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Abstract—This paper addresses the problem of automatic beam-
forming for blind extraction of speech in a music environment,
using multiple microphones. A new criterion is proposed based
on the variance of the spectral flux (VSF), which is shown to be
a compound measure of the Kurtosis and across-time correlation
for the time—frequency domain signals. Spectral flux (SF) had
been adopted as a feature that distinguishes speech from other
acoustic noises and the VSF of speech tends to be larger than that
of other acoustic sounds. Henceforth, maximization of VSF can be
employed as one potential criterion to identify the speech direc-
tion-of-arrival (DOA), in order to extract speech from the noisy
observations. We construct a VSF-inspired cost function and de-
velop a complex-value fixed-point algorithm for the optimization.
Then, the stability of the proposed algorithm is analyzed based on
the second-order Taylor series expansion. Rather than the DOA
identification ambiguity caused by subspace decomposition-based
methods or maximization of non-Gaussianity-based approaches,
both real and simulated evaluations indicate that the VSF-inspired
criterion can effectively extract speech from a music diffuse noise
field or a musical interference noise field. A key feature of the
proposed approach is that it can operate blindly, i.e., it does not
require a priori knowledge about the array geometry, the noise
covariance matrix, or the geometrical knowledge of the location of
desired speech. Therefore, this study offers a potential perspective
for blindly extracting speech from a music environment.

Index Terms—Array signal processing, blind beamforming,
blind source extraction (BSE), speech enhancement.

I. INTRODUCTION

ICROPHONE array beamforming has been widely
M and extensively studied for teleconferencing, speech
enhancement, speech recognition, and hearing aids [1]. Aiming
at removing unwanted interference and noise from a desired
speech, beamforming techniques exploit spatial and spectral
diversity to discriminate between desired and undesired signal
components. However, beamforming has not had the success
we hope for; acoustic beamforming typically assumes that the
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array steering vector of the desired speech as well as the inter-
ference-plus-noise covariance matrix are known beforehand,
which is generally impractical for real-world applications.

Due to the uncertainty of a priori knowledge of the array
steering vector, a great diversity in blind array processing
algorithms that use an a posteriori style data-driven approaches
can be found in literature, and are shown to be more robust in
practical environments. This kind of approach is called blind
beamforming, which automatically adjusts the beampattern to
achieve the best reception of the signal of interest (SOI) without
explicit knowledge of the array shape, the direction of arrival
(DOA) of SOI, or interference-plus-noise covariance matrix.
Generally, we can divide these blind beamforming approaches
into two categories: second-order statistics (SOS)-based and
higher order statistics (HOS)-based approaches.

The SOS-based blind beamformer explores the eigenspace
between the interference-plus-noise covariance matrix and the
array observation data covariance matrix (or the desired speech
covariance matrix) [2]-[4]. Under the assumption that the de-
sired speech has a dominant power over the interference or noise
in all the frequencies, the principle eigenvector obtained through
a generalized eigenvalue decomposition (GSVD) of the inter-
ference-plus-noise covariance matrix and the array observation
data covariance matrix is shown to be equivalent to the weights
of the maximal signal-to-noise power ratio (Max-SNR) beam-
former, and only differs by a scalar factor from the minimal
variance distortionless response (MVDR) beamformer [4]. Al-
though this approach is simple, it requires perfect knowledge
of the interference-plus-noise covariance matrix, which is gen-
erally unavailable in practice. Moreover, considering the spar-
sity of speech in the time—frequency domain, the assumption of
dominant power of the desired speech over noise is not always
guaranteed.

Another set of blind acoustic beamforming solutions
considers the super-Gaussianity of the speech probability dis-
tribution in the time—frequency domain, and therefore the HOS
are used. For example, the Kurtosis approaches used in [5] and
[6] automatically identify the array steering vector by finding
the DOA that has the local maximal Kurtosis. While these
approaches can successfully identify the DOA of the desired
speech, they require that all the noises to be Gaussian and the
array structure must be known. In a non-Gaussian noise field,
multiple local maxima of Kurtosis would cause ambiguous
identification of the desired speech DOA.

Blind source separation (BSS), blind source extraction
(BSE), or independent component analysis (ICA) are other
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approaches that stand out in order to separate unknown sources
from the observed mixtures based solely on their HOS, without
specifically knowing the array structure and DOAs of each
source signals. However, the main limitation of blind source
separation is the existence of ambiguities in the indepen-
dence criterion, namely the scaling and permutation ambiguity
problem. To overcome this problem, a set of geometrically
constrained BSS (GSS) algorithms have been proposed [7]
and further explored and incorporated in subsequent studies
[8]-[11]. By assuming that the desired speech comes from a cer-
tain range of DOAs, the desired speech can be extracted through
selecting or constraining the ICA separation weights pointing
to a preselected DOA range without causing permutation ambi-
guity, and as an additional benefit, a faster convergence rate can
be achieved due to the constrained searching space. However,
this semi-blind solution still suffers from the requirement of a
priori DOA knowledge of the desired speech.

In this paper, we consider an acoustic blind beamforming
application with only one desired speaker exists but with
unknown directional music interferences simultaneously acti-
vating in an noisy environment. We construct a time—frequency
domain beamformer that can blindly extract the desired speech.
In contrast to conventional approaches, we identify the DOA
of the desired speech via maximal variance of spectral flux
criterion (VSF) in the signal subspace, without assuming any
a priori information. Spectral flux (SF) and the VSF have
been successfully adopted as effective features that distinguish
speech from music [12], [13]. Assuming that only one speech
source is active in a musical interferences or diffuse noisy
environment, we show that thought the maximization of VSF at
the beamformer’s output, speech components can be effectively
extracted.

This paper is organized as follows. In Section II, a micro-
phone array-based signal model is presented in the time—fre-
quency domain and the classical optimal beamforming theory is
briefly reviewed. From a signal subspace perspective, the gen-
eral blind beamforming procedures are described in Section III,
and in Section IV we propose our algorithm followed by its
stability analysis. Section V presents a batch processing imple-
mentation of the proposed algorithm for speech enhancement.
We evaluate and compare our proposed method with other tech-
niques in Section VI. Finally, in Section VII, we draw the con-
clusion and suggest directions for future research.

II. BACKGROUND

A. Microphone Array Based Signal Model

Consider one desired speech impinges on a array of M mi-
crophones. Taking the short-time Fourier transform (STFT) of
the time domain signal, the signal model in each time-frame and
frequency-bin can be written as

z(t, k) = a(t, k)s(t, k) + i(t, k) + n(t, k) (1)

where z € CM*1 is the array observation data vector, s € C
is the desired speech, a € C**! is the unknown (maybe
time-varying) array steering vector, i € C™M*! represents a
collection of interference signals, n € CMX1 is the back-
ground noise vector, and ¢ and & are the time-frame index and

frequency-bin index, respectively. Commonly, we can process
each frequency-bin independently; thus, the notation of the
frequency-bin index k is be omitted for briefness.

Assuming that each vector components of the model in (1)
are mutually uncorrelated, the autocorrelation matrix for the ob-
served data vector can be expressed as

Ra. = E{z(t)z(t)"}
= Rss + Rjitnli+n]
= Rss + Rn + Rnn7
J—1
=olaa” + > o3 fif] + Run. 2)

i=1

where R, R;; and R,,,, are the autocorrelation matrices for the
desired speech, the interferences and background noise, respec-
tively, and o2 is the power of the desired speech. o7 is the jth
interference power (j < J — 1, i.e., the total number of in-
terferences, and J < M) and f;(k) is its corresponding array
steering vector.

B. Optimal Beamforming

For a single frequency-bin, the optimal beamformer is a linear
processor (filter) consisting of a set of complex weights [14].
The output of the beamformer is an estimate of the desired signal
and is given by

y(t) = 8(t) = w'a(t). 3)

The weights are chosen according to some optimization crite-
rion, such as the minimum mean square error (MMSE), the min-
imum variance distortionless response (MVDR), or the max-
imum signal-to-noise ratio (Max-SNR). Generally, the optimal
weights have the same structure [14], as
Wo = R, i@ @)

where (4 is a scale factor decided by the optimization criterion.
In practical arrays, however, the optimum weights are hardly
obtained for two reasons:

* uncertainty of the array steering vector a;

e uncertainty of the interference-plus-noise autocorrelation

matrix R[L+n][7+n]

III. GENERAL BLIND BEAMFORMING PROCEDURE

A. Signal Subspace

Consider the eigenvalue decomposition (EVD) of the auto-
correlation matrix of the array observation data, which can be
expressed as

M
m=1
with eigenvalues ordered as Ay > Ao > --- > Ap; and u,, is

the eigenvector associated with the mth eigenvalue \,,,. We can
then rewrite (5) as

Rup = UAUE + U A, UE (6)
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Fig. 1. Tllustration of vectors in signal subspace.

where the matrix U, = [ug,...,u;] € C™*J contains the
eigenvectors corresponding to the .J (J < M) largest eigen-
values, and As = diag{)\1,...,\;}. The range space of U is
called the signal subspace or the signal-plus-interference sub-
space. Its orthogonal complement is the noise subspace which
is spanned by the columns of U,, = [uj41,...,ur], and A,, =
dZ'(J,g{/\]_|_17 ey )\]\,[}.

B. Blind Identification in Signal Subspace

To extract the desired speech, we need to select a
weight vector w (normalized so that w”w = 1) and gen-
erate the output as

y(t) = wx(t). @)

We would like to select w so that the interferences will be min-
imized and the desired signal component will be maximized. It
is well known that U is spanned by a and f;; optimal w must
lie in the signal subspace, as illustrated in Fig. 1. In some studies
[3],[15], itis assumed that the eigenvector corresponding to the
maximal eigenvalues, namely the principal eigenvector, span the
same space as a of the desired speech. Hence, in matched-filter
design [15], the beamformer is given by

WrnFE = UL (8)

which has a beampattern with a maxima pointing in the direction
of maximum coming power towards the array. Obviously, in the
presence of interference, the direction of the maximum power
does not necessarily equals to direction of the desired speech.
Therefore, we must search for the correct w by more sophis-
ticated approaches. First, let us define the power normalized

signal subspace as U, = [/\Ii/zul, /\2_1/2112, e )\jl/qu].
Note that any vector that lies in U is given by
w = Usr ©)]

where 7 € C7*! and r”r = 1 are unknown “rotation parame-
ters.” The output of the beamformer becomes

y(t) = whx(t) = v z(t) (10)

where z(t) = UH z(t), which transforms the array observation
data vector z(t) into the signal subspace with normalized signal
power, i.e.,

E{z(t)z" ()} = I;. (11)
and

E{ly(t)*} = E{y(t)y* (1)} = 1. (12)

We can search over all possible values of r until some mea-
sure specifically for the desired speech is maximized. Therefore,
we must first define a cost function which measures the desired
speech quality at the output response, as described in the fol-
lowing sections.

C. Maximal Non-Gaussianity Criterion

The principle of using non-Gaussianity to extract the desired
speech is motivated by the central limit theorem, which loosely
states that the sum of independent random variables with fi-
nite-support pdfs tends towards a Gaussian distribution, a clas-
sical basis stated in many ICA studies [16]. In real world ap-
plications, the mixture of various environmental sounds tend
to be Gaussian; but speech has a super-Gaussian distribution.
Therefore, one could choose 7 such that y(t) = % 2(t) has a
non-Gaussian (or super-Gaussian) distribution.

Non-Gaussianity could be measured by HOS, such as the
fourth order cumulant, i.e., the Kurtosis , which is vanished for a
Gaussian distributed source. The Kurtosis of a zero-mean com-
plex random variable y is defined as a real number [5], [17]

K(y) £ B{ly(0)*} - 2E{y()1*}) - [E{* ()} (13)
and can be shown to be zero for any complex Gaussian vari-
able. Notice that in the STFT domain, speech and many acoustic
noises are generally circularly distributed [18], (i.e., indepen-
dent and identically distributed (i.i.d.) of real and imaginary
parts), hence |E{y?(t)}|?> = 0. Furthermore, if we impose the
constraint that E{|y(¢)|*} = 1 as in (12), the Kurtosis can be
calculated by

K(y) = E{ly(t)[*} = 2(E{|ly(t)})? = E{|y(t)|*} =2 (14)
for circular signals, as used in [19].

Therefore, the cost function to solve the optimal weights can
be constructed as

Ina(r) = E{ly0)*} = B{lr"z(t)"} (15)
and r can be solved by
rng = arg max Jng(r). (16)
TrHr=1

While maximization of non-Gaussianity can be applied to ex-
tract speech from the noise, it should be applied with caution.
When the probability distribution of interferences or noise are
not Gaussian, multiple extremum of the cost function in (16)
can be found, resulting in DOA ambiguity. This problem has the
same roots in the well known “permutation ambiguity” problem
found in BSS [20], which aims at separating multiple sources.

IV. MAXIMAL VARIANCE OF SPECTRAL FLUX CRITERION

A. Spectral Flux and Its Variance

Spectral Flux (SF), a feature originally found to be useful
in discriminating music from other acoustic sounds [12], [21],
measures the ordinary Euclidean norm of the delta spectrum
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power (or magnitude) between two adjacent time-frames. For
a practical implementation, the overlap of time-window used in
the STFT transformation introduces a dependence between the
spectra in consecutive frames; therefore, a general SF measure
is considered in this study, as

SE(y) £ lly(®)1* =yt = DI.

where [ is the number of delayed time-frames.

Actually, SF is a measure of spectra changing over time. It has
been observed that the spectra structure of music has a higher
rate of change, and goes through more drastic frame-to-frame
changes than that of speech [21]. However, speech alternates be-
tween transient and non-periodic speech to short-time stationary
and periodic speech due to phoneme transitions (e.g., consonant
to vowel, and other phone class transitions). On the other hand,
music could be periodic or monotonic and have more constant
rates of change versus what is observed in speech. This indi-
cates that the variance of SF (VSF) of speech, as defined (18)
below, should be larger than that of music or most environmental
sounds [13], [22]

VSE() = Byt ~ lu(t - D}

B[P - nPl} a8

a7)

B. Analysis of Variance of Spectral Flux

As stated above, several studies had observed larger VSF in
speech compared to music or other environmental sounds [13],
[22]. We are interested in revealing the reason behind. Direct
analysis of VSF is difficult; but its lower bound, denoted as
VSF-LB, can be obtained by (see Appendix A)

VSF(y) > VSF-LB(y) = 2(E{ly(t)*} - 2(E{ly(®)*})?)
~2B{ly(t) Ply(t - D} (19)

Some observations can be drawn from (19): E{|y(t)|*} —
2(E{|y(t)|?})? is the measure of the Kurtosis, as shown
in (14), and E{|y(t)]?|y(t — 1)|*} measures the correla-
tion of the squared spectra across [ time-frame, denoted as

4000

speech

Correlation

Time—Frames
(b)

Fig. 2. (a) Illustration of relationship among the Kurtosis, correlation and VSF-LB. (b) Correlation drops as the time-frame difference / increases.

C(y,l) = E{ly@®)|?|y(t — 1)|*}. Therefore, VSF-LB is a
compound measure of the non-Gaussianity and the correlation
of the squared spectra. Fig. 2(a) shows a relationship among the
Kurtosis, correlation and resulting VSF-LB, calculated from
a 5-min-long speech and music recordings with normalized
power in each frequency-bin. Generally, speech and music
have a super-Gaussian distribution with large positive Kurtosis.
Speech tends to have a larger Kurtosis than that of the music;
however, this is not guaranteed in every frequency-bin. It is
also interesting to look at the correlation term as shown in
Fig. 2(b). When [ is small, the squared spectra of speech has
a higher across time correlation than that of music. However,
this correlation dramatically drops to 1 as the time-frame
difference [ increases, which means that the squared spectra of
ly(t)|? and |y(t — 1)|?> becomes independent for speech, i.e.,
E{ly@)1Ply(t =D} = E{|ly(®)[*} E{ly(t = )]’} = 1. On the
other hand, although the correlation term of music is smaller
when [ is small, it drops more slowly. This distinct behavior
verifies the observation about VSF as stated before: speech has
larger frame-to-frame variability but music has a more constant
rates of changes.

As the co-effect of the Kurtosis and correlation terms [shown
the bottom of Fig. 2(a)], speech tends to have a larger VSF-LB
than that of music, when the time difference [ is sufficient large.
Therefore, VSF-LB gives a new insight to interpret the observa-
tion that speech has a larger VSF than that of music.

C. Maximal VSF-Based Blind Beamforming Approach

For the task of blindly extraction of speech from a noisy
environment, a cost function is needed to measure a certain
desired property of speech at the output of the beamformer.
Kurtosis is one of such measures that is successfully employed
for a Gaussian noise environment. However, for a music envi-
ronment, we need a more sophisticated measure. Inspired by
the previous section, VSF could be employed as one potential
speech quality measure; specifically, the larger the VSF is
obtained, the more likely speech is extracted instead of music.
Moreover, maximization of the VSF at the beamformer’s output
should lead to correct extraction of speech. The maximiza-
tion of VSF can be achieved by maximizing its lower bound
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VSF-LB. We define a more general cost function based on
VSF-LB, namely GVSF, for the beamformer output y(#) as

Javsr = E{ly()[*} — a(E{ly(®)ly(t — 1)} — 1) (20)

where « is a scale factor that controls the balance between Kur-
tosis and correlation terms, as in (19). Henceforth, the optimal
weights r can be found by
TGVSF = arg max JGVSF- (21)
rHr=1

Notice that, the maximization of GVSF criterion is within the
ICA framework but differs with an extra correlation term, which
is minimized (hereby, GVSF is maximized) upon achieving
independent across time-frames squared spectra. Moreover, for
a source signal with temporally independent squared spectra,
ie, E{ly®)|?|ly(t — D)]*} = E{|y(t)|?}?, the cost function
of (20) equates to E{|y(t)|*)} — aE{|y(t)|*}* — «, which
differs only a constant term from the cost function proposed
in [23], namely KSICA, aiming at solving the divergence
problem of complex FastICA (cFastICA) [19] in the presence
of Gaussian interferences.

To maximize the cost function in (21), we derive fixed-point
optimization algorithms. Notice that the function Jgysp can be
rewritten as

Javse =E{(y(t)y" ()"} —al{y(t)y" (t)y(t-1)y" (t=1) -1}

(22)
that is, Brandwood’s analyticity condition [17], [24] is satisfied.
By evaluating the gradient of function Jgysr, we can directly
compute the derivatives with respect to the complex argument,
rather than calculating individual real-valued gradients, as done
in [19], which thus avoids having to deal with unnecessarily
complicated expressions. For the complex derivative [24] and

noting that y = rH 2z, we have
0 9 0
= *y = y*z. 23
Gl = vy =y"z (23)

The gradient of the function of Jgysp can be calculated as

V¢ Javsr

= Jav

Gy JGVSF
0 0

= —FE{lyt)|*} - C(y,1
O B} — 02O,

=2B{ly(H)*y" (H2(1)}
— aB{Jy(®) Py (¢ - Da(t = 1) + [yt = DY (D=(0)}.
(24

where C(y,l) = E{|ly(t)]*ly(t — 1)|?} as defined before.
The fixed-point update rule can be derived in the context
of constrained optimization [16], [19]. According to the
Karush—Kuhn-Tucker (KKT) conditions [25], the optima of
Javsr under the constraint that 77 = 1 are obtained at points
where

VyJgvsr + Ar = 0. (25)

Taking the inner product of (25) with 7 and using (24) and con-
straint 77 = 1, we have

2JGVSF —2a+ A=0 (26)
which shows that A is real. That is, at the stable point, the
gradient VyJgyse must be equal to r multiplied by some
scalar constant. For such a case, adding the gradient to r does
not change its direction, and therefore achieve convergence, al-
lowing us to optimize the objective using the fixed-point theory.
We obtain the one-unit complex fixed-point algorithm as

V¢Javse —T
T
_— —T. 27
[l
Note that convergence of the fixed-point algorithm implies that
the old and new values of 7 must point in the same direction.

D. Stability Analysis

In this section, stability conditions for the GVSF algo-
rithm are analyzed. In Appendix B, using a second-order
Taylor expansion of the cost function around the sta-
bility point, we show that the local maximum of Jgysp
is achieved for a given source, denoted as s; (j < M),
when the following condition is satisfied:

(S5

P03 2 By ()1) - B l1s; 0PIy - D) > 0. @28)
Some observations can be drawn here. First, let us set
a = 2. From Cauchy-Schwarz inequality and noticing
that E{|s;(t)[*} = E{|s;(t — 1)|*}, we obtain

E{lsj(O)1"} > B{ls;(0)*]s;(t = D"}

with equalization when |s;(t)|? and |s;(t — [)|? are corre-
lated. Therefore, for a source with a highly correlated squared
spectra between two time frames, (29) approximately holds
and v(s;)/2 =~ —E{|s;(t)|*} is less than or equal to zero.
In such a condition, the proposed algorithm hardly converges
and fails to extract such sources. On the other hand, the
speech squared spectra will generally has a larger variation
when compared to other environmental sounds and is ap-
proximately independent. Therefore, we can approximate
¥(si)/2 &~ Efls;(O)1"} — 2B{]s;()]’}* = K(s;)>0 for
speech with a super-Gaussian distribution, i.e., the proposed
GVSF algorithm could converge and thus extract the speech.

(29)

E. Adaptive o Design

For real world applications, a suitable o which controls the
balance between the Kurtosis term and the correlation term and
thus satisfies the convergence condition of speech as well as
the non-convergence condition of music, is hard to pre-chosen
and fixed in real-time process, since the Kurtosis is sensitive
to outliers [16] and generally has a large dynamic range. How-
ever, speech tends to have independent squared spectra when the
time-frames difference [ increases; that is, the relation C(y, 1) —
1 = 0 holds when [ is greater than some particular value. There-
fore, for extraction of speech rather than music, the cost function
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Fig. 3. TIllustration the performance of the proposed method. (a) Non-Gaussianity maximization leads to reinforcement at the speech DOA (130°), if initial
weights are properly chosen. (b) Non-Gaussianity maximization leads to reinforcement at the music DOA (70°), if initial weights are closely pointing
towards the noise. However, the proposed approach can robustly enhance the speech while suppressing the noise for both of the situations. Left-top: spatial
distribution of the Kurtosis (solid) and correlation (dash). Left-bottom: beampattern formed by: Delay-and-sum beamformer (DSB) using actual array steering
vector of the desired speech (dash), initial weights for both of the non-Gaussian maximization and the proposed approach (dot), beamforming weights of the
non-Gaussian maximization (dash-dot), and beamforming weights of the proposed approach (solid). Right: Measured output Kurtosis (solid) and correlation

(dash) at each iteration of proposed method.

of (20) can be reformulated as the Lagrange method for a con-
strained maximization problem, as

maximize E{|y(t)|*} s.t. C(y,[)—1=0  (30)

and hence, « can be treated as a Lagrange multiplier, which can
be adaptively updated by

o= p(Cly.0) 1)

where (3 is a nonsensitive pre-chosen positive scalar.

€1y

F. Illustrative Example

Fig. 3 illustrates the effectiveness of the proposed approach.
One speech source and one music interference impinge on a
five-element 4.5-cm uniformly spaced array from DOAs of 130°
and 70°, respectively. The frequency is approximately 2.5 kHz,
the signal-to-interference ratio (SIR) is adjusted to be 0 dB,
and signal-to-background spatial white noise is set to 5 dB.
As shown, the beamformer weights formed by Non-Gaussianity
criterion as in (16) may strengthen the signal from either one of
directions of the two signals while suppressing the other, greatly
depending on the initial weights. The proposed approach has
the ability to conquer the ambiguity problem, resulting in the
successful enhancement towards the speech DOA while sup-
pressing the music interference.

V. IMPLEMENTATION ISSUE AND BATCH PROCESSING
ALGORITHM SUMMARY

A. Combating Divergence

The normalized power assumption of the two terms
E{ly@®)*’} = 1 and E{|ly(t — )]*} = 1 is used for the
optimization steps throughout the derivation in the previous
section. However, as pointed out in [17] and [23], E{|y(t)|*}
is a function of r and thus not a constant without the additional

normalization step on 7. Hence, the directions of these two
terms should be considered before the normalization step, and
better results can be expected. Therefore, the gradient of the
full Kurtosis can be obtained as

P o (Bl Py (D=0} 2B (O} By (D=(0)}).

(32)

For the correlation term C(y,1) = E{|y(t)|*|y(t — 1)]*}, we
consider the normalized correlation as

__ B{ly@Plyt =017} _ E{ly®Ply - DI*}
E{ly(OP}E{ly(t = DI”} E{ly@®1Py

and its gradient can be derived as

0C(y, 1) _ By P —2E{]y(H)*} E{y” (1)2(H) } C(y. )

C(y,1)

(33)

or AlyOFF .
where
P00 {2 (¢ = D2t~ )+ e~ )Py 00

(35)

Therefore, considering the adaptive balancing term « in (31),
the final non-diverging gradient becomes

IK(y)
or*

9C(y, 1)

VrJavsr = — B(C(y, 1) — 1) (36)

B. Algorithm Summary

We implement our proposed algorithm for the task of speech
enhancement. A Batch processing version is summarized in this
section. Suppose the input array observation data is collected
for a certain amount of time, corresponding to an overall batch
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duration of T' time-frames. Here, we perform EVD of the co-
variance matrix of the array observation data, which henceforth
can be projected into the signal subspace, as follows.

1) Estimate covariance matrix from 7" time frames:

R 1 & .
Rew = = ;z(t)z (t).

2) Perform EVD of R,,, form the signal subspace U using
the eigenvector corresponding to the J largest eigenvalue

{Us, As} — EVD(R,.)
and construct the normalized subspace

U= N0, 00w, A Py
3) Project data into the normalized signal subspace, resulting
in dimension reduced data

2(t) = UHx(t).

With this, the steps below follow an iterative schedule for
each data batch in order to numerically find an optimal
solution.

4) Initialize the rotation vector r, and compute the a priori
output signal:

y(t) = rz(t).

5) Update the rotation vector as

T — V’I'jGVSF as in Eq(36)

r
T ——.
I~
6) When a stopping criterion is meet, or if a specific number
of iterations has passed, let , = 7, and stop the iterations
for this batch.
7) Output the enhanced speech as

y(t) = (Usro)Hz(t),
y(t) < ly(t)| exp{—j - Phase(z1(t))}.

In the last step, the phase from a certain channel (e.g., the first
channel) of the array observation data is used to reconstruct the
enhanced speech, instead of directly using the phase of the en-
hanced signal. The reason is that upon convergence, the pro-
posed algorithm may introduce random phase shifts for each
frequency-bin. Processed speech sounds more natural by using
the unprocessed phase, the same procedure conventionally em-
ployed for single channel speech enhancement [18].

VI. EVALUATION

We evaluate the newly derived blind beamforming algorithm
for two distinct scenarios: 1) diffuse music noise field, and 2) di-
rectional music interference noise field. All microphone record-
ings are sampled at 24 kHz and downsampled to 8 kHz and
quantized to 16 bits for processing. The framewise spectra anal-
ysis uses a Hamming window of length 1. = 256 samples, with
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Fig. 4. Measured MSC curves for real in-vehicle noise.

128 sample overlapping frames (FFT length L = 256). A rect-
angular window is used for overlap-add of the enhanced frames.

A. Evaluation in Diffuse Music Noise Field

1) Diffuse Noise Field: A diffuse or spherically isotropic
noise field can serve as an effective model for many applica-
tions concerning practical reverberant noise environments en-
countered in speech enhancement applications, such as offices
and cars [26]. A generally accepted characterization of a diffuse
field is one where noise sources have equal power propagating
in all directions simultaneously. It can be shown that the co-
variance matrix R,,,, of a diffuse noise field is real-valued with
entries in the 7th row and jth column is given by [26]

{Ron}ij =021 ; 37)

with

27Tdijf) (38)
C

FL j= SiHC(
where d;; is the distance between the sth and jth microphone,
f is the frequency and c is the speed of sound (e.g., 340 m/s).

As a verification, the magnitude squared coherence function
(MSC)

MSCi;(f) =7 ;(f) (39)
is analyzed for UTDrive [27] in-vehicle noise database. In
Fig. 4, MSC curves are plotted for the recordings when only
the vehicle engine is stably working (i.e., engine noise) and
when the audio system is also turned on (i.e., music noise),
respectively. Since the audio system has multiple speakers, the
in-vehicle music also tend to be diffuse. As can be observed, the
measured MSC curves closely follow their theoretical values.

Unlike a spatially white noise field with an identity covari-
ance matrix, whose eigenvalues are uniformly distributed in the
entire eigenspace, the eigenvalues of the diffuse noise covari-
ance matrix are concentrated along only a few eigenvectors.
Next, we show that this compact eigenspace can lead to a biased
or ambiguous DOA identification problem, if the second-order
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statistics (SOS)-based subspace approaches, such as MUSIC
[14] or principle eigenvector beamformer are employed.

In Fig. 5, we try to identify the DOA of a target signal
at frequency of 1 kHz by a four-element uniformly linearly
spaced array (ULA) with 4.5 cm between consecutive sensors.
As shown in Fig. 5(a), in a spatially white noise field, MUSIC
approach can accurately form a unique peak towards the target
DOA (145°), independent of the noise spaces (null spaces)
that are constructed by any combinations of the eigenvectors
corresponding to the smallest 1, 2, or 3 eigenvalues. However,
for the case of diffuse noise, as shown in Fig. 5(b), a DOA bias
is introduced if the noise space is formed by the eigenvectors
corresponding to the three smallest eigenvalues; multiple peaks
and also bias of DOA are formed if the noise space is con-
structed by any combination of the eigenvectors corresponding
to the smallest one or two eigenvalues. Similarly, the beampat-
tern formed by the principle eigenvector is also biased in the
diffuse noise field, as compared in Fig. 5(c).

In fact, SOS-based DOA identification approaches search
for the spatial power extremes, through a process of scanning
over a certain space (e.g., noise subspace or signal subspace).
When the diffuse noise field is taken into consideration, mul-
tiple power extremes are present, resulting in a DOA either
ambiguity or bias problem. HOS-based DOA identification ap-
proaches [5] can solve this problem if the target is non-Gaussian
while the noise field is Gaussian distributed, since the HOS of
a Gaussian distributed noise is vanished. However, this method
may fail in microphone array-based applications, due to the
fact that acoustic noises (e.g., music noises) generally possess
a super-Gaussian probability distribution.

2) Evaluation With In-Vehicle Diffuse Music Noise Field:
The topic of capturing clean and distortion-free speech under
distant talker conditions using a microphone array within noisy
in-car environments has attracted much attention [1], [28]. Next,
we show the effectiveness of our proposed algorithm in a real
in-vehicle diffuse music noise field, which can be regarded as
a super-Gaussian distributed diffuse noise field. The UTDrive
corpus [27] is used for the evaluation. The microphone array
constructed for the UTDrive project is a linear 5-element array,

Direction of Arrival [degree]

145 180 0 145 180
Direction of Arrival [degree]

(b) ©
Fig. 5. Illustration of the array steering vector/DOA bias and ambiguity using SOS-based approaches for MUSIC-based DOA identification using eigenvectors

corresponding to the smallest first eigenvalue (dash), smallest two eigenvalues (dash dot) and least three eigenvalues (solid), in (a) spatially white noise and (b)
diffuse noise fields, respectively. (c) Beampattern of the principle eigenvector in spatially white (dash) and diffuse (solid) noise fields.

Objective Measure Improvement in Diffuse Music Field: SNR (Top) and PESQ (Bottom)

SNR improvement [dB]
N

PESQ improvement

Batch Size [Frames]

Fig. 6. Performance of the proposed approach (¢) and KSICA (X) with in-
creased batch size for in-vehicle speech enhancement. Performance improve-
ment in terms of SNR (Top) and PESQ (Bottom) over the observation data from
a single microphone.

with 4.5 cm spacing between consecutive microphones to avoid
spatial aliasing, given a frequency bandwidth of 4 kHz. The
array is mounted on the top of the dashboard in front of the pas-
senger seat, approximated 120° from the driver’s seat. In ad-
dition, a close talk microphone is also used as a clean speech
reference. The recordings used for this evaluation is collected
in a Toyota RAV 4WD driving stably on a highway (approxi-
mately 90 km/h) with all windows closed and the audio system
was turned on for music noise generation.

As a comparison with our proposed algorithm, the KSICA
[23] speech extraction algorithm, an improved version of the
cFastICA [19], is also evaluated. Because the performance
of these two algorithms are greatly dependent on their initial
weights, we use the same initial weights for all the algorithms
at each processing data batch, but randomly generate new
entry values for every batch. For different batch sizes, Fig. 6
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Fig. 7. Beampatterns generated by different algorithms in the real in-vehicle noisy environment: actual array steering vector (dashed line), initial weights (dot line),
cFastICA and KSICA (dashed-dot line, these two algorithms result in highly overlapped beampatterns) and the proposed approach (solid line). (a)-(c), beampatterns
are formed when noise is approximately Gaussian distributed (e.g., engine noise dominates). (e)-(f), beampatterns are formed when the noise is approximately

super-Gaussian distributed (e.g., music dominates).

presents the speech quality (SNR and PESQ [29]) improvement
measured at the beamformer outputs over one single channel
observation, using close-talk microphone as a reference. In a
diffuse noise field, the speech quality improvement provided
by the microphone array is not significant, as shown in Fig. 6.
Proposed algorithm has the ability to achieve higher speech
quality improvements by correctly identifying the array steering
vector; while KSICA sometimes performs even worse than the
original input for this real diffuse noise field.

Fig. 7 shows same typical beampatterns at the frequency of
approximately 2.5 kHz, obtained by the proposed algorithm
and the KSICA. When the in-vehicle noise is approximately
Gaussian distributed (e.g., the scenario that the engine noise
(Gaussian distributed) dominates the noise field), KSICA
is capable of converging to the weights that are maxi-
mally strengthening towards the speech DOA, as shown in
Fig. 7(a) and (b), except for the cases of poorly initialized
weights, as seen in Fig. 7(c). However, when the noise distribu-
tion becomes super-Gaussian (e.g., the scenario that the music
(super-Gaussian distributed) dominates the noise field), beam-
forming weights generated by KSICA is rather random, except
for the cases that the initial weights are close to the optimal one.
In all the conditions, the proposed approach robustly achieves
the optimal weights, thereby providing constant enhancement
for the desired speech.

3.5m

Fig. 8. Overhead view of simulation environment.

B. Evaluation With Directional Music Interference

1) Simulation Setup: In this section, the performance of the
proposed approach is evaluated when the music interferences
are simultaneously present with the desired speech. The exper-
iment was conducted in a moderately reverberant room (150 ~
50 ms), and all recordings employed a linear array of cardioid
condenser microphones with spacing between consecutive mi-
crophones of 4.5 cm. The number of microphones used was
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Fig. 9. Spectrograms (top) [in dB scale (right)] and time-domain waveforms (bottom), for (a) clean speech signal; (b) music interference; (c) one-channel ob-
servation data: speech and music interference project on the array with DOAs 135° and 45°, respectively; SIR (speech to music) is 0 dB and SNR (speech to
spatially white noise) is 5 dB; (d) output using non-Gaussianity maximization (cFastICA); (e) output of DSB with perfect knowledge of the array steering vector
for the desired speech; (f) output of the proposed approach. (a) Clean speech. (b) Music interference. (c) Single-channel observation. (d) non-Gaussianity criterion

(cFastICA). (e) Optimal delay-and-sum beamformer. (f) Proposed method.

varied from two to eight and the complete array was previ-
ously calibrated. The locations/DOAs of the multiple sources
were pre-selected and fixed, according to different experimental
setups. The speech data was chosen from the TIMIT database
[30] and playback using positioned speakers as shown in Fig. 8.
For each evaluation, in total of 20 minutes recorded data set was
adopted.

2) Evaluation With Music Interference: As presented
in Section IV-F, the non-Gaussianity criterion-based BSE
approach possesses an ambiguity problem as long as the
non-Gaussian interferences are present. Fig. 9 shows a series
of the array output spectrograms, using the proposed approach
compared with cFastICA algorithm with randomly initialized
weights. Approximately 6 s of speech utterance and music
interference were projected onto the array with DOAs of 135°

and 45° respectively, with an overall SIR (speech-to-music) of
0 dB and an SNR (speech to spatially white noise) of 5 dB. As
shown, the non-Gaussianity-based methods fail to extract the
speech properly. However, the proposed method outperforms
even the delay-and-sum beamfomer (DSB) which has perfect
knowledge of the array steering vector of the speech, since the
proposed approach can not only enhance towards the speech
DOA, but also has the ability to suppresses towards the DOA
of music.

Fig. 10 directly compares the measured gains for the desired
speech and music interference. It should be noted that, the pro-
posed approach has its own weakness and did fail to extract the
speech at a couple of frequency-bins, where the VSF of speech
is quite similar to that of the music. Thus, maximization of the
output VSF may not always result in the optimal weights that
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Array Gain at different frequency: Top: DSB; Middle: Non-Gaussianity; Bottom: GVSF.
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Fig. 10. Array gain for the speech (solid) and music (dash-dot) for different ap-
proaches: top: optimal DSB; middle: non-Gaussianity; bottom: proposed GVSF.

Objective Measure Improvement in Directional Music Field: SNR (Top) and PESQ (Bottom)
T
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PESQ improvement

Batch Size [Frames]

Fig. 11. Performance of the proposed approach (¢) with increased batch sizes
for a five-element array. The performance of DSB (o) with perfect knowledge
of the desired speech steering vector is also drawn for comparison. Performance
improvement in terms of SNR (top) and PESQ (bottom) over observation data
from a single microphone are shown.

places maximal gain towards the speech DOA but least gain to-
wards the DOA of music interference. However, this problem
could be alleviated through a combination of DOA decisions of
each frequency.

Next, the objective measure of speech enhancement perfor-
mance is studied for different processing batch sizes, as shown
in Fig. 11 for a five-element array. The “worse case” initial
weights (i.e., initialized with the array steering vector of the in-
terference), are employed and the performance of DSB with per-
fect knowledge of the speech steering vector is compared. With
increased batch size, the proposed approach not only achieves
successful identification of the speech DOA, it also has less
array gain towards the music DOA, resulting in better perfor-
mance versus DSB. Finally, the performance of cFastICA is
omitted here since it tends to enhance the noise while nulling
out the desired speech.

VII. CONCLUSION AND DISCUSSION

A new promising time—frequency domain blind beamforming
approach for extracting the desired speech from a noisy music
environment has been presented, along with the evaluations con-
ducted in both real in-vehicle and simulated noisy environments.
Compared to the conventional BSE approaches that rely on var-
ious a priori information, the proposed approach is totally blind.
The proposed approach is based on the concept that through
the maximization of a particular measure of the discriminative
speech features, speech can be extracted without ambiguity. We
have shown that the VSF can serve as one of such effective
features. An algorithm was developed that is focused on the
maximization of the VSF criterion, including a complex-value
fixed-point optimization process. In the evaluation, the effec-
tiveness of the proposed approach is confirmed using real UT-
Drive in-vehicle recordings, as well as a simulated recordings.
The results show consistent improvement of our proposed ap-
proach over traditional methods.

While advancement has been achieved, robust BSE or blind
beamforming for the speech remains a challenging problem. As
absolved in our experiments, the proposed blind algorithm still
may fail to extract the desired speech at sometimes. This is par-
ticularly true when the processing batch is not large enough,
or the VSF of speech is not sufficiently discriminative from
the environmental music interferences. Further research into en-
hanced speech features and criteria is an ongoing challenge.

The following Appendix presents derivations for a lower
bound of VSF and stable conditions for the proposed algorithm.

APPENDIX A
LOWER BOUND OF VSF

In Section IV-B, the criterion for the variance of the spec-
tral flux was presented. Here, we consider the formulation of its
lower bound. From (18),

VSE=B{[y(®) 2~ |yt~ "}~ B{Ju(®) 2~ [yt ]}
(40)
it is obvious that

B{{ly®)2=lyt=DP[}* < E{lyOP+ly(t-DP|}". @1)

With this, we have the following relation:

2 2
VSE > E{|[y()1* = ly(t=DP*["} = E{[ly(O)+y(t=DP[} -

(42)
Note that, E{[y(t)|*} = E{ly(t — I)|*} and E{|y(t)]*} =
E{|y(t —1)|?}, and therefore the right hand side (RHS) of (42)
can be simplified as

RHS = 2(E{|y(t)|4} - 2(E{|y(t)l2}2))
—2E{|y(t)*|y(t — D)[*}. (43)

Some observations can now be drawn from (43): E{|y(t)|*} —
2(E{|y(t)|?})? is the measurement of the Kurtosis for a com-
plex circular distributed variable and E{|y(t)|?|y(t — 1)|*}
measures the correlation of the squared spectra between
two time frames.
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APPENDIX B
DERIVATION OF THE STABILITY CONDITIONS

The derivation of stability follows the analysis of the com-
plex FastICA method presented in [19] and [17], and the
complex derivative in [24]. Assume in total of .J sources,
s1(t), s2(t), ..., ss(t), impinge on the microphone array with
array steering vectors ai,as,...,ay, respectively; denote
s(t) = [s1(t),s2(t),...,57(t)]" and A = [ay,a2,...,a5],
then we get the observation data vector z(t) = As(t). By
defining a linear transform q = AHU,r, the transformed cost
function of (20) can be written as

Javse (@)= E{la"s(O)*}—a (E£{la"s(t) la"s(t~1) 2} -1).
(44
The stability analysis is conducted by evaluating a second-order
Taylor series expansion around the optimal point g, that extracts
one desired source, e.g., 51, without loss of generality, while re-
jecting the others. That is, g, = AU, = [6,0,...,0]T, with
|6] = 1, and thus y(¢) = 6*s1(t) with only a phase difference
compared to the desired source s;.
Define e = [1,0,...,0]7 and ¢(s1) = 2E{|s1(t)[*} —
20E{|s1(t)|?]s1(t — l)| }, the two first-order gradients of
Javsr(q) evaluated at g, can be obtained as

a‘]‘“a—sq(q) = [(s1)8"Je “3)
and
%57;(‘” — [(s1)3e. (46)

Evaluating the four Hessians at the point g, and using the condi-

tion of independence between elements of s, i.e., s1, S2,..., 57,
we obtain
i (L )
@%%%§&2=B¢@nkéf (48)
78?;*%2(7?0) = [24(s1)]ee’ (49)
and
78232228210) = [¢(51)6%]ee” (50)
Introducing a small perturbation Aq = [Aqy, Aqa, . .., Aqy]

around point g,, we can write the second-order Taylor series
expansion of Jgysr(q) around g, as [31]

Javsr(g, + A'I) — Javsr(g,)

(aJGVSF '8 )TAq N (8JG2(511:('10))TA‘I*
%A an;’;F;qO)Aq+ lAqH aJS;’;ZIS%)
;A T&g;v*saF(qu)A L A HaJaGV*ZF(go)
+o([|2glf?).

+
619

Using (45)—(50), we can rewrite (51) as

Javsr(g, + Ag) — Javsr(g,)
= (1) (2Re{6" Bar} + Re{62Aq}} + 2/ A1)
+o(llAgl?)- (52)
Due to the constraint of the optimal solution ||g,|| = 1 and

the permuted optimal solution ||g, + Agl|| = 1, the following

relationship holds [19]
2Re{6* Aqi} = —||Aq|? (53)

which implies that the terms of order Aq% in (52) become
o(||Aql|?), i.e., of higher order and can be neglected. This
relationship yields

—(s1) 1A,

Because the term ||Ag]|? is always non-negative, g, is an local
maximum of Jgysr(q) if 1 (s1) > 0.

Javsr(g, + Aq) — Javsr(g,) = 54
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