten dimensions are
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Fig. 12. PDFs for number of speakers per frame for babble constructed using two, four, six, and nine conversations, with an increase in the number of conversations
the distribution has a larger variance.
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Fig. 13. Flow diagram for detecting number of speakers speaking at time.

employed for classification in order to reduce the dimensional The detection scheme is a two stage detection scheme, where the

correlation as well as reduce the data dimensionality. preliminary detector decides on a preframe basis the number of

speakers, and the second stage decides the number of conversa-

tions in an utterance. The second stage detector uses perframe
A system is proposed for a closed set, where the maximum  decisions from the preliminary detector.

number of speakers speaking at a time is fixed to a number N.

V. DETECTION OF NUMBER OF SPEAKERS
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Let a set of training feature vectors be denoted by
X = {zi1,z9,...,2,}. Here, n denotes the number of
frames in the training set. If A represents the model for babble
with k speakers, then each frame z; is classified according to
the most likely number of speakers A as

A~

A =arg max p(z; | Ap). (15)

Using the above decisions for all frames of an utterance, a prob-
ability mass function for the number of speakers in the given
utterance is evaluated as follows:

P{n=k}=
{total number of frames detected as having k speakers}

total number of test frames
(16)

A DCT of the observed pdf is evaluated. The DCT reduces the
dimensionality of the feature vector and makes the dimensions
independent. The DCT of this feature vector for k conversations
is denoted by Gi(z). Here, z is the dimension of the feature
vector. The test feature ¢ (z) is classified according to the fol-
lowing criterion:

Gi(2)G(2)

17
(06,05 a7

k = arg max
1<i<k
Here, o¢ is the covariance of G. The test feature is assigned
on the basis of the highest correlation. To implement the detec-
tion scheme, separate detectors for 1-to-/V babble speakers are
trained, and each test frame is assigned to one detector for every
utterance. A hard speaker count decision is made on a per-frame
basis. The first stage detector is trained using TIMIT data, since
this data is read speech with limited pause sections within an
utterance. This leads to a speaker count specific model for N
speaker babble since read speech contains limited pause sec-
tions. The second stage uses a correlation-based detector. This
proposed second-stage is required because in actual conversa-
tions, the number of speakers speaking at any given time can
vary depending on the nature of the conversation. To train for
a fixed number of speakers, babble samples with the required
number of speakers are used as enrollment features. The training
features are obtained from this enrollment feature data and av-
eraged over the enrollment sequence to provide the train enroll-
ment feature. After the test data feature extraction, the correla-
tion of the test feature is measured across the closed set of enroll-
ment features. The overall decision for the number of speakers
for a given utterance is decided based on the maximum correla-
tion with the test data.

VI. RESULTS—DETECTION OF NUMBER OF SPEAKERS

As previously described, the speaker babble count detector
consists of two stages, where each stage is presented separately
below.

A. Stage 1: Preliminary Detector (Short Term)

The preliminary Stage 1 detector is made from babble data
with an analysis frame length of 125 ms with no overlap
between consecutive frames. For parameterization, 19-di-
mensional MFCCs are extracted as features. The resulting
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histograms of the babble speaker count detected from over-
lapped Switchboard corpus conversations is shown in Fig. 14.
If we compare Fig. 12 with Fig. 14, it is observed that the
detection performance is very poor for the correct number
of speakers for a given frame. The detector output is skewed
whereas the oracle pdfs are symmetric. It also is observed that
the histograms vary with a change in the number of babble
speakers. This feature is used to design the second stage de-
tector.

B. Stage 2: Number of Speakers Detector (Long Term)

This stage of the framework is evaluated on simulated data
using the Switchboard corpus for a total of 110 h of data con-
structed by overlapping different numbers of babble speakers to
form each test/training utterance. The test and train were sep-
arate instances of babble with no overlap of the same speakers
(i.e., the actual speakers used to create the overlapped babble
speech were different for test and train). The data was split into
a total of 800 utterances across nine test cases (each test case
having N (from one to nine) conversations). The training set
consists of 60 instances of babble for nine test cases. Babble
data was framed using window lengths of 0.125 ms (1000 sam-
ples at 8 KHz). Results for babble speaker count classification
of the number of speakers is shown in Table II. As the number
of conversations increase, the acoustic separation in the data
decreases and hence the error in detecting the exact speaker
count increases (i.€., it is easier to detect the difference between
three-to-five babble speakers versus 13 to 15 babble speakers,
because the spectral diversity will decrease as the speaker count
increases). On the other hand, the accuracy is very high for
a speaker count between window +1 of the expected speaker
count. This is expected in the probability distribution (Fig. 12)
of the number of speakers when conversations overlap. From
Table II, it is seen that the lowest babble speaker count perfor-
mance with a detection window of £1 is about 81.6% when
seven conversations are present. Given the nature of the task, it
is difficult to accurately determine the actual number of people
in a conversation at a given point of time, but by estimating the
bounds on the number of conversations, it is possible to estimate
the minimum number of people in babble.

VII. BABBLE NOISE AND ROBUST SPEECH SYSTEMS

To study the impact of characterizing the number of speakers
in babble when babble is a primary source of additive noise,
an in-set/out-of-set speaker verification system is employed (a
full description of in-set recognition is found in [16]). For in-set
speaker recognition, the test utterance is scored against all in-set
speaker models relative to the background model. If the speaker
is detected as any of the in-set models, the speaker is said to be
an in-set speaker.

The primary motivation for this phase of the study is to
determine the impact of choosing the correct babble speaker
count in background for attempting to match the test and train
background scenarios, and to study the impact of the +1 error
in babble speaker count detection. To achieve this, the train and
test speaker utterances are degraded with babble containing a
different number of speakers. For a given signal-to-noise ratio
(SNR), the closest corresponding matching (having a similar
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Fig. 14. PDFs for number of speakers per frame in babble when babble is constructed using two, four, six, and nine conversations.

TABLE II
CONFUSION MATRIX IN % OF THE NUMBER OF CONVERSATIONS DETECTED TO THE ACTUAL NUMBER
OF CONVERSATIONS, EACH ROW CONTAINS THE CLASSIFICATION PERCENTAGES. THE LAST COLUMN
CONTAINS DETECTION ACCURACY WITH A SPEAKER WINDOW SIZE OF +1

DETECTED SPEAKER COUNT MODEL AVG ACCU

g 1 2 3 4 5 6 7 8 9

= 19791 | 1.33 | 0.76 0 0 0 0 0 0 99.24

8 2| 3125 | 6533 | 9.87 | 3.75 0 0 0 0 0 96.25
8543 0 13.33 | 58.02 | 26.25 | 3.65 0 0 0 0 93.35
Z% 4 0 0 18.51 | 56.25 | 19.51 | 5.33 0 0 0 94.67
EE 5 0 0 1.23 | 23.75 | 5243 | 17.33 | 6.66 | 1.35 0 90.75
gne6 0 0 0 5 28.04 | 44 14.66 | 2.7 1.38 86.7
== 7 0 0 0 0 8.53 32 | 2533 | 24.32 | 8.33 81.65
Zzﬁ 8 0 0 0 125 | 243 12| 22.66 | 18.91 | 41.66 83.23
=9 0 0 0 0 0 2.66 | 9.33 | 13.51 | 73.61 87.12

speaker count babble) test models are chosen. Here, the speaker
characterization is achieved on the basis of the number of
speakers in babble as shown in Fig. 15. From the input data, the
number of speakers in the background babble noise is estimated
while keeping the SNR fixed, and the target models having the
same number of speakers is chosen. The speaker verification
system employs a binary detector that assigns a test token to the
most likely in-set or out-of-set (UBM) model. The efficiency
of this binary detector is measured in terms of equal error rate
(EER). Here, the EER represents the classification error when
the probability of false accept is equal to the probability of
false reject. A lower EER indicates a better overall detection
system, assuming equal cost for false reject and false accept.
In general, when noise is introduced under matched test/train
conditions, the EER increases. The next section describes
experiments where the number of speakers in the babble noise
is used to determine the in-set/out-of-set models to be used.
Here, the attempt is not to improve performance for the in-set
system, but to demonstrate that the selection of an adequately
matched condition (in terms of the number of corrupting babble

speakers) helps maintain overall performance. The next section
describes the experimental setup.

VIII. EXPERIMENTS

A corpus of babble data is generated by varying the number of
speakers in the babble. For a fixed number of speakers in babble,
a corpus of ten babble instances is divided into sections of 3,
3, and 4 instances for test, train, and development respectively.
Each of the babble instances are constructed using a different
set of speakers (i.e., the exact speakers used for training, devel-
opment, and testing are mutually exclusive). Each of the test,
train, and development sets are degraded with their respective
babble instances at a fixed SNR. The speaker ID system is evalu-
ated over three conditions: for 15, 30, and 45 in-set speakers and
for different duration of test utterances: 2, 4, 6, and 8 s, respec-
tively. For a fixed SNR, a total of 12 conditions are evaluated.
The in-set/out-of-set database consists of the male speakers for
the TIMIT corpus at 16 kHz, and babble distortion is constructed
using female speakers from TIMIT. The features used for clas-
sification are 19-dimensional MFCCs. Babble is modeled as a
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Fig. 15. Schematic for using the number of speakers for maintaining performance for in-set/out-of-set speaker verification.

TABLE III
BASELINE IN-SET/OUT-OF-SET SPEAKER RECOGNITION SYSTEM
PERFORMANCE IN CLEAN CONDITIONS

Test Duration 2sec 4sec 6sec 8sec
15in-set EER | 11.019 | 7.222 | 6.389 | 5.556
30in-set EER | 15.556 | 10.278 | 6.667 | 6.667
45in-set EER | 14.352 | 9.815 | 8.056 | 9.444

function of the number of speakers speaking at a time. The next
section evaluates the performance of the speaker verification
system where detected babble noise information is incorporated
within the system.

IX. RESULTS

The performance mismatch was evaluated for babble noise
where the speaker count varied from 1-10 speakers. The UBM
was trained using 60 male speakers from the TIMIT corpus
which are separate from the in-set/out-of-set speakers. Here, re-
sults are presented for speech degraded at 10 dB, though results
are similar for different SNRs (e.g., 5-15 dB). Training data for
each in-set speaker is about 5 s. Table III shows the baseline
performance of the in-set speaker verification system without
the introduction of babble distortion. The average performance
of the speaker verification system under different clean con-
ditions is 9.25% EER. For speech corrupted by babble noise,
where the number of speakers in babble varying from one to
nine at 10-dB SNR under matched test/train conditions, the per-
formance drops to 27.94% EER. Test conditions are considered
to be matched when the speaker count in babble is within a
babble speaker count window of -1 of the actual speaker count.
Mismatch is present when models are chosen outside of this

41 babble speaker window. Performance mismatch for each
speaker number condition is evaluated using the relation

mismatch = Z(EERexm — EERmodal)/N.  (18)
This mismatch is the average performance mismatch between
the exact EER and the EER when a different model is chosen
as the target model. Table IV shows the average performance
mismatch under matched and mismatched conditions for the
task. As observed, matched cases always outperform the mis-
matched condition. Also, performance with a reduced number
of subjects in the degrading babble is better than performance
when a model with more number of speakers in babble is used.
The average performance mismatch across all conditions when
matched models are chosen is shown in Table V. The EER
performance loss under matched conditions (£1 speaker dif-
ference in selected babble noise model) is —0.42% as com-
pared to an average —6.44% EER loss when models are chosen
outside this =1 window size. This corresponds to an average
23% relative improvement on the EERs across all conditions by
choosing the appropriate set of in-set/out-of-set speakers plus
babble noise models. Therefore, employing babble noise model
detection helps maintaining overall speaker ID performance.

Another observation is that it is better to choose speaker
models with a reduced number of speakers in the babble.
This can be attributed to the difference in background speakers
aiding the separation in the speaker ID system. With an increase
in number of speakers, the test and training instances of babble
are not as distinguishable and this reduces the background con-
tributing to the speaker separation. The babble model detector
influence is more important as the number of speakers in babble
increases.
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TABLE 1V
PERFORMANCE MISMATCH OF THE IN-SET SPEAKER RECOGNITION SYSTEM UNDER
MATCHED AND MISMATCHED BABBLE NOISE CONDITIONS FOR EACH TEST DURATION.

THE EXACT EER Is WHEN TEST AND TRAIN UTTERANCES ARE DEGRADED WITH BABBLE HAVING THE SAME
NUMBER OF SPEAKERS. THE NEXT ROW (MATCHED CONDITION £1) SHOWS THE AVERAGE EER PERFORMANCE
DIFFERENCE WHEN MODELS HAVING +1 NUMBER OF SPEAKERS IN BABBLE NOISE ARE CHOSEN
THE LAST ROW (MISMATCHED CONDITION) FOR EACH TEST DURATION SHOWS THE PERFORMANCE DIFFERENCE
WHEN MODELS OTHER THAN THOSE HAVING “SPEAKER COUNT” IN THE VICINITY OF 1 ARE CHOSEN

NUMBER OF BABBLE SPEAKERS IN NOISE
2 3 4 5 6 i 8 9
2sec Exact EER 29.91 | 2875 | 30.60 | 30.97 | 31.57 | 32.64 | 31.67 | 3241
A EER: Matched Condition 208 | -197 | 074 | -0.28 | -0.09 | +1.53 | -1.60 | +0.19
A EER: Mismatched Condition | -3.17 | -7.87 | -5.74 | -6.59 | -616 | -6.33 | -9.12 | -11.94
4sec Exact EER 22.87 | 2398 | 24.26 | 2454 [ 2333 | 27.78 | 25.46 | 23.98
A EER: Matched Condition -0.56 | -056 | +0.19 | +0.56 | -264 | +1.07 | -1.16 | -0.83
A EER: Mismatched Condition ~4.31 -5.33 478 | -6.63 | -617 | -3.76 | -6.63 | -11.79
6sec Exact Condition 17.50 | 21.94 | 23.89 | 21.94 | 20.28 | 24.58 | 25.14 | 20.56
A EER: Matched Condition -2.08 | 4035 | +0.76 | -1.04 | -4.017 | +0.35 | +1.94 | -3.33
A EER: Mismatched Condition | «4.91 | -253 | -203 | -5.08 | -678 | -5.36 | 4.78 | -11.23
8sec Exact Condition 18.61 | 17.50 | 21.67 | 22.50 | 20.00 | 20.56 | 23.61 | 18.06
A EER: Matched Condition +3.33 | -5.42 | +0.83 | +1.39 | -1.39 | -1.53 | +222 | -6.11
A EER: Mismatch Condition -046 | -3.83 | -1.67 | -222 | -511 | -878 | -5.06 | -12.73
TABLE V

PERFORMANCE OF THE INSET SPEAKER RECOGNITION SYSTEM UNDER MATCHED AND MISMATCHED BABBLE NOISE CONDITIONS
FOR EACH TEST DURATION. THE SNR FOR BABBLE NOISE IS 10-dB BL (BASELINE WITH 10-dB-BABBLE NOISE INTRODUCED).
BASELINE EER% 1S SHOWN FOLLOWED BY AEER FOR ME

TEST / TRAINING UTTERANCE DURATION
2sec 4sec bsec 8sec
In-Set / Out-of-Set —r——\e TN NVE T BL T ME [MME | BL | ME [MME | BL | ME | MME
15745 322 | 01 | 711 | 2879 | 049 | 617 | 222 | 09 | -5.33 | 2092 | -083 | 498
30730 3872 | +0.07 | 778 | ALI1 | +0.26 | 6.6 | 2861 | -0.18 | -661 | 2583 | -109 | 779
5715 343 | 0.06 | 7.38 | 2901 | 024 | 659 | 2137 | 0.02 | 437 | 2425 | -149 | 436

X. FUTURE WORK AND IMPROVEMENTS

This study has considered the problem of analysis, modeling,
and detection of characteristics of babble speech, known to be
the most challenging noise interference in speech systems today.
There are significant differences between babble collected from
real speaker scenarios and babble constructed by adding indi-
vidual speaker streams of data together. The differences arise
due to different data acquisition channels, when data is col-
lected from individual speakers or there are conversations col-
lected from close microphones. In contrast, when babble is col-
lected in natural settings (example in a meeting room scenario)
a far-field microphone is used. This leads to significant dif-
ferences in channel conditions. The impact of the language of
babble in different speech systems, and the ability to detect the
particular languages of the babble is currently under study. Fi-
nally, the impact of group stress/emotion on babble and its im-
pact on speech systems is an interesting field for further inves-
tigation.

XI. CONCLUSION

In this paper, a framework to characterize babble noise is pro-
posed. Babble is known to be the most challenging distortion
in speech systems, due to its speaker/speech like characteris-
tics. There are differences in the number of speakers per frame
pdfs when babble noise is modeled as a sum of conversations

as opposed to adding individual streams of speakers. One of
the main factors impacting the nature of babble is the number
of speakers in babble noise. An algorithm was proposed to de-
tect the number of speakers in a given instance of babble. The
algorithm was evaluated on simulated conversations from the
Switchboard corpus. Detection performance of over 80% ac-
curacy is obtained in detecting speaker count to within £1 of
the number of conversations, given that each conversation is as-
sumed to be consisting of two speakers. The performance is
encouraging, given the significant challenge in characterizing
babble speech. It is believed that this represents one of the first
studies to specifically address the underlying structure of babble
noise. This finding from characterization of babble opens up
possibilities for future work and also impacts existing applica-
tions. Babble can be used as a source of information (language
ID, gender ratio, group emotion characteristics, etc.) itself. In
our data collection, we have found different babble character-
istics when the previous parameters have changed. This infor-
mation can be of value in and of itself for the purposes of en-
vironment forensics. Alternatively, this information can be used
in order to supplement speech systems in order to maintain per-
formance in the most challenging of noise types. Here, the im-
pact of babble noise on speaker verification has been studied,
where the impact of babble speaker count detection was shown
to help overall performance. It has been shown that proper se-
lection of in-set speaker plus babble noise models can improve
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the performance of in-set/out-of-set speaker verification by 24%
compared to choosing a generic babble model. One drawback of
the current setup is that it requires a sufficient data for charac-
terizing the number of speakers. Second, the work has been pri-
marily focussed on modeling babble as the number of speakers;
such a modeling suffices for speaker identification systems, but
for speech recognition additional information such as language
information of the background is required. This is important
because English speech recognition in English babble would
be more challenging than English speech recognition in back-
ground babble consisting of a foreign language. It is suggested
that these initial findings will open a scope of innovation and ap-
plications in the study of babble for speech and language tech-
nology.
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