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Abstract

Among a number of studies which have investigated various speech enhancement and processing schemes for in-vehicle speech sys-
tems, the delay-and-sum beamforming (DASB) and adaptive beamforming are two typical methods that both have their advantages and
disadvantages. In this paper, we propose a novel combined fixed/adaptive beamforming solution (CFA-BF) based on previous work for
speech enhancement and recognition in real moving car environments, which seeks to take advantage of both methods. The working
scheme of CFA-BF consists of two steps: source location calibration and target signal enhancement. The first step is to pre-record
the transfer functions between the speaker and microphone array from different potential source positions using adaptive beamforming
under quiet environments; and the second step is to use this pre-recorded information to enhance the desired speech when the car is run-
ning on the road. An evaluation using extensive actual car speech data from the CU-Move Corpus shows that the method can decrease
WER for speech recognition by up to 30% over a single channel scenario and improve speech quality via the SEGSNR measure by up to

1 dB on the average.
© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

The increased use of mobile telephones in cars has cre-
ated a greater demand for hands-free, in-car installations.
Many countries now restrict the use of hand-held cellular
technology while operating a vehicle (Komarow, 2000).
As such, there is a greater need to have reliable voice cap-
ture within automobile environments. However, the dis-
tance between a hands-free car microphone and the
speaker will cause a severe loss in speech quality due to
changing acoustic environments. Therefore, the topic of
capturing clean and distortion-free speech under distant
talker conditions in noisy car environments has attracted
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much attention. Earlier studies on signal channel speech
enhancement offer one viable path for signal quality
improvement (Deller et al., 2000) and speech recognition
advancements (Hansen and Clements, 1991; Hansen,
1994; Pellom and Hansen, 1998; Jensen and Hansen,
2002) in the car environment. Dual-channel methods can
also improve speech quality as well including such methods
as ACE-1, ACE-2 (auditory constrained iterative speech
enhancement (Nandkumar and Hansen, 1995; Hansen
and Nandkumar, 1995), but multi-microphone array solu-
tions have a greater potential to track speakers and time
varying background noise. Microphone array processing
and beamforming is one promising area which can yield
effective performance.

The classic array beamforming method is delay-and-sum
beamforming (DASB), and is based on applying time shifts
to a set of microphone array signals to compensate for the
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propagation delays in the arrival of the source signal at
each microphone. These signals are time-aligned and
summed together to form a single output signal. This
method is very simple and robust if we know the direction
of the speech source and the number of microphones and
microphone spacing is selected appropriately. A simple
DASB approach has been shown to be effective for real
in-vehicle systems by Plucienkowski et al. (2001). However,
if the source location changes during operation, this
method will be less effective due to the mismatch in estimat-
ing the delays between the microphones. Another practical
problem of DASB is that the theoretical maximum noise
attenuation 10log,, M (Haykin et al., 1985) (where M is
the number of the microphones in the array) is not easy
to obtain in car noise environments due to the small micro-
phone array, since car noise is not entirely uncorrelated
and traditional beamforming technique with small stan-
dard arrays do not provide substantial improvement in sig-
nal to noise ratio as compared to single omni-directional
microphones (Galanenko et al., 2001). In the study by
Nordholm et al. (1999), they formulate a simple built-in
calibration procedure for data collection instrumentation
in the car environment. Their working scheme is to find
the transfer function among the speaker, jammer signal,
and microphone array in a quiet setting, and assume this
function does not change when the car is moving on the
road. This algorithm is one of several typical beamforming
algorithms that have been used in car environments. How-
ever, it should be noted that microphone array calibration
does have a problem, since it is not easy to keep a human
being steady during operation, and most of the movement
of his/her head will change the source position, which will
change the transfer function. In another study, Compe-
rnolle (1990) presented an approach using switching adap-
tive filters, with no a priori knowledge about the speech
source. The filters have two sections, where the first section
implements an adaptive look direction and cues in on the
desired speech, while the second section acts as a multi-
channel adaptive noise canceler. This method is able to
simultaneously track the movement of the speaker source
and compensate for the transfer function between the
microphone array and speaker in real-time. While this
was an important contribution, it was evaluated only in a
reverberant laboratory setting (Compernolle et al., 1990),
and not in a noisy moving car environment. Another study
by Oh et al. (1992) applied a Griffiths—Jim beamformer
(Griffiths and Jim, 1982) in a car environment with a 7-
channel microphone array. They evaluated Signal-to-Noise
(SNR) and word error rate (WER) improvement of their
algorithm, and compared this to the case when only a
DASB was used. Their general recommendations were that
the generalized side-lobe canceler (GSC) was relatively sta-
ble and robust. However, from our analysis using real car
data we collected, we found that noise signals with high fre-
quency energy, such as road bump noise, which routinely
happens for road surface repairs of potholes or expansion
joints across bridges, will make the GSC unstable. This

phenomenon is also observed and mentioned by Korompis
et al. (1995). In a study by Zhang and Hansen (2003a), a
method to identify this kind of noise is proposed and
thereby allows the adaptive filters to work more robustly.
In the study by Shinde et al. (2002), they presented a mul-
tichannel method for noisy speech recognition which esti-
mates the log spectrum of speech for a close-talking
microphone based on a multiple regression of the log spec-
tra (MRLS) of noisy signals captured by the distributed
microphones. This method was reported to improve speech
recognition performance by up to 20%. In a later study by
Li et al. (2005), an improved version of this method has
been implemented by automatically adapted the regression
weights for different noise environments, and 58.5% word
error rate (WER) was reported. However, the MRLS based
method requires a specific microphone arrangement in the
car. It should also be noted that the noise signals captured
by distributed microphones within the car are not necessar-
ily the real noise that reaches the close-talking microphone.
Hoshuyama et al. (1999) considered an adaptive beam-
forming solution for microphone arrays with a blocking
matrix using constrained adaptive filters. Abut (2002),
Wahab et al. (1997) and Wahab et al. (1998) presented a
speech enhancement framework using a DCT-based (dis-
crete cosine transform) Generalized Amplitude Spectral
Estimator (ASE), which can be used for a stereo micro-
phone noise cancellation system in the car. Visser et al.
(2002), presented a speech enhancement scheme, which
combined a spatial and temporal processing strategy to
handle reverberation, highly interfering sources and back-
ground noise without the need of microphone arrays nor
a priori speech or noise models. Meyer and Simmer
(1997) considered the diffuse noise field in cars, and pre-
sented a multichannel-algorithm for speech enhancement.
It consists of a delay-and-sum beamformer (DASB), a
spectral subtraction algorithm for low frequency and a
Wiener filter for high frequency. These methods were
reported to have good performance under a single con-
trolled driving condition (i.e., windows closed traveling at
a given speed). Wallace and Goubran (1992) proposed a
sub-banded two-stage beamforming multi-reference adap-
tive noise canceler with sub-banded second stage for noise
suppression in car noise environments. This method was
shown to have a significant noise reduction during non-
speech segments but the performance during speech seg-
ments is degraded. In another study by Haan et al
(2003), a method for the design of over-sampled uniform
DFT-filter banks aiming at minimal source signal degrada-
tion at the microphone array output was proposed. Their
method consists of two steps. In the first step the analysis
filter bank was designed in such a way that the aliasing
terms in each sub-band were minimized individually, con-
tributing to minimal aliasing at the output without aliasing
cancellation. In the second step the synthesis filter bank
was designed to match the analysis filter bank where the
analysis-synthesis response was optimized while all aliasing
terms in the output signal were individually suppressed,
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rather than aiming at aliasing cancellation. They evaluated
their method in an automobile environment observing that
the background noise is suppressed by about 15 dB and
that the interference signal is suppressed by about 17 dB.
However, the desired signal distortion is still audible. In
a study by Goulding and Bird (1990), they investigated
the properties of the noise field in an automobile and pro-
posed a delay equalized near-field beamformer, which
attempts to enhance the speech, rather than reduce the
noise. In another study by Grenier (1992), a 8-channel
non-uniform microphone array was configured for car
environments, and both Frost adaptive beamformer (Frost
et al., 1972) and Griffith-Jim adaptive beamformer (Grif-
fiths and Jim, 1982) were implemented and evaluated using
a limited recorded database. This is a valuable work, as the
performance of two important beamformers were com-
pared. Gazor and Grenier (1995) and Gazor and Grenier
(1994) also investigated the optimal positions and numbers
of sensors for a microphone array, however we can not
summarize their important conclusions here as this topic
is out of the scope of this paper.

While a number of studies have investigated various
speech enhancement and processing schemes for in-vehicle
speech systems, the vast majority of results are conducted
under controlled simulated conditions inside a room or
summing pre-recorded car noise with clean speech. Little
research has been performed using actual voice data col-
lected in the car with associated environmental noise condi-
tions. Because of the variety of simulated in-vehicle
evaluation scenarios, it is difficult to compare performance
between studies, and to predict if simulated performance
will hold for actual, in-vehicle conditions. In our previous
work (Zhang and Hansen, 2003a,b), an analysis was per-
formed on data recorded in various car noise environments
from across the United States, and the performance of tra-
ditional Delay and Sum beamforming (DASB) has been
benchmark using the collected multi-channel microphone
array data. There, we also proposed a constrained switched
adaptive beamforming algorithm (CSA-BF), which detects
the head movement of the driver and adjusts the time delay
between microphones automatically. That method was
shown to decrease WER (word error rate) for speech recog-
nition by up to 31% and improve speech quality by up to
5.5 dB on the average simultaneously using the CU-Move
corpus (Cu-Move, 2004).

In this paper, a novel combined fixed/adaptive beam-
forming (CFA-BF) scheme is proposed which is designed
specially for robust speech recognition in car noise environ-
ments.! The proposed method is based on our previous
work and analysis results for the potential driver move-
ments during voice interaction by selecting 10 speakers
from the CU-Move corpus (Hansen et al., 2001; Cu-Move,

' An earlier version of the CFA-BF: combined fixed/adaptive beam-
forming algorithm was presented at Interspeech-2003 (Zhang and Hansen,
2003b), which received Best Paper Award for Interspeech-2003.

2004). Our proposed method combines fixed and adaptive
beamformers and also applies source localization tech-
niques. Therefore, it has several novel advantages:

(i) low computational complexity with robustness;
(i) target signal distortion reduction by omitting the
parameter adjustment in adaptive filters;
(iii) automatically tracking driver movement, and no
speech range definition is needed;
(iv) directional sources can be suppressed;
(v) especially suitable for use in car noise environments.

For the formulation of a microphone array front-end
system for in-vehicle automatic speech recognition and
navigation purpose, the low complexity and robustness of
the multi-channel noise suppression algorithms are critical
because of the limitation of resources. Several microphone
array processing systems have been proposed and report
good performance by some companies. For example,
Andrea Electronics’ microphone array, which was pur-
chased by BMW of North America for use with hands-free
digital phone application in BMW Z8 sports car in 20002,
and selected by Delphi automotive systems for inclusion
in demonstration vehicle at the international motor Show
Passenger Cars in 2001°. A Singapore based company
BITwave presented their array solutions for Motorcycle
Helmet and handsfree array car kit for effective suppressing
environmental noise and provides crystal clear speech for
automobile speech communication®.

For traditional array processing methods, the procedure
used to separate the desired speech and sources of interfer-
ence is also critical. Several source localization methods
have been proposed in the literature (Brandstein and Ward,
2001) and report good performance using experimental
data. Source localization methods are more effective when
using larger microphone arrays in situations such as con-
ference rooms or large auditoriums. Their ability to per-
form well in changing noisy conditions such as the car
has not been documented to the same degree, but it is
clearly expected to be poor compared to applications such
as conference rooms. In our previous study (Zhang and
Hansen, 2003a,b), we proposed three practical constraints
which can be used in separating the desired speech and
sources of interference with high accuracy, and will con-
tinue to use them for the present study.

Since in-vehicle speech systems could focus on hands-free
wireless cell phone communications, as well as automatic
speech recognition, our performance criteria for algorithm
evaluation are segmental speech-to-noise ratio (SEGSNR)
and word error rate (WER) using a speech recognition plat-
form. This paper is organized as follows. In Section 2, we

2 http://www.andreaelectronics.com/PressReleases/2000/
2000_12 11.htm.

* http://www.andreaelectronics.com/PressReleases/2001/
2001_09_17.htm.

4 http://www.bitwave.com.sg.
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introduce the CU-Move in-vehicle speech database collected
for development of in-vehicle route navigation. Next, we
briefly introduce our previous work the constrained switched
adaptive beamforming (CSA-BF) algorithm and present the
combined fixed/adaptive beamforming (CFA-BF) in Sec-
tion 4. An extensive series of evaluations are then performed
and presented in Section 5. Finally, we draw conclusions and
discuss future work in Section 6.

2. CU-Move: in-vehicle speech corpus for interactive speech
systems

The goal of the University of Colorado CU-Move pro-
ject (Cu-Move, 2004) is to develop algorithms and technol-
ogy for robust access to information via spoken dialog
systems in mobile, hands-free environments. This requires
reliable speech recognition access across changing acoustic
conditions. However, the various noises in the car environ-
ment degrade speech signals and speech recognition system
performance. In order to solve this problem, we formulate
a new microphone array and multi-channel noise suppres-
sion front-end to provide high quality speech for in-vehicle
speech systems. The microphone array that we constructed
for the CU-Move project is a linear five-channel array, with
microphone spacing between consecutive microphones of
4.25 cm to avoid spatial aliasing, given a frequency band-
width of 4 kHz. Since the resolution on the beamforming
delays is one sample period, which determines the resolu-
tion of the angle of the main beam, we employ a
44.1 kHz sample rate to obtain the highest resolution pos-
sible for our system.

The CU-Move corpus includes five parts:

1. NAVIGATION Direction Phrases section: a collection
of phrases which are determined to be useful for In-
vehicle navigation interaction [prompts fixed for all
speakers];

2. DIGITS prompts section: strings of digits for the
speaker to say [prompts randomized];

3. STREETS/Address/Route locations section: street
names or locations within the city; some street names
will be spelled, some just spoken. [prompts randomized];

4. SENTENCES - General Phonetically Balanced Sen-
tences section: collection of phonetically balanced sen-
tences for the speaker to produce [prompts randomized];

5. DIALOG Wizard - of - Oz Collection: Wizard of Oz
interactive navigation conversation.

The driver performs a fixed route similar in structure to
what was done for Phase I data collection (CU-Move, 2004;
Hansen et al., 2001) that includes a combination of driving
conditions (city, highway, traffic noise, etc.) for each
speaker. A total of 500 speakers, balanced across gender
and age, produced over 600 GB of data during a six month
collection effort across the United States. The database and
noise conditions are discussed in detail in (Hansen et al.,
2001, 2000; Yapanel et al., 2002). We note that the noise

conditions are changing with time and are quite different
in terms of SNR, stationarity, and spectral structure. In
this study, we chose 10 speakers from approximately 100
speakers in Minn., MN (i.e., Release 1.1A) and use the dig-
its portion that includes speech under a range of varying
complex car noise environments and contains approxi-
mately 40 words (i.e., Release 1.1a).

3. Prior beamforming algorithms
3.1. Delay and sum beamforming principle

Traditional multi-microphone array processing has
focused on beamforming where a high quality speech signal
is acquired by forming a directive pattern sensitive to the
propagating direction. This section briefly considers the
principle of delay-and-sum beamforming.

One of the simplest beamforming solutions is the
weighted delay-and-sum beamformer (DASB) (Brandstein
and Ward, 2001; Pillai, 1989; Johnson et al., 1993). The
beamformer output y(n) is formed by averaging weighted
and delayed versions of the microphone signals as follows:

o) = S wn = ). )

Here, x;(n) represents a noisy speech sample from micro-
phone “i” at time location ¢ = nT, where T is the sample
period. The weight and relative delay for the ith micro-
phone are given as w; and ;. In particular, the delays t;
are selected so as to center the beamformer’s passband
along some particular angle of orientation. Essentially,
we can formulate a (0, r) space that reflects possible angles
and distances for the speaker within the car environment as
shown in Fig. 1. Plane sound waves approaching from the
perpendicular direction will be added together in phase
while those approaching from other directions will be
added with different phases and will tend to be attenuated.
Fig. 2 shows the delay-and-sum beamformer consisting
of a summed set of outputs from a number of microphones
(i.e., N = 5) which have been delayed to “steer” the beam.
Here, the spacing between each microphone is the same dis-
tance “d”, therefore the delay terms are 7; = (i — 1) * 7.
In general, we assume the speech to be a plane wave arriv-
ing from direction 0 to the axis of the microphone array which
is composed of N microphones set up linearly and each sepa-
rated by a distance of d. Thus, the delay is found as
T = foam * (429), where ¢ is the sound propagation speed
and f,, is the sample frequency. Clearly, by selecting the
appropriate delays between each microphone, we obtain sig-
nals that are summed in phase for direction angle 6, with
destructive interference for signals arriving from other angles.

3.2. Constrained switched adaptive beamforming

Fig. 3 illustrates a block diagram of the CSA-BF algo-
rithm. The CSA-BF consists of a speech/noise constraint



138 J.H.L. Hansen, X. Zhang/ Speech Communication 52 (2010) 134149

-

6. is the angle between

r;and X-axis. Obviously,

6, =0

J

BGl

10 ft
Left !x Right
Side | Side
| Array Axis
H T
[ 50 d 0]

N R
AIINENSSSuR
ZNPNEANSuEE

M / ==\ \‘\ r7%-
2112 T2 T2
4 A Y

'

\

A 4

Fig. 1. Possible angles versus distances for speaker within the car environment.
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Fig. 2. Block diagram of a 5-element delay-and-sum beamforming.

section (CS), a speech adaptive beamformer (SA-BF), and
a noise adaptive beamformer (NA-BF). The CS is designed
to identify potential speech and noise locations. If a speech
source is detected, the switch will activate SA-BF to adjust
the beam pattern and enhance the desired speech. At the
same time, the NA-BF is disabled to avoid speech leakage.

If however, a noise source is detected, the switch will acti-
vate NA-BF to adjust the beam pattern for noise and
switch off SA-BF processing to avoid the speech beam pat-
tern from being altered by the noise. A set of adaptive
filters are used to perform the beam steering. Also, a
normalized LMS algorithm is used to update the filter



J.H.L. Hansen, X. Zhang/ Speech Communication 52 (2010) 134-149 139

v
< = Speech
off _ Adaptive
L Beamforming
7™
N AD
rd conversion| [\~ A&
. Qutput
& Constraint : -
¥ & | - Ar;gstife
I
= Beamforming

Fig. 3. Block diagram of the constrained switched adaptive beamforming (CSA-BF).

coefficients. The combination of SA-BF and NA-BF pro-
cessing results in a framework that achieves noise cancel-
ation for interference in both time and spatial orientation.

3.3. Motivations for DASB and CSA-BF

The advantage for selecting DASB for in-vehicle speech
systems is that it is simple and robust, especially when the
goal is to formulate effective speech input capture for real-
time implementation. An alternative to employing a fixed
delay based DASB is to dynamically adapt the delay values
to steer the beam in the appropriate direction. Compared
with adaptive beamforming which requires a number of
adaptive filters, the computation complexity of DASB is
quite low. If the direction of the desired source is known,
then parameter adjustment is not needed. These advantages
suggest an attractive solution (CU-Move, 2004; Hansen
et al., 2001, 2000), since in car environments the driver’s
head position is restricted based on the seat position. With
the microphone array positioned appropriately in the car, it
is possible to maintain the speaker position (i.e., the head of
the driver) at a consistent direction under most situations.

The most novel advantage of CSA-BF method is that
source movement can be tracked and directional sources
can be suppressed with reduced target signal distortion.
However, the adaptive filters used in CSA-BF increase
the computation complexity greatly, which limits the
implementation of CSA-BF algorithm in real-time.
Another disadvantage of CSA-BF is the sensitivity of
parameter setting for the adaptive filters. From the experi-
ment results in (Nordholm et al., 1999), we know that if the
optimal parameter settings for CSA-BF are altered slightly,
the WER will degrade slightly because of speech leakage.

4. Source location analysis in real car environments
4.1. Source location techniques

In this section, the techniques employed for locating
speaker position are briefly introduced. In the implementa-
tion used here, the Teager Energy Operator (TEO) technique
is first applied to decide the speech period for the selected
speakers and find speech candidates based on maximum

averaged energy. Since speech arriving from the driver’s
direction will have on average the highest intensity of all
sources present in the vehicle, the proposed method here
assumes the peak to be the arrival direction for the speaker.
In order to more accurately track the energy peak in the arri-
val direction, the average signal TEO (Kaiser, 1993) energy
is calculated on a frame by frame. If this energy value is
greater than a given threshold, the current signal frame is
marked as a speech candidate. Next, the adaptive LMS filter
technique is applied on the speech candidate according to the
geometric structure of the microphone array to locate the
source (i.e., the position of the head of each speaker).

Next, the two techniques for source location will be dis-
cussed in detail.

4.1.1. Technique 1 (Teager Energy Operator (TEO))

It is known that when the microphone array is used in
the car, it is generally positioned on the windshield near
the sun visor in front of the driver who is assumed to be
the speaker. Therefore, the driver to microphone array dis-
tance will be shorter than for other passengers in the vehi-
cle. Therefore, speech from the driver’s direction will have
on average the highest intensity of all sources present in the
car. Thus, the first proposed technique is based on energy
averages as follows:

1. if Egignar > Especc» then the current signal will be a speech
candidate;

2. 1f Egignar < Enoise, then the current signal will be a noise
candidate.

Here, E,,., denotes the present signal energy, Euec
denotes speech energy threshold, and E,,, denotes the
noise energy threshold. To measure the speech energy,
the nonlinear energy operator developed by Teager, and
described by Kaiser (1993) and Zhou et al. (2001) are
emploed as follows:

Ylx(n)] = x*(n) —x(n + Dx(n — 1). 2)

Here, /[-] is referred to as the TEO, and x(n) is the sampled
speech signal. The TEO was used as an energy measure-
ment method over a traditional window based energy
scheme since the TEO method is capable of estimating
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the instantaneous energy over a small sample window,
while traditional energy measurement is generally obtained
from an average mean square energy estimate which repre-
sents a smoothed response. In order to overcome instances
of impulsive high-energy interference in the proposed
implementation, an analysis window consisting of 256 sam-
ples is used instead of the 3 sample window needed to com-
pute the average Teager energy. Assume the analysis
window size is N, then the average Teager energy of this
window is given as follows:

— 1 &,
Eogna = 5 > 1) = x(n + Dx(n — 1)) (3)

i=1

With this representation, the following terms are used for
developing frame selection criteria. First, Eyg,, is defined
as the present energy estimate; Espeech is the present speech
energy threshold; E,;. is the present noise energy thred-
hold. Also, the terms E7%" , and E?', ) represent the previ-
ous and updated speech energy thresholds, and E”" ) and

noise

E°! ) represent the previous and updated noise energy

noise

thresholds. Therefore, the first criterion becomes,

(1) if Egiguar > Especen, then the current signal analysis win-
dow will be a speech candidate;

(2) if Eyignar < Enoise» then the current signal analysis win-
dow will be a noise candidate.

In order to track the changing environmental noise and
speech conditions within the vehicle, the algorithm also
updates the speech and noise thresholds according to the
following rules:

(1) when the current analysis window is a speech

candidate:
EZ;:;‘C/I =aX (F_?;Zech) + (1 - OC) X Esignala (4)
FSPEECh = p speech X E:‘;::gch' (5)

(2) when the current analysis window signal is a noise

candidate:
Ente = B x (Epni,) + (1= B) X Egignar, (6)
Eﬂvi&f = Phoise X F%xw (7)

where 0 <o, <1, pg., and p,,, are constants
which control the levels of speech and noise thresh-
old respectively. Fig. 4 shows the averaged Teager
energy and the corresponding thresholds for a por-
tion of noisy speech from a speaker in the CU-Move
database. It was previously shown in Zhang and
Hansen (2003a,b) that for most cases, this technique
is able to maintain high accuracy in separating
speech and noise. In the scenario for speech in
Fig. 4, the driver spoke during fixed periods, and
background noise was present throughout most of
the recording. In the next section, a method is intro-
duced on how to find the optimal weights associated
with a source position using an LMS adaptive filter
technique.

4.1.2. Technique 2 (adaptive LMS filter)

A number of source localization methods have been pro-
posed in the past in array processing (Yamada et al., 2002;
Omologo and Svaizer, 1994, 1996; Giuliani et al., 1996;
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Fig. 4. Averaged TEO Energy profile and corresponding speech and noise thresholds: (a) noisy speech waveform from car environment; (b) TEO profile

and resulting speech and noise thresholds.
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Svaizer et al., 1997; Capon, 1969; Lang and McClellan,
1980; Knapp and Carter, 1976; Senadji and Grenier,
1993; Reed et al., 1981). Among these methods, the adap-
tive LMS filter (Reed et al., 1981) method is selected which
is suggested to be the most suitable for a confined car envi-
ronment (It is noted that alternative source localization
methods could also be explored in future studies, but the
adaptive LMS filter produced reliable performance for pur-
poses needed here to track the speaker head position in the
car environment). It is known that the peak of the weight
coefficients in the LMS algorithm corresponds to the best
delay between the reference signal s(¢) and desired signal
sq(2). It is noted that in discrete time, ¢ = nT, will be
denoted with s(n) and s4(n). Further details on traditional
LMS adaptive filtering can be found in Reed et al. (1981).

The algorithm adapts the FIR filter to insert a delay
equal and opposite to that existing between the two signals.
In an ideal situation, the filter weight corresponding to the
true delay would be unity and all other weights would be
zero (Knapp and Carter, 1976; Reed et al., 1981; Widrow,
1985). In the present case, which is not an ideal situation,
micl is selected in Fig. 5 (or Fig. 10) as the desired micro-
phone, and mic2 in Fig. 5 (or mic5 in Fig. 10) as the refer-
ence microphone. Next, a delay is inserted that corresponds
to the peak of the filter weight. According to the geometric
structure of the microphone array and the arriving incident
sound wave, the proposed method is able to locate the
source from this delay. Fig. 5 shows this relationship. In
order to simulate this, the desired signal is delayed by
L/2, for which the corresponding delay will be a positive
or negative number. A positive number means that the

Left
Side
Array
Axis
Right

Side 9

speech is coming from the right side of the array axis,
and a negative value means that the speech is coming from
the left side of the array axis.

In the experiments performed here, a sample rate of
44.1 kHz was used for each microphone signal, with an
FIR filter length of 65, and therefore the center point of
the filter coefficients will be located at the 33rd tap. If the
angle between the speech direction and the axis of the
two microphones is «, then the difference between the posi-
tion of the maximum value and the center point in the coef-
ficients is given roughly as x = round(n * (o * 33)/90).
Here, 1 is comprised of several factors, including the dis-
tance between the speaker and the microphone array and
the distance between the microphones. However, after con-
structing the microphone array system which is fixed, the
impact of these factors does not change in the above rela-
tionship. Therefore, we can set aside n and employ the fol-
lowing equation:

o =+30° & x = +11. (8)

In the experiments in this study, x is taken as the head po-
sition number associated with the source direction.

4.2. Source location analysis

In order to analyze the movement of the driver’s head in
the car during voice interaction, a subset of 10 speakers
was selected from the CU-Move database (managed by
CRSS-UTD (CU-Move, 2004; Hansen et al., 2001)) repre-
senting a balance across gender and age. Next, the TEO
energy operator technique was employed to determine the

LMS Filter Coefficent Values

0 185 ) 295 B |
n-th Tap of LMS filter

Fig. 5. Relationship between speaker position and weight of LMS filter (plots show filter response of 65 taps from 1 to 65).
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speech periods for each of the 10 speakers, followed by the
application of the adaptive LMS filter technique to locate
the position of the head of each speaker(source). Table 1
summarizes the entire recording time for each speaker
and the distribution percentage (%) of time each speaker’s
head stays in a certain rotational position.

Fig. 6 shows the position number in Table 1 correspond-
ing to the source rotational angle to the axis of the micro-
phone array during the recording. From this table, it is seen
that each driver will change their head position often dur-
ing their up to 9 minutes of voice recording. The reason
there some driver cases with a percentage of unknown posi-
tions is that the source location technique employed cannot
at times make a reliable decision as to the current source
location. This may happen when the noise level is very
high, the noise changes too fast, and/or the step-size of
the filter is too large or too small. This is actually a com-
mon situation for in-vehicle systems because of the com-

Table 1

plex noise situations as well as the limitations of the
adaptive LMS filter technique. This also is a motivation
for the proposed CFA-BF algorithm.

Fig. 7 shows detailed head movements for some of the
speakers. From the figure, it can be seen that speaker #1
spends 39% of his time in head position #0 and 36% in
position #1. Speaker #4 spends 66% of his time in head
position #7 and 34% time in other head positions. Because
of limitations in the source tracking algorithms, there are
some unknown positions which imply that it is not possible
to determine the actual position of the driver’s head.

Table 1 shows the entire recording time for each speaker
and the percentage (%) of time each speaker’s head stays in
a certain position. Fig. 6 shows the position number in
Table 1 corresponding to the source angle to the axis of
the microphone array during the recording. The table
shows that the driver rearranges their head position often
during even a short 9 minute period of voice recording.

Percentage of time for each speaker source location over CU-Move in-vehicle recording (i.e., Speaker 1 spends 39% of his total 5.6 minutes of speech in

digits portion with head position 0 from Fig. 4).

Position Number Speaker number

1 2 3 4 5 6 7 8 9 10
Amount of recording time (in minutes)
5.6 8.2 7.4 8.1 8.2 7.4 6.5 6.1 6.6 6.4
0 39% 57 1 8 14 2
1 36 50 82 80
2 4 9 5 17 2 8 55
3 0.1 14 18 67 3 38
4 0.5 4 0.4
5 1.6 0.2 0.4 0.5
6 0.3 1 0.3 0.1
7 66 0.2
8 10 0.4
-1 2 91 1
-2 8
-8 1
unknown 19 32 0 22 80 3 2 32 6 7

position number | corresponding &

0 0

1 2.8
2 56
3 8.4
4 11.2
5 14°

6 16.8°
7 19.6°
8 22 .4
-1 2.8
-2 5.

unknown unknown

Fig. 6. Relationship between position number and angle of source.
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Unknown: [ |

T
0 — 8min
Time

Head Position #

Speaker Head Position
Can Vary While Driving

Speaker 1 Spends:
39% Time in Head Position #0,
36% Time in Head Position #1

Speaker 4 Spends:
66% Time in Head Position #7
34% Time in other head positions

Fig. 7. Time Analysis for speaker head movements during recording. Head positions are estimated from angle of arrival from speech (see table summary

in Fig. 6). Individual plots are for Speakers 1-5 from Table 1.

Fortunately, for each speaker it is always possible to find a
dominant position.

5. CFA-BF: combined fixed/adaptive beamforming

In this proposed method, it is assumed that if the source
position (driver’s head) does not change, then the transfer
function between the speaker and microphone array in a
quiet setting will not change if the car is moving on the
road. Therefore, it is proposed to find the transfer function
between the speaker and microphone array for different
possible source positions when the car is in a quiet environ-
ment (for example, a parking plot), and pre-store these for
later use when the car is driven on the road. Fig. 8 describes
the flowchart of the proposed CFA-BF algorithm.

5.1. Source location calibration — adaptive beamforming

As is well known, an adaptive algorithm such as normal-
ized Least Mean Square algorithm (NLMS) can more eas-
ily reach its convergence behavior in quiet or stationary
noise environments, than under non-stationary noise envi-
ronments (for example, changing car noise environments).
Also, from source location analysis of the CU-Move cor-
pus in Section 3, it is known that although different drivers
will move their heads in different positions, almost all will
maintain one position more than 50% of the time while
driving. Thus, it is possible to study candidate positions
which the driver’s head can reach inside a car, and then
apply the previous developed CSA-BF (Zhang and Han-
sen, 2003a) to pre-record the weight coefficients of the
adaptive filters for speech adaptive beamforming (SA-BF)

0 : Pre-Processing: :
% Performed Under Quiet Conditions
o, !
: (Source Location Calibration) '

: based on !

+ \__Adaptive seamforming y

' (~ Store Optimal Weights 0

! for each .

. \Calibrated Source Location/ |

o~ Performed Under '
'(-'OJ Noisy Car Environments '
< ~N
T Locate the Position of the |
Current Speech Source !

y E

based on

\_Current Source Position /

using Fixed Beamforming
with Pre-stored Weights /

("Recall Pre-Stored Weights\

Target Signal Enhancement)

Fig. 8. Flow diagram of the proposed CFA-BF: combined fixed/adaptive
beamforming algorithm (shows Phase 1 and Phase 2 processing).
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from all the possible source positions in a quiet environ-
ment. Fig. 9 is the working scheme of the source calibration
procedure. Here, only 3 positions are shown to illustrate
the concept, where a peak indicates the estimated source
direction. A normalized LMS algorithm is used to update
the filter coefficients, and the update equations are given
as follows:

where x;(n) = (x;(n),x;(n—1),...,x;(n =N+ 1)) are the
current and the past N-1 microphone input signals, ej;(n)
is the noise output signal of SA-BF, and w); the weights
of the adaptive filter. It is also noted that channel 1
(i=1) is used as the primary microphone, and channels
i=2,...,5 as multiple reference channels. The coefficients
stored in the bank of weights implement the transfer func-
tions between the microphone array and the speaker in dif-

ei(n)=x;(n—LJ2) — erl(n)xz(n) 9) ferent positions respectively. These weights also reflect the
2 relative delays between microphones for the array. Fig. 10
wi(n+ 1) = wy(n) + Weu(n)xf(n). (10)  shows how the SA-BF operates.
| bank of weights
o in position 1
position 1
Speech
position 0 Adaptive | o bank of weights
Beamformer [~ in position 0
(SA-BF)
position -1
. bank of weights
o in position -1
Fig. 9. Working Scheme for the proposed CFA-BF.
s,(n)
X,(n) O—»| L2
'.
. +
.;’.. o« s,(n) e,(n)
. X, (n) O—— }”,12 - +
2 \
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X 3 e,(n)
,(n) O—— )”13 >
L
. . \
. .,~ s4(n) + e (n)
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Fig. 10. Structure of speech adaptive beamformer (SA-BF).
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5.2. Target signal enhancement — fixed beamforming

Fig. 11 shows the working scheme of the target speech
enhancement. At this point, the method has the transfer
functions from the speaker in different positions, (i.e.,
weight coefficients ([W{,, W%, Wi, w']). With the help of
a source localization technique, it is possible to find the
source position first and then extract the corresponding
weight coefficient bank from the pre-recorded weights
and use them in this section. With this procedure, the
enhanced speech will be given as follows:

s(n) = Z wii(n)xi(n). (11)

where [W,, Wi,, WY, W] are functions of the angle be-
tween the source and axis of the microphone array 6, and
W, is a pure delay which is half of the filter length (i.e., L/2).

For the proposed CFA-BF algorithm, careful calibra-
tion of the weight coefficients and source location decision
will have a significant impact on the performance of the

AN
A Xz(n)

Source
Localization

BN %N D w

Dy W

. W13

algorithm. Imprecise inter-channel delay estimation gener-
ated by imperfect steering may result in serious signal dis-
tortion. Fig. 12 shows the effect of calibration procedure
for speech enhancement by CFA-BF. Fig. 12a shows wave-
form of the beamforming output signal using calibrated
weights, and Fig. 12b shows the waveform of beamforming
output signal without calibration procedure. From this fig-
ure, it can be seen that without calibration, the enhanced
signal suffers distortion due to imperfect steering. The pur-
pose of this figure is only to illustrate the level of noise sup-
pression in the waveform. In the next section, objective
measures are employed to more accurately quantify the
degree of noise suppression and speech enhancement.

6. Performance evaluation
6.1. Experiment establishment
In order to evaluate the performance of the CFA-BF

under the non-ideal calibration and source location pro-
cess, a series of experiments are performed as follows:

W »

; ]

Output s(n)
SUM ——  »

w [

14 d

15

Fig. 11. Structure of fixed beamforming for target signal enhancement.

Do b — W

Fig. 12. Waveforms of the beamforming outputs with/without calibration procedure: (a) fixed beamforming output using calibrated weights; (b) adaptive

beamforming output (i.e. without calibration procedure).
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Fig. 13. SEGSNR performance for Ref. 3 microphone (single center microphone from the array) and 4 beamforming scenarios from Experiment #1.

(i) Use the CSA-BF to process each of the ten speakers
respectively; the constraint used here is the TEO cri-
terion described in (Kaiser, 1993) only;

(i1) Use the LMS adaptive filter described in (Reed et al.,
1981) to identify the dominant source location (i.e.,
driver’s head position);

(iii) Store the weight coefficient set of the speech beam-
former (SA-BF) which has the dominant source posi-
tion, and choose the best from this set as the
calibrated weight set for SA-BF for this speaker.

Use the calibrated weight set to re-process the data for
this speaker (i.e., delay-and-sum). If CFA-BF can produce
better results than DASB and SA-BF under this non-ideal
established experiment, it will operate much better in the
ideal experimental(calibration) conditions. It has previously
been shown in (Zhang and Hansen, 2003a) that with noise
cancellation processing activated, both SEGSNR and
WER results can be improved compared with SA-BF. In
this present study, the cancellation processor is disabled,
since if the speech quality (i.e., one of the outputs of SA-
BF, which is used as the reference for noise cancellation
processor) is improved, the output of GSC will also be
improved.

6.2. Evaluation methods

For evaluation, two different performance measures are
considered based on experiments with actual in-vehicle
speech data from the CU-Move corpus. Recognize that
since this data is not laboratory controlled speech data
(i.e., artificially added noise to clean speech recordings), a
variety of time varying noise conditions can and do exist.
One measure of performance is the Segmental Signal-to-
Noise Ratio (SEGSNR)® which represents a noise reduc-
tion criterion for voice communications. The second
performance measure is word error rate (WER) reduction,

5 http://www.nist.gov.

which reflects benefits for speech recognition applications.
The traditional HMM based speech recognition engine
(Sonic Recognizer Pellom, 2001) is used to investigate
speech recognition performance. For the processed data,
the size of the set is not large enough for recognizer evalu-
ation, therefore, a standard cross-validation method was
adopted (Jelinek and Mercer, 1980; Rabiner and Juang,
1993).

6.3. Experiment results

In order to train the sets of weights, ten speakers were
selected from the CU-Move corpus (Cu-Move, 2004) that
are balanced across gender and age. Here, the corpus col-
lection consisted of five phases, and for each speaker phase
I (i.e., Navigation Direction Phrases section) were used to
perform weight calibration. In the CU-Move corpus, phase
I speech was collected in the same acoustic environments as
the other four parts, but the noise level is much lower than
that of others. In most speaker cases, this phase of the
speech was collected with the car parked in a parking lot
or driven at slow speeds with the windows closed. For
the other CU-Move phases, such as part II (i.e., DIGITS
prompts section), the speech was collected under a range
of varying complex car noise environments (variable
speeds, windows open at different positions with wind noise
inside the car). In the testing set, the same ten speakers are
chosen, but the phase II speech portion is employed to
evaluate speech recognition (WER) and noise suppres-
sion/speech enhancement (SEGSNR) performance.

Fig. 13 shows the SEGSNR results for reference single
channel3, DASB, SA-BF, and proposed CFA-BF. Table
2 shows average SEGSNR improvement, average WER
(word error rate), CORR (Word Correct Rate), SUB
(Word Substitution Rate), DEL (Word Deletion Rate)
and INS (Word Insertion Rate) for the 10 speakers.
Fig. 14 illustrates average SEGSNR improvement and
WER speech recognition performance results respectively.
The average SEGSNR results are indicated by the bars
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Table 2
Average SEGSNR, WER, CORR, SUB, DEL and INS for Ref. 3
microphone and beamforming scenarios.

Method Measure
chan3 DASB SA-BF CFA-BF

Ave. SEGSNR (dB) 10.77 10.48 10.70 11.34
WER 10.71 8.28 7.98 7.51
SUB 4.76 3.9 3.76 3.51
DEL 4.75 2.35 3.88 2.19
INS 3 3.11 3.16 2.96
CORR 92.28 94.83 95.19 95.46
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Fig. 14. SEGSNR and WER results for Ref. 3 microphone and
beamforming scenarios in experiment #1 using 10 speakers.

using the left-side vertical scale (dB), and the WER
improvement is the solid line using the right-side scale (%).

From these results, the following observations can be
made:

(i) Employing the proposed combined fixed/adaptive
beamforming method, increases SEGSNR slightly,
but some variability exists across speakers;

(i1) However, DASB, SA-BF and the proposed method
can provide WER improvement by 22.8%, 25.6%
and 29.9% respectively over a single microphone
(i.e., Channel 3 (Chan 3), the center microphone from
the array).

6.4. Analysis

Thus far, the following three algorithms have been
investigated to determine the performance of conventional
delay-and-sum beamforming (DASB), the constrained
switched adaptive beamforming (CSA-BF), and the new
combined fixed/adaptive beamforming algorithm (CFA-
BF) using a speech corpus collected in real car noise envi-
ronments. The experimental evidence has demonstrated
that a sufficiently high WER improvement can be achieved
using the proposed CFA-BF front-end processor.
Although CFA-BF processing can improve overall SEG-

SNR and WER, this does not guarantee it will show
improvement across all possible noise conditions in the
car (i.e., the portion of the in-vehicle speech data tested
was from windows opened at different levels and different
vehicle speeds). A separate in depth analysis was performed
on specific noise conditions in the car environment, and the
following observations summarize these findings:

(1) Bump noise (noise from potholes, concrete joints in
the road surface, expansion joint across bridge, etc):
This type of noise typically possesses high energy and
high frequency content, with very short duration.
Adaptive filtering does not perform well on this noise.
There are two main reasons for this:

e The impulsive energy is very high compared with
other signals, which makes it difficult to choose a
suitable step-size for the adaptive filters.

e The duration of an impulsive noise signal is very
short, and in most cases there is not enough time
for the adaptive filter to adjust its coefficients to
the optimal noise reduction setting. The proposed
CFA-BF is robust to this situation as since the
procedure allows for application of the pre-stored
weights for the adaptive filters while driving, the
bump noises will not affect the filter adaptation

anymore.
(2) 20-45 and 65 mph windows closed (road surface, and

engine noise in city and highway traffic):
In practice, the most suitable environment for adap-
tive array processing algorithms is one with station-
ary noise (e.g., such as an office environment
(Zhang et al., 2000)). For an in-vehicle situation
where the window is closed traveling 2045 mph on
a smooth road surface, the resulting noise inside the
car is relatively stationary. Exterior noise such as
other cars passing or vehicle vibration reflects only
a small fraction of the noise seen from windows trav-
eling close to city/highway speeds. Adaptive algo-
rithm processing, such as CSA-BF, performs
effectively with noticeable SEGSNR improvement.
However, when the driving speed increases, the level
of SEGSNR improvement will gradually decrease.
This occurs because as the speed increases, the effect
of vibration noise does not originate from a particu-
lar direction, and will vary depending on the exact
road surface and weather conditions. Under this situ-
ation, the CFA-BF will take all the background noise
and interference as noise, and simply place a null to
suppress them as long as the source location does
not change.

(3) 20-45 mph windows rolled down 2 in. and 65 mph
windows rolled down 2 in.:
With windows open traveling on a road surface, the
wind and road noise from outside the car dominates
the acoustics. If this is city driving speed (20-45
mph), CFA-BF processing can provide a measurable
level of improvement in SEGSNR. However, if the
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driving speed increases to 65 mph for highway condi-
tions, the SEGSNR improvement is not as signifi-
cant. Under this situation, it is also more difficult to
reliably decide the presence of speech versus noise
across time.

7. Conclusions and future work

In this study, a novel combined fixed/adaptive beam-
forming method (CFA-BF) has been proposed for robust
speech recognition in real car environments based on
experiments using acoustic data recorded in moving car
environments. The CFA-BF was shown to improve SEG-
SNR slightly, and improve speech recognition performance
by decreasing WER by up to 29.3% using CU-Move in-
vehicle speech data. It has also been shown that this
method outperforms a single channel microphone (channel
3), traditional delay-and-sum beamforming (DASB) and
our previous speech adaptive beamformer (SA-BF). How-
ever, there remain some issues to address for future work:

(i) Perform source localization calibration in a quiet
environment, such as parking plot, and use a larger
portion of the CU-Move Corpus to evaluate the per-
formance of CFA-BF;

(ii) Improve the accuracy of source localization by apply-
ing alternative source localization techniques, such as
CSP (cross-power spectrum technique), and decrease
the percentage of unknown positions;

(iii) Activate the GSC noise canceler processor after sig-
nal enhancement, and improve the SEGSNR perfor-
mance without affecting WER improvement.
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