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Time—Frequency Correlation-Based Missing-Feature
Reconstruction for Robust Speech Recognition
in Band-Restricted Conditions
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Abstract—Band-limited speech represents one of the most chal-
lenging factors for robust speech recognition. This is especially
true in supporting audio corpora from sources that have a range
of conditions in spoken document retrieval requiring effective
automatic speech recognition. The missing-feature reconstruction
method has a problem when applied to band-limited speech
reconstruction, since it assumes the observations in the unreliable
regions are always greater than the latent original clean speech.
The approach developed here depends only on reliable components
to calculate the posterior probability to mitigate the problem.
This study proposes an advanced method to effectively utilize the
correlation information of the spectral components across time
and frequency axes in an effort to increase the performance of
missing-feature reconstruction in band-limited conditions. We
employ an F1 Area Window and Cutoff Border Window in order to
include more knowledge on reliable components which are highly
correlated with the cutoff frequency band. To detect the cutoff
regions for missing-feature reconstruction, blind mask estimation
is also presented, which employs the synthesized band-limited
speech model without secondary training data. Experiments
to evaluate the performance of the proposed methods are ac-
complished using the SPHINX3 speech recognition engine and
the TIMIT corpus. Experimental results demonstrate that the
proposed time-frequency (TF) correlation based missing-feature
reconstruction method is significantly more effective in improving
band-limited speech recognition accuracy. By employing the
proposed TF-missing feature reconstruction method, we obtain
up to 14.61% of average relative improvement in word error rate
(WER) for four available bandwidths with cutoff frequencies 1.0,
1.5, 2.0, and 2.5 kHz, respectively, compared to earlier formulated
methods. Experimental results on the National Gallery of the
Spoken Word (NGSW) corpus also show the proposed method is
effective in improving band-limited speech recognition in real-life
spoken document conditions.

Index Terms—Band-limited speech, correlation, missing-fea-
ture, speech recognition, time—frequency (TF).

1. INTRODUCTION

ANDWIDTH-RESTRICTED speech is one common
issue that makes speech recognition challenging for
scenarios involving transmission via different bandwidth media
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[1], [2]. This is especially true for spoken document retrieval
(SDR) where transcript generation needs to be accomplished
using automatic speech recognition (ASR) and input environ-
ment conditions are generally unknown. Historical data such
as the National Gallery of the Spoken Word (NGSW) requires
SDR, which consists of audio recordings from the last 110
years [3], [4]. Such recordings contain media with different
bandwidths due to limitations in the recording devices in past
times, and consequently the speech bandwidth restriction is a
significant issue for the ASR-based SDR.

To address band-limited speech recognition, general ap-
proaches to channel-distorted speech recognition can be
considered. Conventional cepstral mean subtraction (CMS),
various types of feature compensation methods, and hidden
Markov model (HMM) adaptation represent a number of
previous employed methods [5]-[7]. Retraining an HMM on
the band-limited speech database is also an alternative. In
our previous work, a data-driven based feature compensation
method was proposed for band-limited speech recognition [1].
However, retraining HMM and data-driven methods require
prior knowledge and availability of the band-limited speech.
Several bandwidth extension (BWE) techniques employing
either a codebook or Gaussian mixture model (GMM) can be
considered as a variation of data-driven compensation method
[2], [8], [9]. Recently, a BWE technique based on HMM has
also been proposed [10].

In this paper, the missing-feature method is considered as
a solution to address band-limited speech for speech recogni-
tion. Missing-feature processing has been known to be effec-
tive in improving speech recognition in additive background
noise conditions [11]-[13]. This method depends mostly on the
characteristics of speech that are resistant to noise, rather than
on the characteristics of the noise itself. The missing-feature
method consists of two steps. The first step is estimation of a
“mask” which determines which spectral parts of the noisy input
speech are unreliable [14], [15]. The second step is to recon-
struct the unreliable regions or bypass them for other processing.
A prior effort has also attempted to address convolutional dis-
tortion using the missing-feature method, but such an approach
is not for band-limited speech [16].

A cluster-based reconstruction method [13] is considered for
missing-feature processing of band-limited speech in our study.
This method restores unreliable parts of speech representations
using the known distributions of speech sounds and the reliable
region as indicated by mask information. The existing cluster-
based method [13] is designed to compute the a posteriori prob-
ability of the incoming speech, employing marginal computa-
tion for the missing spectral regions which are assumed to be
corrupted by only additive background noise. Therefore, how
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to reliably compute the a posteriori probability is a significant
issue for band-limited speech in this study. Our earlier study
proposed a modified approach for calculation of the a poste-
riori probability which depends only on reliable components
for band-limited speech [17]. However, the performance of that
method degrades as the cutoff region expands, due to the reduc-
tion in reliable information.

This present study represents a new effort to improve
band-limited speech recognition performance within the
missing-feature reconstruction framework. In this paper, we
utilize more knowledge on the correlation information of re-
liable spectral components for the missing components in the
cutoff frequency region. This approach aims at incorporating
a correlation-based method [13] into the cluster-based method
for missing-feature reconstruction by including an improved
number of reliable components which are highly correlated
across the time and frequency axes to the missing frequency
region. In order to detect the cutoff region within the incoming
speech, a mask estimation method is also presented, which
employs a synthesized band-limited speech model.

This paper is organized as follows. We first look at an ex-
ample of band-limited speech which can be observed in real
world in Section II, and review the missing-feature reconstruc-
tion method in Section III. In Section IV, the issue of developing
a missing-feature approach applied to band-limited speech is
discussed in detail and our earlier work is presented. Section V
represents the core novel algorithm aspects, where we investi-
gate the prospects of utilizing further knowledge of the correla-
tion with content in the cutoff band, followed by the proposed
time—frequency (TF)-based method. Blind mask estimation de-
tails are described next in Section VI. Representative experi-
mental procedures and their results are presented and discussed
in Section VII. Finally, in Section VIII we state the main con-
clusions of our work.

II. BAND-LIMITED SPEECH IN REAL-LIFE SCENARIO

As available online digital collections drastically increase,
the need for automatic and efficient information retrieval con-
tinues to expand, placing demands on advances in technology
including computational power and storage capacity. Recently,
there has been growing interest in retrieving information,
especially for online multimedia data consisting of rich infor-
mation such as audio, video, and speech. Today, multimedia
information collections include radio/television broadcast
news, interviews, entertainment content, user generated content
(UGC) such as YouTube, and others. This increasing demand
has drawn remarkable attention to expanding research on SDR
(31, [18]-[21].

SpeechFind [3] is an SDR system serving as the platform for
several programs across the U.S. for audio indexing and retrieval
including the NGSW and the Collaborative Digitization Pro-
gram (CDP) [4], [22]. The system consists of two main phases:
1) enrollment and 2) online search retrieval. In the enrollment
phase, the focus is on automatic transcription of the speech ma-
terials. This includes automatic audio segmentation and tran-
scription by a large vocabulary continuous speech recognition
(LVCSR) engine. The second phase deals with information re-
trieval of transcribed documents using a modified version of the
MG system [3], [23].
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Fig. 1. Spectrograms of speech samples from NGSW. (a) Thomas Edison.
(b) President Bill Clinton.

The speech corpora from NGSW and CDP cover a wide range
of audio materials. The audio content includes a diverse range
of audio formats, recording media, and diverse time periods in-
cluding names, places, topics, and choice of vocabulary from
the last 110 years. Some of these include severe bandwidth re-
strictions, poor audio from aged recording media, differences
in microphone type, reverberation at public places, recordings
from telephone, broadcasts, background noise, a wide range of
speaking styles and accents, and others [3], [24].

The spectrograms shown in Fig. 1 indicate representative
examples of the wide range of distortion present in NGSW
recording conditions. The speeches are spoken by (a) Thomas
Edison (1907) and (b) former President Bill Clinton (1999), re-
spectively. Both are sampled at 16 kHz, but (a) has an available
bandwidth of about 1.5-2.5 kHz due to the original recording
media (i.e., Edison style cylinder disk). Other examples where
variable bandwidth restrictions occur happen in current broad-
cast news (e.g., CNN Headline News), where audio content
from field correspondents will generally have restricted band-
widths while studio anchors’ are typically full bandwidth.
These severe conditions on the audio stream increase the
acoustic mismatch between training and testing conditions, and
finally lead to degraded performance of speech recognition for
automatic transcription. In this paper, we focus on a feature
reconstruction scheme to improve recognition performance of
speech distorted by bandwidth limitations.

III. MISSING-FEATURE RECONSTRUCTION

A cluster-based missing-feature reconstruction method has
been proposed by Raj et al. [13]. It restores the unreliable spec-
tral parts of input speech using the known distributions of clean
speech and the reliable regions determined by the masks. The
distribution of the log-spectra of clean speech X (¢) is modeled
by a Gaussian mixture with K clusters

pX () =Y N (X (1) prx g Bx - )]
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Suppose that a clean speech vector X (¢) has reliable compo-
nents X,.(¢) with the latent original components in an unreliable
(i.e., missing) region X,,(t). Thatis, X (¢) = [X,(¢t)X.(t)]. The
reliable component X,.(¢) is identical to the corresponding ob-
servation Y,.(¢). The cluster & of the clean speech model is de-
termined by the posterior probability [5], [25]. Since X (¢) con-
tains unreliable elements, the marginal computation is applied
by integrating out their dependency

Y. (t)
/ POX(1) | WdXu(t) b @)

— 00

P(k)

k = arg max
k

where Y, (t) represents the observed value of the unreliable
parts and is assumed to be greater than X, (¢) because it is
corrupted by additive background noise. Finally, the unreli-
able part X, (t) is reconstructed using bounded maximum a
posteriori (MAP) estimation based on the observations in the
reliable regions X,.(¢) with the model parameters of the cluster
k selected by (2), and an upper bound Y, () as follows [13]:

Xu(t) = 3,1:)% T?X{P(Xu(t) |X7'(t)7l‘l"\’,l;',7
u(t

T Xu) <Yu()} 3)

Equation (3) can be simplified into the following equation [26]:
Xut) = w0+ Cipu Cray Vo) =yl @)

where C;

i and C & are the covariance and cross-covariance
matrices which are defined as follows:

Ci.,.r = E{(X:(t) — p; . )(X:(2)

—mi,)") ®)
Ciru = E{UX () = ) (Xu(t) — 1y,

DT ®)

where p; . and p;  are mean vectors of the kith cluster of the
reliable component X, (¢) and unreliable component X, (¢) of
the clean speech, respectively.

IV. CALCULATION OF POSTERIOR PROBABILITY
FOR BAND-LIMITED SPEECH

The cluster-based reconstruction method described so far as-
sumes the case of missing speech which is corrupted by addi-
tive background noise. In this assumption, the observation in
the missing region Y,,(¢) should be greater than the latent clean
component of the same region X, (¢) which will be estimated.
The observation Y, (t) provides the upper bound of integration
for the marginal probability to determine the cluster as shown
in (2). In other words, it plays a role on the upper bound of the
range where the original clean speech would be distributed.

However, the situation is different in the case of channel-dis-
torted band-limited speech which is the focus of this study.
The observations are not necessarily greater than the original
clean spectral parts. The observations of the cutoff frequency
region generally have very low levels of signal energy in case of
band-limited speech. Therefore, integration using the observa-
tion values as the upper bound as in (2) no longer correctly re-
flects the marginal computation over the unreliable space where
the original clean speech might exist. This leads to an erroneous
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calculation of the marginal probability and finally results in an
incorrect reconstruction of the missing-feature.

In our earlier work [17], we have proposed to change the for-
mulation of the marginal probability used for determining the
most likely cluster in (2) to a relation that only depends on the re-
liable observations X.(¢) by integrating the unreliable elements
over the entire feature space for reconstruction of band-limited
speech. The equation for the posterior probability is approxi-
mated using the following equation:

P(k| X (1)) = P(k) /P(X(t)lk)qu(t)

= P(E)P(X,(t)| k). ™

The final formulation is the posterior probability calculated
using only the observations which are determined to be reliable,
that is, the clean speech components. This might not be an accu-
rate calculation for the posterior probability, which is especially
the case since the estimated probability becomes less reliable as
the number of unreliable elements increases. However, this for-
mulation is expected to mitigate the incorrectly computed mar-
ginal probability which is obtained by the original equation re-
lying on the observations in the cutoff frequency region of the
band-limited speech.

Initial experiments employing this proposed prior method
showed significant improvement compared to the original
reconstruction method over band-restricted speech recognition
[17]. However the performance, as expected, decreases as the
cutoff frequency region becomes wider, which means that the
estimate of the posterior probability based on the modified
calculation method depending only on the reliable components
becomes less effective as the number of reliable observations
decreases. Raj also noted that the estimation of the cluster
membership (i.e., k in (2)) would degrade when it depends only
on reliable components [26]. Therefore, an alternative method
is necessary to achieve improved performance for band-limited
speech recognition.

V. TF-BASED MISSING FEATURE RECONSTRUCTION
FOR BAND-LIMITED SPEECH

In this section, we propose a novel approach to increase
performance of the missing-feature reconstruction method for
band-limited speech. The proposed method utilizes the correla-
tion of the unreliable components in the cutoff frequency region
with the reliable components from other neighboring frames as
well as the current frame which conventional methods address.
Raj et al. previously proposed a correlation-based reconstruc-
tion method in [13] and [26]. Their proposed method employs
a relative covariance value to determine a neighborhood vector
which is more correlated to missing components and used
for reconstruction. In their method, however, the spectrogram
of the clean speech signal is considered to be a wide-sense
stationary random process, so the distribution of the clean
speech is estimated simply using a single Gaussian probability
density function (pdf). Such a simplification results in inferior
performance compared to the cluster-based method which is
the baseline scheme for our work in this paper [26]. Afify et al.
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Fig. 2. Distributions of Mel filterbank output coefficients.

TABLE 1
INDEX OF MEL FILTERBANKS AND CORRESPONDING CENTER FREQUENCY (HZ)

1 5819 730 | 17 1,997
2 120 | 10 848 | 18 2,220
3 188 | 11 976 | 19 2,461
4 262 |12 1,114 | 20 2,722
5 341 | 13 1,264 | 21 3,004
6 427 | 14 1,426 | 22 3,310
7 520 | 15 1,601 | 23 3,642
8 621 | 16 1,791

recently proposed a method to exploit correlation for feature
reconstruction of noisy speech in the cepstral domain [27].

As initial knowledge for our discussion, Table I and Fig. 2
show center frequency of each mel filterbank and the distribu-
tions of Mel filterbank coefficients employed in our study re-
spectively. Our proposed method incorporates the concept of a
correlation-based method into the cluster-based method by ef-
fectively utilizing the particular situation of incoming speech
(i.e., band-limitation). Fig. 31 illustrates the correlation coeffi-
cients between a spectral component of a particular Mel filter-
bank index and the other components across 21 neighbor frames
using clean speech from the TIMIT database (i.e., speaker and
gender independent). The top 30% highly correlated compo-
nents are highlighted with dark color in this figure. For example,
the first plot shows the correlation coefficients between the tenth
component of the Mel filterbank output and other adjacent com-
ponents. It is not surprising that the correlation decreases as we
increase the distance in time and index (i.e., frequency based
dimension). However, it is quite interesting to note that the cor-
relation values create a second peak near the sixth and seventh
Mel filterbank indices, resulting in a bimodal distribution of the
correlation coefficients. The sixth and seventh Mel filterbank in-
dices approximately correspond to 500-600 Hz, where most of

1Similar plots have been presented in [26]. Here, we regenerated this figure
to help illustrate the novel aspects of our proposed method.
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Fig. 3. Correlation coefficients with adjacent spectral components of clean
TIMIT speech. (a) Tenth component. (b) 13th component. (c) 16th component.
(d) 19th component.
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Fig. 4. Top 50 highly correlated spectral components for 0-1.5 kHz band-
limited speech. Here, Mel filterbank indexes 14 to 23 correspond to the missing
components for 1.5-4.0 kHz speech content.

the first formants for vowels are realized [28]. From this illus-
tration, we can see that a particular spectral component is corre-
lated highly not only with the adjacent components but also for
spectral information around the first formant frequency.

Here, we shift our discussion of correlation characteristics of
spectral components to the domain of interest, which is the fre-
quency band-limited scenario. Figs. 4 and 5 show the 50 most
highly correlated spectral components in the reliable frequency
band with a particular Mel filterbank index in the cutoff fre-
quency region in cases of 1.5 kHz (Mel filterbank index 14 to 23)
and 2.0 kHz (Mel filterbank index 17 to 23) band-restrictions.
For example, the first plot in Fig. 4 shows the top 50 spectral
components (i.e., Mel filterbank outputs) in the reliable region
(from O to 1.5 kHz) which are highly correlated with the 14th
Mel filterbank index. The 14th index is the first component in the
cutoff region (from 1.5 to 4 kHz) for the 1.5 kHz band-restricted
speech. These figures were obtained by projecting the plots of
the reliable frequency region in Fig. 3 onto the plane created
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Fig. 5. Top 50 highly correlated spectral components for 0-2.0 kHz band-
limited speech.

(@ (b)

Fig. 6. Illustration of F1 Area Window and Cutoff Border Window for reliable
spectral components. (a) Previous method [17]. (b) Proposed TF-MFR method.

by “Time Lag” and “Mel filterbank Index” axes. Therefore,
the dark regions represent the 50 time-lag verse Mel-filterbank
index entries with the highest correlation. A different trend
of 23rd index from other indexes in Figs. 4 and 5 would be
considered as lack of spectral characteristics due to out of the
formant frequency range (i.e., over 3.5 kHz).

From these figures, we can see that the spectral components
around the Mel filterbank index 3 to 9 are primarily correlated
with each particular component in the 1.5-4.0 kHz cutoff
frequency region. Indexes 3 to 9 correspond to 300-800 Hz,
where we expect the first formant frequencies for vowels are
distributed as discussed with Fig. 3. The spectral components
at the boundary of the cutoff frequency region also show
high correlation with the missing components in the cutoff
region. Considering the trend in correlation coefficients in the
band-limited condition, here we intend to increase the perfor-
mance of missing feature reconstruction of band-limited speech
by increasing the number of highly correlated components
from reliable regions (i.e., the first formant and cutoff boundary
areas) as well as the current frame components. Fig. 6 shows an
illustration of how the window of reliable spectral components
is constructed for incorporating additional content, which con-
sists of two parts: 1) the first formant frequency area (FI Area
Window), and 2) cutoff frequency boundary area (Cutoff Border
Window), in comparison to the previous method [17]. The FI
Area Window consists of two symmetric rectangular windows

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 7, SEPTEMBER 2009

which are defined by w;; and w1, having the sixth Mel filter-
bank index as a center frequency. The Cutoff Border Window
also consists of two symmetric triangular windows which are
determined by w2 and wyo, having the cutoff frequency as
the upper limitation. Therefore, the proposed reconstruction
method utilizes the correlation of the unreliable components to
the spectral components across both time and frequency axes.
The proposed F1 Area Window and Cutoff Border Window
shapes would be different according to the range of unreliable
components as shown in Figs. 4 and 5; however, we keep
same shapes for the windows for simple implementation and
performance evaluation in this study.

Since there is an increase in the number of reliable compo-
nents from the F'/ Area and Cutoff Border windows defined in
Fig. 6, itis required that we modify the existing equations for re-
construction of the missing-feature components, previously dis-
cussed in Section III. Suppose np is the Mel-filterbank index
corresponding to the cutoff frequency. The original clean speech
at time ¢ in the log-spectral domain can be represented by

X (t) = [X, (), Xu(1)], ®)
X, (8) = [x(t, 1), 2(t,2), ..., a(t,np — 1)]" )
and

Xu(t) = [s(t,np), ..., o(t,N)]" (10)

where N denotes the number of log-spectral components which
is identical to the number of Mel filterbanks.

Here, we define the spectral components correlated across
time and frequency axes X t*/} (t) by including the components
in the additional window area X, (¢) to X (¢) as follows:

(11

Here, X, (t) consists of the F1 Area Window and Cutoff Border
Window which are determined by wy; X wyy and wyp X wys.

The reliable components of X {*/}(#) is denoted as X {5 (1),
which represents [X,.(¢), X,,(¢)]. The distribution of the ex-
panded clean speech X {*f}(t) is also assumed to be modeled
by a Gaussian mixture with K components as follows:

XU (t) = [X(8), Xu (0]

K
p(XU) =S o (X =W
k=1

Equation (4) also needs to be rewritten to include X, (t) as
follows:

A

Xu(t) = py, + U gl

k,ru k,rr

0w -uP] a3

where k is determined by using (7), which shows more reli-
able performance for the GMM cluster decision rather than em-
ploying (12) in our experience. In a manner similar to that for
(5) and (6), C’gf 3 , and C’gq’j i are defined as follows:

e/} _ tf (¢t} tf "
ct) = E{(X,i N(t) - ) (Xj N(t) - ) }
(14)

oy = E{ (00 - W) 00 - 1,7}
5)
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{tf}
k,r
ponent Xt (t) of clean speech, respectively.

As presented in (12), we employ K Gaussian distribution
components for the expanded spectral components X {t/} ()
which includes X, (¢). The expanded components X {*/}(¢)
include a greater number of components, which are expected
to be more highly correlated to the missing spectral region.
The obtained GMM for X 1/} () can represent a more diverse
spectral distribution, which would address the problem of the
existing correlation-based method where the distribution is too
simplified and performance is low. In this paper, we name our
proposed method as the Time—Frequency Correlation-based
Missing-Feature Reconstruction (TF-MFR) method.

where p is the mean vector of kth cluster of reliable com-

VI. BLIND MASK ESTIMATION USING
BAND-LIMITED SPEECH MODEL

As a preceding step for missing-feature reconstruction, it is
required to determine the “mask” which classifies the spectrum
of the incoming speech into reliable and unreliable (“missing’)
regions. In real-world conditions, the information concerning
band restriction of the speech is often unavailable, so it is nec-
essary to detect this automatically from the input speech. Here,
we describe our approach to blind mask estimation using syn-
thesized band-limited speech models to determine the unreliable
regions from band-limited speech [17].

The band-limited speech we focus on is a special case where
the reliable speech spectral information exists only from zero to
a particular frequency range. With this condition, we can gen-
erate the band-limited speech models from the Gaussian mix-
ture model of the clean speech without a training database. For
missing-feature reconstruction as shown in Section III, we al-
ready have a K-mixture GMM of clean speech in the log-spec-
tral domain as shown in (1).

If the frequency region from the n gth band to full range N in
clean speech X () is cutoff by a band restriction, the band-lim-
ited speech Y (t) in the log-spectral domain (i.e., observation)
can be written as

Y(t) =

y(t,1), ..yt N)I"
z(t,1),...,z(t,np —1),y(t,np),...,y(t, N)|*.
(16)

Here, the observations y(t,ng),...,y(t, N) in the cutoff fre-
quency region are assumed to have very low energy. If the band-
limited speech Y (¢) with cutoff frequency np is also assumed
to have a Gaussian distribution, its mean vector for the £th mix-
ture is given by

By ko = [Pai ks - - (17)
where ¢,, denotes the floor value which has a small value, and
is determined in this study as

cn:mtiny(t,n), 0<t<T (18)

which is a minimum value of observation at each nth band over
T length of input speech Y ().
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The GMM of the band-limited speech Y (¢), which has the
npth to full range cutoff N, can then be defined as

0<ng<N,1<k<K.
(19)

AnB = (wk7ll'n3,k7 2715,19)7

Therefore, the mean of the Oth model Ay becomes
which indicates the full-band cutoff

mean of the Nth model Ay is

rameters in (1), implying the clean (i.e., full-band) speech
X (t). Now, we have a total of (IV + 1) GMMs which represent
the distribution of the band-limited speech from the 0 to the
Nth band as the beginning of the cutoff frequency regions. In
our work, the prior probabilities wj; and covariance matrices
Yn 4.k are maintained as the same values of the parameters of
the GMM for the clean speech in (1).

The obtained (/N + 1) number of band-limited speech models
can then be converted into the cepstral domain

/\7{1?3} = (wk?Cu’nB,k?C’an,kCT)
= (whuijmziik)

where C refers to the discrete cosine transform (DCT) matrix
and {c} represents the cepstral domain. By converting to the
cepstral domain, the computational expense is reduced by de-
creasing the number of coefficients and avoiding the full-covari-
ance matrix needed in the log-spectrum domain. Finally, a par-
ticular band-limited model is determined based on MAP estima-
tion using the incoming speech Y ¢} (t), followed by selection
of the binary mask S[n] for the spectrogram as the number of
cutoff frequency bands of the selected model as shown in (21)
as

(20)

fnp = arg max P (/\{"}

np
nB

y{c}(t))

= arg max {PnBP(Y{“}(t) ‘)\#B]’)}
_ [ 1 (reliable),
Sln] = { 0 (unreliable)

2n

ifn <np <n<N
otherwise - =

?

(22)

where P, , denotes the prior probability of the n gth band-lim-
ited speech model. In this paper, for more reliable performance,
a single decision is made for each utterance using accumu-
lated posterior probabilities over the entire duration of the
utterance under an assumption of stationarity of the given fre-
quency band-restriction. The proposed blind mask estimation
method using the synthesized band-limited speech model has
an advantage requiring no training procedure, compared to
a conventional data-driven method which needs training on
band-limited speech database.

VII. EXPERIMENTAL RESULTS

In our evaluations, the TIMIT database was used for the
proposed method in this paper. A total of 4.1 h of speech (462
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Fig. 7. Spectrograms of speech samples used in experiments. (a) Full-band
speech. (b) 2.0-kHz band-limited speech. (c) 1.0-kHz band-limited speech.

speakers, 4620 utterances) were used for training, and 1.5 h
of data (168 speakers, 1680 utterances) were used for test.
Training and test sets do not overlap each other. Data was
down-sampled to 8 kHz, so that each speech sample contains
4-kHz full-band frequency.

We employed SPHINX3 [29] to train the HMM for speech
recognition and test recognition accuracy on band-limited
speech. Each HMM represents a tri-phone which consists of
three-state with an eight-component GMM per state, which is
tied with 1138 states. The task has 6233 words as the vocabu-
lary, and the trigram language model is adapted on the TIMIT
database using a Broadcast News language model as an initial
model.

A conventional Mel-frequency cepstral coefficient (MFCC)
feature front-end is employed in this experiment, which uses
a 23 of Mel-scaled filterbank. An analysis window of 25-ms
duration is used with a 10-ms skip rate for 8-kHz speech data.
The computed 23 Mel-filterbank outputs are transformed to 13
cepstrum coefficients including cO (i.e., c0—c12). The first- and
second-order time derivatives are also included, so the feature
vector is 39-dimensional.

The band-limited speech samples for testing were generated
by low-pass filtering the original clean speech for test in the
TIMIT database with 4-kHz as full-band frequency. Four kinds
of low-pass filters were used for generating the test database
including 1.0, 1.5, 2.0, and 2.5 kHz, respectively, as the cutoff
frequencies. A 32nd-order Butterworth filter was used to gen-
erate each set of band-limited speech database. Therefore, each
test set consists of 1680 samples which is the same size as orig-
inal clean test data. Fig. 7 presents samples of the band-limited
speech used in our experiments.

A. Performance of Baseline and Previous Work

The performance of a baseline system (no compensation)
and conventional methods (CMS and RATZ) were examined
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TABLE II
BASELINE PERFORMANCE (WER, %)

Available Bandwidth Speech
0-1kHz | 0-1.5kHz | 0-2kHz | 0-2.5kHz | O-*<HZ
(clean)
Baseline 98.80 98.80 98.80 84.39 8.05
Matched HMM 20.61 15.78 12.24 9.46 8.05
CMS 91.84 49.78 20.78 11.70 8.05
RATZ 99.84 84.51 49.10 14.58 -
TABLE III

BAND-LIMITED SPEECH RECOGNITION EMPLOYING MISSING-FEATURE
METHODS WITH ORACLE MASK (WER, %)

Available Bandwidth Speech
0-1kHz | 0-1.5kHz | 0-2kHz | 0-2.5kHz
MF0+Oracle 97.17 86.22 31.31 14.66
MF+Oracle 65.75 31.06 16.62 10.51

and summarized in Table II. Word error rates (WERSs) drasti-
cally increase as the cutoff range increases for the test data.
For the 0-2 kHz cutoff, the speech signal has generally lost
the third formant information for almost all vowels, and for
speech recognition with 0—1 kHz band-limited condition relies
mostly on the first formant for vowels. This result also suggests
that the difference between train and test conditions for speech
recognition becomes larger as the cutoff region increases.
When the HMM was trained on identical band-limit conditions
as the test data (Matched HMM), the performance improved to
the point of being comparable to the baseline system for clean
(full-bandwidth) speech. In order to compare our approaches
with existing methods for compensating channel-distortion, we
evaluated cepstral mean subtraction (CMS) and RATZ (Mul-
tivariate Gaussian-based Cepstral Normalization) [5] which is
one of several data-driven methods for feature compensation.
For RATZ, a 256-mixture GMM of the clean speech was used
and its correction factors were obtained using the band-limited
training database which has an identical condition to the test
condition (i.e., nonstereo training data).

Table III shows the recognition performance obtained using
the original missing-feature reconstruction method (MFO0) [13]
and our earlier proposed method (MF) [17] for band-limited
speech. For cluster-based reconstruction, a 32-mixture GMM
was employed, which showed the best performance in our work.
The first row presents the performance of the original missing-
feature reconstruction with masks derived from “Oracle” infor-
mation which can be simply obtained by considering the cutoff
frequency of the testing speech as shown in Table IV, where 1
means reliable component and 0 indicates missing component
in cutoff region. Although the Oracle information concerning
the band-restriction is known, the recognition performance for
cases of 0—1 kHz and 0-1.5 kHz are very low. This indicates
that determining the cluster for missing-feature reconstruction
relying on the observation values is not helpful in the case of
band-limited speech as discussed in Section I'V.

The second row of Table III presents performance also with
the Oracle masks using the modified calculation of the poste-
rior probability discussed in Section IV which depends only on
the reliable spectral components. Although the performance de-
grades as the cutoff frequency region becomes wider, there is
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TABLE 1V
ORACLE MASKS USED FOR MISSING-FEATURE RECONSTRUCTION

Oracle masks
0-1kHz 11111111110000000000000  (10/23)
0-1.5kHz I1111111111110000000000  (13/23)
0-2kHz IIITTILI111111110000000 (16/23)
0-2.5kHz T1111111111111111100000  (18/23)

TABLE V
RECOGNITION PERFORMANCE AS CHANGE OF F1 AREA WINDOW SIZE ON
1.0-kHz BAND-LIMITED SPEECH WITH ORACLE MASK (WER, %)

Baseline (MF+Oracle): 65.75%
W1 ><'wf1:O><0

Wt1
w1 I 2 3 7
0 | 58.71 | 57.50 | 58.09 | 58.72
1 | 58.02 | 58.66 | 58.74 | 58.19
2 | 57.16 | 56.93 | 56.45 | 57.60
3 | 5721 | 5613 | 55.98 | 57.22
4 | 57.06 | 54.47 | 54.73 | 55.35
TABLE VI

RECOGNITION PERFORMANCE AS CHANGE OF F1 AREA WINDOW SIZE ON
2.0-kHz BAND-LIMITED SPEECH WITH ORACLE MASK (WER, %)

Baseline (MF+Oracle): 16.62%
w1 Xw1=0X0

wt1
w1 I 2 3 g
0 | 1561 | 1484 | 1479 | 1537
1 | 1469 | 1492 | 14.64 | 14.68
2 | 1486 | 1511 | 14.42 | 14.20
3 | 1477 | 14.84 | 1422 | 1455
4 | 15.10 | 1482 | 1438 | 14.29

significant improvement compared to the original reconstruc-
tion results in the first row. These results prove that the modified
method for computing the posterior probability is very effective
in missing-feature reconstruction of the band-limited speech.

B. Performance of TF-MFR Method: F1 Area Window

In this section, we present performance evaluation of the
proposed TF-based missing-feature reconstruction (TF-MFR)
method for band-limited speech. In order to find suitable
sizes of the F1 Area Window and Cutoff Border Window for
TF-MFR method (i.e., w1, wy1, weo, and wyo), the perfor-
mance was examined for a changing window size along the
time and frequency axes. First, to determine the size of the
F1 Area Window (i.e., wy1 X wy1), the performance of the
proposed TF-MFR method was investigated for a changing
window size of w;; and wy; while setting both w;s and wy, to
zero, which are shown in Table V to VIIL.

As illustrated in Fig. 6, the F1 Area Window (i.e., determined
by ws1 X wyy) for the TF-MFR method consists of a two sym-
metric rectangle with having the current frame and the sixth Mel
filterbank index as the center in time and Mel frequency bin re-
spectively. In the experiments (Tables V to VII), we varied wy;
from 1to4,and w sy from 0to4 to observe the performance trend.
Considering the window size (25 ms) and skip rate (10 ms) for
feature extraction (i.e., MFCC), changing the horizontal size of
the F1 Area Window w;; from 1 to 4 corresponds to a change in
time from 45 ms (=2 x 10 ms + 25 ms) to 105 ms (=8 x 10 ms +
25 ms) including the current frame. The actual vertical size of the
window w1 from 0 to4 corresponds to achange in frequency bin
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TABLE VII
AVERAGE WER AND RELATIVE IMPROVEMENT AS CHANGE OF F1
AREA WINDOW SIZE ON FOUR BAND-RESTRICTIONS (1.0, 1.5, 2.0,
AND 2.5 kHz) WITH ORACLE MASK (%)

Baseline (MF+Oracle): 30.99%
Wil XW 1 =0x0

w Wt1

f1 I 2 3 4

0 2795 | 2724 | 27.41 27.73
(7.75) | (10.00) | (9.60) | (8.42)

) 2720 | 2749 | 2743 | 27.02
(10.87) | (9.22) | (9.92) | (11.05)

5 27.11 2707 | 2640 | 26.68
(10.42) | (9.99) | (12.85) | (12.39)

3 27.14 | 2677 | 2630 | 26.62
9.94) | (1090) | 12.72) | (12.29)

4 2714 | 2622 | 25.96 | 26.10
(10.00) | (12.31) | (13.54) | (13.02)

content from 90 Hz (=430—340) to 730 Hz (=850—120) having
384 Hz (i.e., sixth Mel filterbank index) as a center frequency.

In Tables V—VII, the horizontal axis shows the change of
wyy and the vertical axis shows the change of wy; for the
TF-MFR method. Tables V and VI are the performance results
for 0-1 kHz and 0-2 kHz band-restrictions, respectively. The
average WERs for the four band-restrictions (0-1, 0-1.5,
0-2, and 0-2.5 kHz) are shown in Table VII and the average
values of their relative improvements? are also presented,
which are computed based on comparison to our previous work
(MF + Oracle in Table III). From the tables, we can see there
were significant improvements by incorporating the F1 Area
Window for missing-feature reconstruction. The top five cases
in performance are emphasized in bold font, and up to a 13.54%
relative improvement in average WER was obtained for the
case of wy X wpr = 3 X 4.

The experimental results in Table VII are also presented as
plots in Fig. 8. The upper panel shows average WERs at each
window size wy; using dash lines, and the lower panels are
for each wyq. The solid lines are the average performance for
all cases in each panel. From the figure, we see that there is
a consistent trend in performance versus a change of F1 Area
Window size, which shows that WER improves as the window
size in time and frequency axis increases, noting some excep-
tional outlier cases. It is not beyond our expectation that the
more knowledge we have on the correlation information with
the missing spectral components in cutoff regions, the more it
would be helpful for their reconstruction.

In the case of 3 X 4 (=w¢1 X wy1), which shows the best per-
formance in Table VII, the actual size of F1 Area Window is
85 ms (=6 x 10 ms + 25 ms) and 730 Hz (=850 — 120) in
time and frequency axes, and it uses 77 coefficients including
the original 23 Mel filterbank outputs for the current frame.
In other words, 54 spectral components are additionally em-
ployed by including the TF-based F1 Area Window. The case of
wyp X wyp = 3 X 3 uses 65 spectral components which showed
consistency in performance also for the Cutoff Border Window.
These results (i.e., our selection is 3 x 4 or 3 x 3 for F1 Area
Window) are considered to be well-matched to our findings pre-
sented with Figs. 4 and 5 in Section V. These figures show the
highly correlated components located with the frequency region

2The average relative improvement is obtained by averaging the relative im-
provements of the four band-limited conditions, which is not calculated using
the average WER.
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Fig. 8. Average WER (a) as change of w;; and (b) as change of w, for F1
Area Window on four band-restrictions (1.0, 1.5, 2.0, and 2.5 kHz) with Oracle
mask (%). (a) Average WER versus a change in w¢; from Table VII. (b) Average
WER versus a change of w¢; from Table VII.

300-800 Hz and temporal space +30 ms time lag window. This
selection also considered the computational expense and train-
ability of the acoustic model. Increasing the size of the F1 Area
Window in time and frequency might improve overall perfor-
mance; however, it requires increased size of the feature vector
resulting in high computational expense for both model training
and feature reconstruction. The computational expense is spent
mostly on likelihood calculation with full covariance matrices
and it primarily depends on the feature vector size. For example,
the case of wy1 X wy1 = 4 x 4 needs a total of 95 components
for the feature vector, which is greater than four times the fea-
ture vector used for the basic MFR. A large sized feature vector
will also produce a “sparse data” problem under a restricted
training data condition, leading to an unreliable acoustic model
for missing-feature reconstruction. In the next section, the suit-
able size of Cutoff Border Window will be investigated based
on the F1 Area Window determined in this section.

C. Performance of TF-MFR Method: Cutoff Border Window

In this section, we investigate the effect of the Cutoff Border
Window on the performance of the proposed TF-MFR method.
To find a suitable size of the Cutoff Border Window, the recon-
struction performance was examined versus a changing size of
Cutoff Border Window w2 X w o with a fixed F1 Area Window.
Tables VIII and IX show the average WERs as we change the
Cutoff Border Window size, having wy; X wgr = 3 X 3 and
wy X wyp = 3 x 4, respectively, for the F1 Area Window.3
The top 5 average relative improvements are highlighted in bold
font. For the case of w1 X wp1 = 3 X 3, w2 X wy2 =1 % 3
shows the best performance with a 1.60% (=14.32 —12.72) in-
crease in relative improvement compared to wyo X wgz = 0 X 0.
We obtained the best performance with w2 X wyo = 2 x 4
in case of wy; X wgr = 3 x 4 having 1.07% improvement
(=14.61 — 13.54).4 For the selection of the Cutoff Border

3The case of 3 x 2 showed better performance in Table VII, however 3 x 3
showed more consistent performance in the following experiments.

4Even though the case of w;» X wyso = 4 X 4 showed better relative improve-
ment in Table IX, we nevertheless select 2 X 4 as the best due to the number of
coefficients employed.
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TABLE VIII
AVERAGE WER AND RELATIVE IMPROVEMENT AS CHANGE
OF CUTOFF BORDER WINDOW SI1ZE WITH FIXED F1
WINDOW SIZE AS w1 X wys1 = 3 X 3 (%)

Baselinel (MF+Oracle): 30.99%

we1 X wf1=0 x0

Baseline2 (TF-MF+Oracle): 26.30% (12.72%)
wt1 XU)f1:3 ><3, w2 ><'ll)f2:0><0

w W2

f2 | 2 3 4

1 2600 | 25.86 2578 | 25.80
(13.53) | (13.75) | (14.21) | (14.14)

5 25.94 25.94 25.85 25.80
(13.83) | (13.14) | (13.71) | (13.90)

3 25.86 25.77 25.93 25.82
(14.32) | (14.15) | (13.28) | (13.86)

4 25.95 25.84 2584 | 25.81
(13.99) | (13.84) | (13.93) | (13.84)

TABLE IX

AVERAGE WER AND RELATIVE IMPROVEMENT AS CHANGE
OF CUTOFF BORDER WINDOW SIZE WITH FIXED F1
WINDOW SIZE AS w1 X wyy = 3 X 4 (%)

Baselinel (MF+Oracle): 30.99%

we1 X w1 =0x0

Baseline2 (TF-MF+Oracle): 25.96% (13.54%)
wt1 ><wf1=3 ><4, w2 wa2=0><0

w2
wr2 I 2 3 7
: 2588 | 2574 | 25.63 | 25.77
(13.49) | (13.92) | (14.27) | (13.81)
5 2582 | 2567 | 25.61 | 25.72
(13.48) | (13.99) | (14.25) | (14.21)
3 2574 | 2569 | 2578 | 25.73
(14.21) | (14.01) | (13.48) | (14.10)
4 2575 | 2556 | 25.61 | 25.65
(14.15) | (14.61) | (14.39) | (14.70)

Window size (i.e., w2 X wpe = 1 X 3 0r wyp X wyy = 2 X
4), we considered not only performance but also computational
complexity and trainability which mostly depends on the feature
vector size as discussed in the previous section for selection of
the F1 Area Window size. The case of w2 X wge = 2 X 4 of
Table IX needs 87 spectral components for feature vector, while
Wig X Wy = 4 X 4 requires 97 components.

The increase 1.60% and 1.07% in relative improvement might
not appear to be significant. However, it should be noted that
there is consistent WER improvement in most of the cases by
employing the Cutoff Border Window, which outperforms the
cases wy X w1 = 4x 3 and wy X wy; = 4 x4 in Table VII that
have a larger sized F1 Area Window. This means that the spec-
tral components in the Cutoff Border Window provide more ef-
fective information for correlation with the missing components
in the cutoff frequency band, rather than excessively increasing
the size of the F1 Area Window. In particular, note the case of
Wi X wypp = 3 X 3, wyp X wyp = 1 X 3 which uses a total of 71
spectral components for TF-MFR method, while 77, 79, and 95
components are used in wy1 X w1 = 3 X 4,4 x 3, and 4 x 4,
respectively, with wyo X wygp = 0 x 0. This result proves that
the combination of a suitable size F1 Area Window and Cutoff
Border Window is effective in reconstructing the missing spec-
tral components for band-restricted condition.



KIM AND HANSEN: TIME-FREQUENCY CORRELATION-BASED MISSING-FEATURE RECONSTRUCTION

kHz

§ 6

e B e | L
| S = »ﬂg -‘fd*

(c)

e 2 - I , ﬂ ]
ﬂ-——- ‘ _i, ‘ [ 'i l w =
(d)

LT
i -_. 0.5 1!0 ] 1’; 'i 2l0

Fig. 9. Spectrograms of (a) full-band speech, (b) 1.5 kHz band-limited speech,
(c) estimated by earlier work [17], (d) estimated by TF-MFR method; which are
rebuilt from log-spectral coefficients. (a) Full-band speech. (b) 1.5-kHz band-
limited speech. (c) Reconstructed by previous work [16]. (d) Reconstructed by
proposed TF-MFR method.
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TABLE X
SUMMARY OF AVERAGE WER AND RELATIVE IMPROVEMENT EMPLOYING F1
AREA WINDOW AND CUTOFF BORDER WINDOW WITH ORACLE MASK (%)

TF-MF Window Size Available Bandwidth Speech

Wi xwy, | waxwyy | 0-TKHz | 0-T5kHz | 02Kz [ 025kHz | &
0x0 0x0 | 6575 | 3106 | 1662 | 1051 | 3099
s oxo | 5598 [ 2454 | 1422 | 1045 | 2630

(1486) | (2099) | (1444) | (057) | (12.72)
e oo | A7 [ 245 | 1438 | 1021 | 239
(1676 | (106 | (1348) | @85 | (13.59)
e o | B0 [ 204 | 13% | 1024 | 2586
(605 | @267 | as00) | @571 | 1432
s sva | 428 [ 26 | 1397 | 1040 | 2556
azsn | @395 | 594 | .05 | a4en)

The performance evaluation results employing the Fl1
Area Window and Cutoff Border Window combined to-
gether that showed the best performance for experiments in
Tables VIII to IX are summarized in Table X. This proves that
our proposed method is effective in reconstructing the missing
spectral components in the cutoff region by utilizing more
effective knowledge from the adjacent spectral components
which would be highly correlated with the missing components.
Fig. 9 presents example spectrograms of (a) original (clean), (b)
band-limited, (c) reconstructed from our previous work [17],
and (d) reconstructed by the proposed TF-MFR method in this
study. The example speech is band-limited at 1.5 kHz and the
spectrograms are visually regenerated from the actual log-spec-
tral coefficients for illustration. The spectrograms clearly show
that the proposed method is very effective in restoring the
missing spectral components in the cutoff frequency regions.

D. Performance of TF-MFR Method With Blind Mask
Estimation

In this section, the proposed TF-MFR method is evaluated
with the proposed blind mask estimation combined, which was
presented in Section VI. First, Table XI shows the performance
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TABLE XI
CLASSIFICATION ACCURACY OF MASK ESTIMATION AND MFR PERFORMANCE
(WER) BASED ON THE ESTIMATED MASK (%)

Available Bandwidth Speech Av
0-TkHz | 0-1.5kHz | 0-2kHz | 0-2.5kHz &
Oracle Mask | 45575) | (31.06) | (1662) | (1051) | (30.99)
Data Driven | 9012 5458 | 100.00 | 100.00 | 86.18
(69.04) | (4391) | (16.62) | (10.51) | (35.02)
Blind 99.70 96.01 | 100.00 | 100.00 | 98.93
Estimation | (65.99) | (4291) | (16.62) | (10.51) | (34.01)

comparison of our blind mask estimation method to the oracle
knowledge and conventional estimation method. Considering
the number of log-spectral coefficients (=23) and the range of
test conditions (e.g., frequency bandwidth of 0-1.0 kHz and up
to 0-2.5 kHz), 15 band-limited speech models were generated,
which cover the cutoff frequencies from 0.7 to 4.0 kHz. These
are obtained by assigning uniform prior probabilities P, (=
1/15) of the band-limited models from 0.7 to 4.0 kHz, with P, ,
set to zero for the remaining eight models from 0.0 to 0.7 kHz
in (21).5 The cutoff band limit was determined once for each
utterance by comparing the accumulated posterior probabilities
over the entire duration of the utterance.

For the conventional method, a data-driven method is em-
ployed, where acoustic models (i.e., GMMs) for different band-
restrictions were obtained via training on band-limited speech.
Fifteen GMMs are constructed to span 0.7 to 4.0 kHz cutoff fre-
quencies, which represent identical conditions to the proposed
blind mask estimator. Mask classification also employs the same
procedure as the blind estimator, where a single decision is made
employing MAP estimation for the entire duration of the input
speech. Table XI demonstrates that the proposed blind mask
estimation brings high classification accuracy which is compa-
rable to the data-driven method. The achieved high performance
is believed to be due to a well-matched model with band-limited
test speech by using the artificially generated data. Taking min-
imum values from cutoff region in the proposed method would
be effective to estimate the spectral characteristics matched with
input speech, resulting in consistently better performance com-
pared to the data-driven method which would be less reliable in
modeling the poor spectra in cutoff region.

Classification performance improvement does not directly re-
flect a change in speech recognition performance when the esti-
mated mask information is used for the missing-feature method.
WER in the parenthesis in Table XI presents the recognition per-
formance when the cutoff regions are reconstructed using the es-
timated mask information. The results show that blind mask es-
timation using the synthesized band-limited model was effective
in detecting the reliable spectral region from the input band-lim-
ited speech. There is no significant loss in performance when
employing the blind mask estimation method compared to the
case of Oracle knowledge on the band-limited test speech, with
the exception of 0—1.5 kHz case. The blind mask estimation is
less correct for the 1.5 kHz case, resulting in degraded perfor-
mance compared to the Oracle mask (42.91% versus 31.06%

5We assume that with speech at such low frequency content, it is not fea-
sible to effectively estimate a pdf of speech where only up to 0.7 kHz of data is
present.
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TABLE XII
WER AND RELATIVE IMPROVEMENT WITH F1 AREA WINDOW AND CUTOFF
BORDER WINDOW EMPLOYING BLIND MASK ESTIMATION (%)

TF-MF Window Size Available Bandwidth Speech Av
wi Xwyy | wgpXwyse [ 0-1kHz [ 0-1.5kHz | 0-2kHz | 0-2.5kHz &
0x0 0x0 65.99 4291 16.62 10.51 34.01
3%3 1x3 55.93 24.67 13.96 10.24 26.20
(15.24) (42.51) (16.00) (2.57) (19.08)
34 2%4 54.43 24.19 13.97 10.40 25.75
(17.52) (43.63) (15.94) (1.05) (19.53)

WERs in Table XI). It is believed that band-restriction at 1.5 kHz
smears the spectral characteristics of the second formant which
generally exists around 1.5 kHz in frequency, leading to a degra-
dation in discrimination among the models.

The proposed TF-MFR method employing the blind mask es-
timation is also consistently effective at improving the perfor-
mance as shown in Table XII. It is worth noting that the per-
formance for the case of 0-1.5 kHz is significantly improved,
which had a 42.91% WER in the previous method with blind
mask estimation. Here, we obtained WERs 24.67% and 24.19%
for the 0-1.5 kHz case, which are comparable to the Oracle
mask case in Table XII. Overall relative performance gains in
WER range from 1.05 to 43.63% compared to the previous
missing-feature reconstruction with blind mask estimation. This
tells us that the proposed TF-MFR method is robust to the es-
timation of the band-limitation which might be incorrect de-
pending on the particular band-limited conditions.

E. Performance of TF-MFR Method on Real-Life Conditions

The proposed missing-feature method was also evaluated on
band-limited speech obtained from actual historical recordings
within the NGSW corpus. The testing samples (191 utterances,
35 min) were found to be band-restricted to about 3-5 kHz,
having 8 kHz as their full bandwidth. The speech recognition
engine used for evaluation is SPHINX3 which was trained on
200 h of Broadcast News [3]. The baseline recognition system
shows 30%—-40% WER for other full band speech samples in
the NGSW corpus, which indicates that the NGSW corpus con-
tains challenging conditions for speech recognition even at full
bandwidth speech.

From Table XIII, we can see the proposed missing-feature
reconstruction method TF-MFR® consistently outperforms our
previous proposed MFR method in both cases of Oracle mask
and blind mask estimation. The relative low performance com-
pared to results from the TIMIT corpus is believed to be due to
mismatch between the acoustic model for missing-feature and
test speech conditions. A clean TIMIT corpus was employed for
training the model for missing-feature method, which is highly
different from the acoustics of full bandwidth speech in the
NGSW corpus. We obtained improved results by combining
maximum likelihood linear regression (MLLR) adaptation on
the reconstructed speech for the HMM. We can also see that
the missing-feature method employing the blind mask estima-
tion shows consistent improvement for the NGSW corpus, even

6We obtained the best result with w;; X w r1 = 3 X 3 without the Cutoff
Border Window in this experiment. Due to the restricted size of test data in
the NGSW corpus, we did not find statistical significance of the performance
change when the Cutoff Border Window is applied.
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TABLE XIII
WER AND RELATIVE IMPROVEMENT WITH THE
PROPOSED METHOD ON NGSW CORPUS (%)

Baseline 5210 ()
MFR 5033 (3.39)
MLLR 4523 (13.18)
Oracle MFR+MLLR 43.62 (16.29)
Mask TF-MFR 49.80 (4.42)
TF-MFR+MLLR | 43.49 (16.52)
MFR 51.54  (1.07)
Mask MFR+MLLR 46.01 (11.69)
Estimation | TF-MFR 51.47 (1.20)
TF-MFR+MLLR | 4519 (13.27)

though the performance is low compared versus the Oracle mask
solution.

These results suggest that the proposed missing-feature re-
construction and blind mask estimation methods are applicable
to real-life band-limited conditions. In particular, spoken doc-
ument retrieval system, which is of interest in this paper, must
address a wide range of corpora including band-restricted con-
ditions. A multiple-conditioned HMM system could be an al-
ternative method, even though it is beyond the scope of this
study, since our focus is on formulating effective “feature com-
pensation” approaches in this paper. However, the HMM for
ASR employed by SDR system is obtained through an elabo-
rate and complicated procedure requiring a large training data-
base, so it would not be practical to estimate multiple HMMs
with a large number of parameters for different band-limited
conditions. Considerable computational expense would be also
required to apply a multiple-HMM system to the time-varying
band-limited condition which often occurs in real-life spoken
documents such as the NGSW corpus.

The ability to select a suitable size for the F1 Area and Cutoff
Border windows for the proposed missing-feature method is
a practical issue in real-life conditions. We believe that the
correlation relationship presented in Section V must be valid in
other types of speech corpora as well; however, the correlation
range needs to be trimmed according to the sample rate, speci-
fication of the employed feature extraction method, and others.
Therefore, the presented window size for the TF-MFR method
here could be a guideline for suitable selection of the window
size for another speech corpus, even it needs to be determined
empirically using available pilot test data. It is noted that
additive background noise would further degrade performance
of our missing-feature reconstruction for band-limited speech,
since the acoustic model used for reconstruction is assumed to
be trained for a clean condition. Therefore, background noise
needs to be addressed using proper schemes such as speech
enhancement and/or feature compensation, prior to applying
missing-feature reconstruction. Acoustic model adaptation
combined with missing-feature reconstruction has been useful
for increasing speech recognition performance, as shown in the
experiments employing MLLR for the NGSW corpus in this
section.

VIII. CONCLUSION

In this paper, we considered the problem of speech recog-
nition of band-limited speech based on missing-feature recon-
struction. We proposed a technique to compute the posterior
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probability depending only on the reliable components for band-
limited condition from our earlier work. This paper proposed an
advanced method to utilize the correlation information on the
spectral components across both time and frequency axis which
are highly correlated with the missing components in the cutoff
frequency region. To find the suitable spectral components to
be employed, we investigated the correlation characteristics of
the spectral components in the reliable frequency band with the
cutoff band using a series of preliminary experiments. The ex-
periments showed two parts in the reliable band are mainly cor-
related with missing components in the cutoff region, which are
the area of first formant (F1) and the boundary of the cutoff
frequency. Based on our findings, we employed the “F1 Area
Window” and “Cutoff Border Window” to incorporate an in-
creased number of reliable components that are determined to be
highly correlated with the cutoff frequency band content. To de-
tect the cutoff regions from the incoming speech, our approach
to blind mask estimation was also presented, which employs a
synthesized band-limited model which does not require a sec-
ondary training database.

The experiment to evaluate the performance of the presented
methods was accomplished using the SPHINX3 recognizer
and TIMIT corpus. We determined the suitable size of F1 Area
Window and Cutoff Border Window through a combination of
different sizes in the performance evaluation. Experimental re-
sults demonstrated that the proposed TF-based missing-feature
reconstruction method is significantly effective in improving
band-limited speech recognition accuracy. We obtained up to
14.61% average relative improvement in WER on four types of
band-restrictions (1.0, 1.5, 2.0, and 2.5 kHz) by employing the
proposed TF-MFR method compared to our earlier work [17].
The proposed method employing the blind mask estimation
also showed consistent improvement in performance. This
consistency in recognition performance proved that our effort
to incorporate more substantial correlation information from
the spectral components across time and frequency axes is
effective in reconstructing the missing spectral components in
band-limited speech. The results on actual conditions such as
the NGSW corpus also showed the advantage of the proposed
time—frequency correlation based method applied to band-re-
stricted speech. Such bandwidth restrictions can be found in
a wide range of acoustic conditions within real-life spoken
documents that make speech recognition highly challenging.
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