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Missing-Feature Reconstruction by Leveraging
Temporal Spectral Correlation for Robust Speech
Recognition in Background Noise Conditions
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Abstract—This paper proposes a novel missing-feature recon-
struction method to improve speech recognition in background
noise environments. The existing missing-feature reconstruction
method utilizes log-spectral correlation across frequency bands.
In this paper, we propose to employ a temporal spectral feature
analysis to improve the missing-feature reconstruction perfor-
mance by leveraging temporal correlation across neighboring
frames. In a similar manner with the conventional method, a
Gaussian mixture model is obtained by training over the obtained
temporal spectral feature set. The final estimates for missing-fea-
ture reconstruction are obtained by a selective combination of the
original frequency correlation based method and the proposed
temporal correlation-based method. Performance of the proposed
method is evaluated on the TIMIT speech corpus using various
types of background noise conditions and the CU-Move in-vehicle
speech corpus. Experimental results demonstrate that the pro-
posed method is more effective at increasing speech recognition
performance in adverse conditions. By employing the proposed
temporal-frequency based reconstruction method, a +17.71%
average relative improvement in word error rate (WER) is
obtained for white, car, speech babble, and background music
conditions over 5-, 10-, and 15-dB SNR, compared to the original
frequency correlation-based method. We also obtain a +16.72%
relative improvement in real-life in-vehicle conditions using data
from the CU-Move corpus.

Index Terms—Background noise, missing-feature, robust speech
recognition, temporal correlation, temporal spectral feature.

1. INTRODUCTION

ACKGROUND noise is one of the primary factors re-
B sulting in acoustic mismatch between training and oper-
ating conditions for actual speech recognition systems, severely
degrading recognition performance. Typical examples can be
easily found in the corpora of UTDrive [1], CU-Move [2], the
National Gallery of Spoken Word (NGSW) [3], Collaborative
Digitization Program (CDP) [4], Speech Under Simulated and
Actual Stress (SUSAS) including Lombard effect [5], and
others, which make speech recognition technology challenging
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in real-life scenarios. To minimize this mismatch, extensive
research have been conducted in recent decades, which include
many types of speech/feature enhancement methods such as
Spectral Subtraction, Cepstral Mean Normalization, and va-
riety of feature compensation schemes [5]-[14]. Various model
adaptation techniques have been successfully employed such
as the maximum a posteriori (MAP), maximum-likelihood
linear regression (MLLR), and parallel model combination
(PMC) [15]-[17]. Recently, missing-feature methods have
shown promising results [18]-[27] with some that utilize no
prior knowledge of the background noise [25].

In this paper, the missing-feature method is considered as
a solution to address additive background noise for speech
recognition. This method depends primarily on characteristics
of speech that is resistant to noise, rather than on the character-
istics of the noise itself, showing its effectiveness at improving
speech recognition in adverse environments [18], [19],[21].
The missing-feature method consists of two steps. The first
step is estimation of a “mask” which determines which spectral
parts of the noisy input speech are unreliable [25], [28]. The
second step is to reconstruct the unreliable regions or bypass
them for alternative processing.

A cluster-based reconstruction method [21] is employed as a
framework for missing-feature processing of background noise
corrupted speech in our study. This method restores unreliable
parts of incoming speech signal using known distributions
of clean speech and reliable spectral regions indicated by
mask information. The existing cluster-based method [21] is
designed to utilize the correlation relationship of log-spectral
components across frequency bands by employing a Gaussian
mixture model (GMM) with full covariance trained over the
conventional log-spectral coefficients which were used as the
speech feature vector. With proper knowledge of the mask,
the cluster-based reconstruction method shows considerable
effectiveness at increasing speech recognition performance in
additive background noise conditions.

This paper represents a new effort to improve missing-fea-
ture reconstruction performance for speech recognition in
background noise environments. In this paper, we leverage
the available spectral correlation across neighboring frames
in the missing-feature reconstruction method, by employing
a temporal spectral feature analysis which is conducted using
the conventional log-spectral coefficients. The missing-fea-
ture is finally reconstructed by a selective combination of the
original reconstruction method and the proposed temporal
correlation-based method. Prior efforts have also attempted to
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utilize the temporal correlation for missing-feature method,
by employing a relative covariance value [21], [29] or hidden
Markov model (HMM) [30]; however; such approaches are
inferior to the conventional cluster-based method [29] or not
suitable to our goal in this study [30]. Our recent study has
proposed a time—frequency correlation based method, but it
is only applicable to the band-limited speech condition [27].
Independent of the missing-feature method, many studies also
have been conducted for utilizing the temporal information of
speech feature to improve robustness of speech recognition
[31]-[34].

This paper is organized as follows. We first review the
cluster-based missing-feature reconstruction method as a
framework for this study in Section II. Section III presents
the proposed missing-feature reconstruction method including
temporal spectral feature extraction and details of the proposed
processing. Representative experimental procedures and their
results are presented and discussed in Section IV. Finally, in
Section V we state the main conclusions of our work.

II. MISSING-FEATURE RECONSTRUCTION: FREQUENCY
CORRELATION BASED METHOD

A cluster-based missing-feature reconstruction method was
previously proposed by Raj, et al. [21]. The method restores
unreliable spectral parts of input speech using a known distri-
bution of clean speech and reliable regions determined by the
masks. The distribution of the log-spectra of clean speech X (¢)
is modeled by a Gaussian mixture with K clusters,

PX() =D weN (X (8); g, xon)- (1)

Suppose that a clean speech vector X (¢) has reliable compo-
nents X () with the latent original components in an unreliable
(i.e., missing) region X,,(t). Thatis, X () = [X,.(¢) X, (¢)]. The
reliable component X,.(¢) is identical to the corresponding ob-
servation Y,.(¢). The cluster k of the clean speech model is de-
termined by the posterior probability. Since X (¢) contains un-
reliable elements, the marginal computation is applied by inte-
grating out their dependency

Y, (1)
ki = arg max {P(k) / P(X(t) | k)qu(t)} 2)
k —oo

where Y, (t) represents the observed value of the unreliable
parts and is assumed to be greater than X, (t) because it is
corrupted by additive background noise. Finally, the unreliable
part X, (t) is reconstructed using bounded MAP estimation
based on the observations in the reliable regions X,.(¢) with the
model parameters of the cluster k selected by (2), and an upper
bound Y,,(t) as follows [21]:

Xy (t)=arg max{P(X,(t)| X, (1) 7I4X,l%*2X,fc Xu(t) SYu(t))}-

X, (1)
(3)
(3) can be simplified into the following [29]:
X’U (f) = ‘u'I;,u + Cl},,ru : Cl{,i‘r ’ D/; (f) - ll’];,’l’] (4)
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where C i and C i ru are the covariance and cross-covariance

matrices defined as follows:

CI;:,’I"I‘ = E{(XT(t) - y’fg,r)(XT(t) - p’l;,r)T}
c = E{(X,(?) - /"I},T)(Xit(t) - /"'l},u)T}

&)
(6)

];‘,,’I"Il.
where Bi. . and Wj, ,, are mean vectors of the kth cluster of the
reliable component X,.(¢) and unreliable component X, (¢) of
the clean speech, respectively.

In this conventional method, the unreliable parts X, (t) are
reconstructed depending on the reliable components X,.(¢) of
a frame at time ¢, utilizing only correlation across frequency
bands (i.e., Mel-scales filterbanks). From now, we denote the
reconstructed component X, (t) by (4) as X. At (t) to represent
frequency correlation, which is distinguished from the temporal
correlation based method which is proposed in the next section.

III. MISSING-FEATURE RECOGNITION LEVERAGING
TEMPORAL CORRELATION

In this section, we propose a novel approach to improve per-
formance of the conventional missing-feature reconstruction
method presented in Section II. The proposed method leverages
the correlation of unreliable components with reliable com-
ponents from neighboring frames as well as the current frame
which conventional methods utilize. Raj, et al. previously pro-
posed a correlation-based reconstruction method in [21], [29].
Their proposed method employs a relative covariance value
to determine a neighborhood vector which is more correlated
to missing components and used for reconstruction. In their
method; however, the spectrogram of the clean speech signal
is considered to be a wide-sense stationary random process, SO
the distribution of the clean speech is estimated simply using
a single Gaussian pdf. Such a simplification results in inferior
performance compared to the cluster-based method which is
the baseline scheme for our work in this paper [29].

Borgstrom and Alwan [30] have proposed an HMM-based
estimation method of unreliable components by utilizing corre-
lations across feature vectors and frequency channels. In their
work, several noise parameters for the HMM construction are
estimated from noise-corrupted speech. We believe that the per-
formance of such an approach would be dependent on the ability
of noise parameter estimation,! which also would rely on the
types of background noise conditions. This aspect is not suit-
able for our purpose in this paper, where the acoustic model for
missing-feature reconstruction only utilizes clean speech statis-
tics through offline training, as suggested by the representative
conventional missing-feature methods [18]-[21]. In our paper,
the missing-feature reconstruction procedure is intended to be
free of environment-dependent factors, once the mask informa-
tion is provided. An HMM-based method is still considered to
be considerably expensive in training acoustic models and com-
puting likelihood scores compared to a GMM-based method,
even though the study in [30] proposed to use a down-sampled
size of HMM. In our recent study, we have proposed a new
missing-feature reconstruction method for band-limited speech,

1Tt should be noted that there is no clear description on exactly how to estimate
some HMM parameters in their study [30].
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which utilizes the correlation relationship with the spectral com-
ponents of the first formant and cutoff border areas [27]. How-
ever, this method is intended to address band-limited speech and
also requires extensive computational expense when applied to
full-band speech condition. In this paper, we propose an effec-
tive method utilizing the temporal correlation with less compu-
tational load for background noise conditions.

A. Missing-Feature Reconstruction Based on Temporal
Spectral Feature

The clean speech X (t) at time ¢ in the log-spectral domain
(i.e., log-spectral coefficients; logarithm of Mel-filterbank out-
puts) can be represented by

X(t) = [z1(t), z2(t), ..., 2n (D))" @)

where ,,(t) denotes the nth log-spectral component at time
frame ¢ and N is the number of log-spectral coefficients which
is identical to the number of Mel-filterbanks. Here, we define
a temporal spectral feature vector of the nth frequency band at
time ¢ as

X7{zt} (t) = [wn(t_td)a EERE xn(t)a sy $n(t+td)]T7 1<n<N

®)
where ¢4 denotes a time-lag which determines the analysis range
of the temporal spectral feature components. In consequence,
the resulting temporal spectral feature vector consists of 2¢;+ 1
number of components. The obtained temporal spectral feature
vector of clean speech is assumed to be modeled by a Gaussian

mixture with K{*} components as follows:

p(X) = 3 ol (X0 5) o)
k=1

where Ziti is a full-covariance matrix in a manner similar to
(1).

Figs. 1 and 2 illustrate the extraction procedure of the tem-
poral spectral feature vector. The panels of Fig. 1 show clean
speech signal in (a) time and (b) frequency (i.e., spectrogram)
domains, and (c) the plot of log-spectral components of the 8th
band (within 600-700 Hz) of the Mel-filterbanks. The upper plot
of Fig. 2 illustrates acquisition processing of the temporal spec-
tral feature vector at each time #,, with a time-lag ¢4 from the
subband log-spectrum signal, which is the beginning part of plot
(c)in Fig. 1. The lower figure shows the set of obtained temporal
spectral feature vectors for the eighth frequency band from ¢; to
t11, resultingina (2¢4+1) x 11 size matrix. Finally, we obtain N
sets of temporal spectral feature vectors over the corresponding
N frequency bands for the input speech.

Fig. 3 shows an example of the Gaussian mixture model with
eight components obtained by training over the temporal spec-
tral feature of the eighth band, where each plot presents the mean
vector of each Gaussian component. In this example, we used
six frames for time-lag £, formulating a 13 dimensional tem-
poral spectral feature vector, which corresponds to 145 ms of
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Fig. 1. Clean speech signal in (a) time, (b) frequency (spectrogram), and (c) its
log-spectral components of the eighth Mel-frequency band (600-700Hz).
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Fig. 2. Temporal spectral feature extraction. (a) Signal acquisition. (b) A set of
obtained temporal spectral feature vectors.

time duration.2 It can be considered that each mean vector rep-
resents a pattern of temporal spectral change in log-spectral do-
main during 145 ms at the eighth frequency band. We found that
arelatively small number of Gaussian components K {*} are suf-
ficient to represent the statistical patterns of the temporal spec-
tral feature, resulting in less expensive computation compared
to an HMM-based method. GMMs with eight components were

2Here, a 25 ms analysis window and 10-ms skip rate was used for log-spectral
feature extraction in this study (145 ms = 12 X 10 ms + 25 ms).
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Fig. 3. Mean vectors of a Gaussian mixture model with eight components pro-
duced by temporal spectral feature with a time-lag 6.

used for modeling the temporal spectral feature in our experi-
ments.

The feature reconstruction procedure follows the bounded
MAP estimation which is employed by the original reconstruc-
tion method. The input temporal spectral feature vector Y,;{t} (t)
of the nth frequency band is considered to consist of reliable
Y,;{fr} (t) and unreliable components Y,;{tj (t) as follows:

Y3 =30, v, o)

=[x, i) (10)

where the reliable components Yn{fr} (t) can be replaced with
Xitg (t) of clean speech. A cluster of the clean speech GMM
in (9) is determined by a marginal integration as follows:

v, ()

/ POX{ (1) | B)AX (1)

— 00

k = argmax { P(k)
k

an

The missing components X, itq},(t) of the temporal spectral fea-
ture vector is reconstructed by

x{t} (t) {t}

n,u nku

+ct

n,k,ru

o1, [Y{t}(t) ut } )

n,k,rr n,r n k.

12)
{f} . and 1"

n,k,ru

In a manner similar to that for (5) and (6), C
are defined as follows:

—p{ (xt20-u),) <Xzfz<t>—uif£,r>T}
(13)

C{t}

n,k,rr
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t _ ¢ ut ¢ )"
Cn,fc,ru =E { (X';{Lﬂ}( ) n k, 7‘) (XT{hl}L(t) - ll’n,fc,u) }
(14
where p,{ ) and p,{ b are the mean vectors of the /th cluster

of rehable and unrehable components of the clean speech model
obtained by (9), respectively.

Different from the conventional reconstruction method pre-
sented in Section II, the correlation across neighboring frames
is utilized by employing the temporal spectral feature in our pro-
posed method. We name this proposed method temporal corre-
lation based missing-feature method in this study. The perfor-
mance of the proposed method as a change in the time-lag size
will be discussed in a later section.

B. Reconstruction by Selective Combination:
Temporal-Frequency Correlation Based Method

In this paper, the final estimation for the missing-feature
reconstruction is accomplished by a combination of the es-
timates obtained by the original frequency-based method
and the proposed temporal correlation-based method. Here,
we denote the estimate obtained by the frequency correla-
tion-based method as X\ }(t). Through a mask estimation
prior to the reconstruction step, we obtain mask information
M(t) = [my(t), ma(t),...,my(t)]T, which locates the re-
liable/unreliable components in the log-spectral domain, that
is determined as a binary decision (e.g., 1 or 0) in general. In
our proposed method, considering the reliability levels of the
current frame and the given frequency band within a time-lag,
the estimates are selectively decided as shown in (15) at the
bottom of the page, where the threshold values for measuring
reliability level ¢t} and ¢{*} are set as follows:

=075 x N

B =0.75 x (264 + 1). (16)

In the proposed method, the original frequency-based and the
proposed temporal correlation methods are independently ap-
plied to the input speech. In a following step, the reconstructed
components of each frame are selectively determined by (15). If
the number of reliable components at the current frame is greater
than 75% of the log-spectral coefficient dimension N, then the
estimated feature component 5:,{,f 3 (t) obtained by the frequency
correlation-based method is selected. Next, if the number of re-
liable components within the time-lag ¢t — ¢4 to ¢t 4 ¢4 at the nth
frequency band is greater than 75% of total component number
of temporal spectral feature 2¢4 + 1, or there is no reliable com-
ponent at the current frame, then the estimate components re-

constructed by the temporal correlation-based method a:{ ) L(t)is

~{f}

n,u

j{t}

t),

t),
~{f}

adqya (t) +

/\/-\

Tnu(t) =

(1.0 — )i,

i£y2, ma(t) > ¢
f—l—fd
else if 2otgy Mn(t) 2 ¢t or (15)

2 n Ma(t) =0

otherwise

(1),
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chosen. If these conditions are not satisfied, a weighted summa-
tion of both estimates is used for the final estimate. Based on the
reconstruction performance of the frequency and temporal cor-
relation-based methods, respectively, the weight « was chosen
as 0.7 in this paper.

IV. EXPERIMENTAL RESULTS

A. Experimental Conditions

The TIMIT speech corpus was used for performance evalua-
tion of the proposed method. A total of 4.1 hours of speech (462
speakers, 4620 utterances) were used for training, and 1.5 hours
of data (168 speakers, 1680 utterances) were used for test. The
training and the test sets do not overlap each other in speakers
and uttered sentences. The data was down-sampled to 8 kHz, so
that each speech sample contains 4-kHz full-band frequency. In
order to evaluate the performance under various types of back-
ground noise conditions, noise corrupted test sets were gener-
ated by combining clean speech samples with white noise, car
noise, speech babble, and background music audio samples. The
white noise, car noise, and speech babble samples were obtained
from NOISEX92, and the background music samples consist of
prelude parts of ten Korean popular songs with varying degrees
of beat and tempo. Each test set consists of 1680 utterances at
three different SNRs: 5, 10, and 15 dB.

We employed SPHINX3 [35] as the HMM-based speech rec-
ognizer to obtain recognition accuracy in background noise con-
ditions. Each HMM represents a tri-phone which consists of
three states with an eight-component GMM per state, which is
tied with 1138 states. The task has 6233 words as the vocabu-
lary, and the trigram language model is adapted on the TIMIT
database using a Broadcast News language model as an ini-
tial model. A conventional Mel-frequency cepstral coefficient
(MFCC) feature front-end is employed in the experiment, which
was suggested by the European Telecommunication Standards
Institute (ETSI) [36]. An analysis window of 25 ms in duration
is used with a 10-ms skip rate for 8-kHz speech data. The com-
puted 23 Mel-filterbank outputs are transformed to 13 cepstrum
coefficients including cO (i.e., c0-c12). The first- and second-
order time derivatives are also included, so the feature vector is
39-dimensional.

B. Performance of Baseline and Conventional Methods

Performance of the baseline system (no compensation) was
examined with comparison to several existing preprocessing
algorithms in terms of speech recognition performance. The
framework of this study employs a clean condition trained
HMM, so we focus only on speech/feature enhancement
methods for the performance comparison, and do not consider
acoustic model (i.e., HMM) adaptation. Spectral subtraction
(SS) [6], [37] combined with cepstral mean normalization
(CMN) was selected as one of the conventional algorithms.
They represent some of the most commonly used techniques for
additive noise suppression and removal of channel distortion,
respectively. We also evaluated a feature compensation method,
Vector Taylor Series (VTS) for performance comparison where
the noise components are adaptively estimated using the Expec-
tation—-Maximization (EM) algorithm over each test utterance
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TABLE I
RECOGNITION PERFORMANCE OF BASELINE SYSTEM
AND CONVENTIONAL METHODS (WER, %)

White Noise 5dB 10dB | 15dB | Avg.
Baseline 98.80 | 92.96 | 79.41 | 90.39
SS+CMN 87.35 | 6527 | 43.52 | 65.38
VTS 90.73 | 57.47 | 28.89 | 59.03
AFE 68.78 | 42.47 | 2490 | 45.38
Car Noise 5dB 10dB | 15dB | Avg.
Baseline 90.72 | 62.36 | 32.85 | 61.98
SS+CMN 66.17 | 3827 | 21.43 | 41.96
VTS 75.08 | 39.17 | 19.98 | 44.74
AFE 4820 | 29.88 | 20.24 | 32.77
Speech babble 5dB 10dB | 15dB | Avg.
Baseline 81.75 | 51.34 | 26.26 | 53.12
SS+CMN 68.71 | 37.26 | 19.87 | 41.95
VTS 65.15 | 33.04 | 17.46 | 38.55
AFE 50.68 | 30.72 | 19.89 | 33.76
Background Music 5dB 10dB | 15dB | Avg.
Baseline 60.14 | 36.49 | 20.73 | 39.12
SS+CMN 46.84 | 2799 | 17.64 | 30.82
VTS 4496 | 26.08 | 16.15 | 29.06
AFE 3577 | 2229 | 16.25 | 24.77
TABLE II

RECOGNITION PERFORMANCE OF CONVENTIONAL MISSING-FEATURE
RECONSTRUCTION WITH ORACLE MASK (WER, %)

F-MFR with Oracle 5dB 10dB | 15dB | Avg.
White Noise 62.11 | 50.29 | 40.95 | 51.12
Car Noise 51.67 | 34.13 | 23.67 | 36.49
Speech Babble 43.66 | 29.20 | 19.98 | 30.95
Background Music 25.51 | 19.01 | 14.57 | 19.70
F-MFR+SS with Oracle 5dB 10dB | 15dB | Avg.
White Noise 5826 | 46.07 | 3531 | 46.55
Car Noise 40.06 | 26.58 | 19.55 | 28.73
Speech Babble 33.66 | 22.26 | 16.24 | 24.05
Background Music 22.12 | 17.31 | 13.29 | 17.57

[10]. The Advanced Front-End (AFE) algorithm developed by
ETSI was also evaluated as one of the state-of-the-art methods,
which contains an iterative Wiener filter and blind equalization
[38]. Table I demonstrates speech recognition performance
(i.e., word error rate, WER) of the baseline system and the
conventional algorithms on all background noise conditions.

Here, we obtained 61.15%, 45.03%, 42.85%, and 34.17% for
baseline (no processing), SS + CMN, VTS, and AFE as average
WERs over 5, 10, and 15 dB SNRs of all four noise conditions
(See Table VI). For comparison of the baseline performance,
37.70%, 18.14%, 16.70%, and 10.48% WERs were obtained
by the same processing methods respectively as average per-
formance over 5-, 10-, and 15-dB SNR conditions for the Au-
rora 2.0 task [14], which is widely used in the research commu-
nity targeting a small task of connected digits recognition [39].
Therefore, the TIMIT corpus task employed in our experiment
has a more challenging configuration in lexical and grammar for
speech recognition.

Table II shows recognition performance obtained using the
original cluster-based missing-feature reconstruction method
with the “Oracle” mask. The oracle mask was generated by
comparing the noise-corrupted speech signal to the original
clean speech data at the log-spectrum level. Here, we denote
the original reconstruction method as F-MFR where “frequency
correlation” is employed. In the missing-feature reconstruction
of all our experiments, 23rd-order of log-spectral coefficients
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(i.e., log of Mel-filterbank output) were used as the feature
vector and a 128-mixture GMM with a full covariance was
employed. The reconstructed feature in the log-spectral domain
is transformed to the cepstral coefficients and then submitted
to the speech recognizer with a clean condition trained HMM.
We found that the missing-feature reconstruction method pro-
duces a significant improvement in WER when combined with
conventional spectral subtraction (SS). Therefore, in this paper,
the performance of the missing-feature methods are evaluated
also for the case of a combination with spectral subtraction.
It can be seen that the performance of F-MFR with the oracle
mask outperforms most other conventional speech/feature
enhance methods shown in Table I, in particular, when com-
bined with spectral subtraction (F-MFR+SS). It confirms that
the missing-feature reconstruction method shows significant
effective performance for speech recognition in adverse back-
ground conditions, if the knowledge on the reliable spectral
components (i.e., mask information) is properly provided as
the oracle mask information is available here. In our paper, the
performance of F-MFR is compared, as a baseline performance,
to the proposed temporal spectral feature based reconstruction
method, which will be evaluated in the next section.

C. Missing-Feature Reconstruction Employing Temporal
Spectral Feature Analysis

In this section, the proposed reconstruction method em-
ploying the temporal spectral feature is evaluated. First, we
observe the impact of the time-lag for the temporal spectral
feature analysis on the performance of missing-feature recon-
struction. Fig. 4 shows speech recognition performance of
the reconstructed feature using the temporal correlation-based
method (T-MFR) as a function of time-lag t; from 2 to
10 frames. Here, temporal correlation is solely used for
missing-feature reconstruction with oracle mask along with
spectral subtraction, and the WER is an average value over all
three SNR conditions. Using the 2¢; + 1-dimensional feature
vector, the time-lags 2 to 10 correspond to an 65 to 225-ms
time range for the temporal spectral change. GMMs with
eight Gaussian components [i.e., K{*} = 8 in (9)] were used
for acoustic models for temporal spectral feature at each fre-
quency band. It is seen that performance increases (i.e., WER
decreases) as we increase the time-lag size and performance
levels off after around time-lag 6. The results also demonstrate
that the performance of the temporal correlation-based method
(solid line with black faced circles) is inferior to the original
frequency correlation based method (dashed line) in average
WER.

Fig. 5 presents performance plots of the combination method
of frequency (F-MFR) and temporal (T-MFR) correlation
methods, which is denoted as TF-MFR in this paper. In this
evaluation, we also see similar performance trends compared to
plots in Fig. 4, with considerable improvement in the average
performance of the combination method (TF-MFR) compared
to the original reconstruction method (F-MFR). From our series
of experiments, it was found that the performance of TF-MFR
consistently drops for all noise conditions as the time-lag
increases to 8 and 10, in the case of combination with CMN.
We conclude that a suitable length of time-lag is required to be
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Fig.5. Recognition performance of the combination of temporal and frequency
correlation-based methods (TF-MFR) as change of time-lag.

selected for performance improvement when utilizing temporal
correlation. Fig. 6 compares examples of the mean vectors
of GMMs generated by different length time-lags (e.g., 2, 6,
and 10) for the temporal spectral feature extraction. It can be
considered that when the time-lag is too short, it is not effective
to reconstruct the feature, since sufficient amount of knowledge
on reliable components cannot be provided. An excessively
large size time-lag would also produce incorrect estimates, if
the number of reliable components is relatively small compared
to the size of the temporal spectral feature vector. We used six
frames of the time-lag for the temporal spectral feature analysis
in the following experiments for the best performance.

Tables IIT and IV show performance of the proposed temporal
correlation-based (T-MFR{+SS}) and combination methods
(TF-MFR{+SS}) for all background noise conditions, when
solely used (Table III) and combined with spectral subtraction
(Table IV), respectively. The relative improvement is calculated
compared to the original frequency correlation-based method
(F-MFR{+SS}). These results confirm that the leveraged tem-
poral correlation is considerably effective at increasing recogni-
tion performance of the reconstructed feature which is obtained
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Fig. 6. Examples of mean vectors obtained by different time-lags (a) 2, (b) 6,
and (c) 10 frames for temporal spectral feature analysis.

TABLE IIT
RECOGNITION PERFORMANCE IN WER (%) OF PROPOSED MISSING-FEATURE
RECONSTRUCTION EMPLOYING TEMPORAL CORRELATION WITH ORACLE
MASK: RELATIVE IMPROVEMENT OF TF-MFR COMPARED TO F-MFR
IS SHOWN IN A PARENTHESIS (+X.XX%)

White Noise 5dB 10dB 15dB Avg.
F-MFR 6211 | 5029 7095 3112
T-MFR 86.89 | 66.58 45.72 66.40
6217 | 44.84 33.88 46.96
TE-MFR (0.10) | (+10.84) | (+17.26) | (+9.34)
Car Noise 5dB 10dB 15dB Avg.
F-MFR 5167 | 34.13 23.67 36.49
T-MFR 80.11 | 49.03 25.28 51.47
4980 | 29.17 17.33 32.10
TF-MFR (+3.62) | (+14.53) | (+26.78) | (+14.98)
Speech Babble 5dB 10dB 15dB Avg.
F-MFR 4366 | 2920 19.98 30.95
T-MFR 7092 | 4152 21.10 44.51
4064 | 2393 14.83 26.47
TF-MFR (+6.92) | (+18.05) | (+25.78) | (+16.91)
Background Music 5dB 10dB 15dB Avg.
F-MFR 2551 19.01 1457 19.70
T-MFR 4545 | 27.40 17.03 29.96
2327 | 1637 11.84 17.16
TF-MFR (+8.78) | (+13.89) | (+18.74) | (+13.80)

only by the frequency correlation-based method, across all
noise conditions in types and SNRs. The performance com-
parison of the proposed temporal-frequency correlation-based
missing-feature reconstruction method (TF-MFR{+SS}) to
the original frequency correlation method (F-MFR{+SS}) is
summarized in Table V as average WERs over the four types of
background noise conditions. By leveraging the temporal cor-
relation, we obtained +13.76% and +17.71% average relative
improvements? in WER for all noise conditions when solely
used and combined with spectral subtraction, respectively,
compared to the original frequency correlation-based method.

D. Performance Evaluation Employing Mask Estimation
Method

Although mask estimation is not in the scope of our study for
this paper, the evaluation employing a mask estimation method

3The average relative improvement is computed by taking the average of the
obtained relative improvements (i.e., 13.76 = (4.81 4+ 14.33 4+ 22.14)/3).
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TABLE 1V
RECOGNITION PERFORMANCE IN WER (%) OF PROPOSED MISSING-FEATURE
RECONSTRUCTION EMPLOYING TEMPORAL CORRELATION WITH ORACLE
MASK AND SPECTRAL SUBTRACTION: RELATIVE IMPROVEMENT OF TF-MFR
COMPARED TO F-MFR IS SHOWN IN A PARENTHESIS (+X.XX%)

White Noise 5dB 10dB 15dB Avg.
F-MFR+SS 3826 | 46.07 3531 36.55
T-MFR+SS 70.01 4890 | 3582 51.58
5200 | 3846 | 2872 | 39.73
TF-MFR+SS (+10.74) | (+1652) | (+18.66) | (+15.31)
Car Noise 5dB 10dB 15dB Avg.
F-MFR+SS 30.06 76.58 19.55 3873
T-MFR+SS 48.67 26.80 17.36 30.94
33.51 19.91 14.24 22.55
TF-MFR+SS (+16.35) | (+25.09) | (+27.16) | (+22.87)
Speech Babble 5dB 10dB 15dB Avg.
F-MFR+SS 33.66 22.26 16.24 24.05
T-MFR+SS 43.93 25.92 17.76 29.20
27.11 17.07 1355 19.24
TF-MFR+SS (+19.46) | (+23.32) | (+16.56) | (+19.78)
Background Music 5dB 10dB 15dB Avg.
F-MFR+SS 212 731 13.29 17.57
T-MFR+SS 34.30 22.65 17.10 24.68
19.25 14.74 11.85 15.28
TF-MFR+SS (+12.97) | (+14.85) | (+10.84) | (+12.89)
TABLE V

PERFORMANCE COMPARISON IN WER (%) IN ALL SNR CONDITIONS AS
AVERAGE OVER FOUR TYPES OF BACKGROUND NOISE CONDITIONS, WHERE
F-MFR AND TF-MFR ARE WITH ORACLE MASK: RELATIVE IMPROVEMENT OF
TF-MFR COMPARED TO F-MFR Is SHOWN IN A PARENTHESIS (4+X.XX%)

5dB T0dB T5dB Ave.
F-MFR 3574 | 33.16 | 2479 | 34.56

4397 | 2858 1947 | 3067
TF-MFR (+4.81) | (+14.33) | (+22.14) | (+13.76)
F-MFRTSS 3853 2806 | 2110 | 2923

3297 | 2255 | 1709 | 2420
TF-MFRSS | 1488) | (+19.94) | (+1831) | (+17.71)

(without Oracle knowledge) would suggest an available perfor-
mance of the proposed method when applied with an actual
mask estimation technique in real-life scenarios. Here, we em-
ployed a mask estimation method which utilizes a Posterior-
based Representative Mean (PRM) estimate for determining the
reliability of the input speech spectrum, that has been proposed
in our recent study [40]. In this method, the PRM estimate is ob-
tained as a weighted sum of the mean parameters of the speech
model using the posterior probability. To obtain the noise-cor-
rupted speech model, a model combination method was em-
ployed, which was previously proposed for feature compensa-
tion [14]. The mask of the mth frequency band at time ¢ is de-
termined by comparing the ratio of the mth PRM estimates of
noise-corrupted and clean speech in log-spectral domain as fol-
lows:

iy (£, m) unreliable
# =z C(PRM 17
PXET) - reliable

where the threshold (prar was set to 1.15 for all noise conditions
in our experiment.

Employing the PRM-based mask estimation, the proposed
temporal-frequency correlation based method was compared
to the original F-MFR and other conventional preprocessing
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TABLE VI
PERFORMANCE COMPARISON IN WER (%) IN FOUR TYPES OF
BACKGROUND NOISE CONDITIONS AS AVERAGE OVER ALL SNRS;
5, 10, 15 dB, WHERE F-MFR AND TF-MFR ARE WITH PRM-BASED
MASK ESTIMATOR: RELATIVE IMPROVEMENT OF TF-MFR COMPARED
TO F-MFR IS SHOWN IN A PARENTHESIS (+X.XX%)

White Car Babble Music Avg.
Bascline 9039 | 6198 | 53.12 | 3912 | 6115
SS+CMN 6538 | 4196 | 4195 | 3082 | 45.03
VTS 59003 | 4474 | 3855 | 2906 | 42.85
VTS+SS+CMN 5084 | 37.07 | 3857 | 2947 | 3899
AFE 4538 | 3277 | 3376 | 2477 | 3417
F-MFR+SS 6144 | 4165 | 3931 | 3299 | 43.85

6193 | 3916 | 3778 | 3097 | 42.46
TF-MFR+SS (0.82) | (+8.33) | (+5.83) | (+7.61) | (+5.24)
F-MFRFSSTCMN 5531 | 41.19 | 3898 | 30.74 | 4155

53.62 | 37.88 | 37.04 | 2849 | 3926
TE-MFR+SS+CMN | L3 6y | (+1027) | (+6.95) | (+9.09) | (+7.50)

methods in Tables VI and VII. From the results, the pro-
posed TF-MFR method showed a +5.24% average relative
improvement in WER for all four background noise conditions,
compared to the F-MFR, when combined with spectral subtrac-
tion. It was found that combination with CMN more increases
the performance of the proposed TF-MFR. In case of combi-
nation with CMN, the TF-MFR showed 39.26% in average
WER which is comparable to performance of VTS+SS+CMN
(38.99%), presenting +7.50% relative improvement compared
to the F-MFR. These results confirm that the proposed method
could be effective at more increasing speech recognition
performance in various adverse background noise conditions
where mask information is unknown, by employing an effective
mask estimator. It can be seen that WER of TF-MFR with the
PRM-based mask estimator is still higher compared to the
Oracle case (Tables III-V) and AFE# (34.17%); however, this
can be addressed to some extent in the future by employing a
more effective mask estimation technique. In our study [40], the
missing-feature method with the PRM-based mask estimator
outperformed both VTS and AFE for the speech babble and
music noise conditions with the Aurora 2.0 task. It is considered
that more elaborated mask estimation method is required to
more improve performance of the proposed TF-MFR method
on the TIMIT corpus, by addressing the larger complexity of
speech structure included in the TIMIT database, compared
to the Aurora 2.0 which is a connected-digit task. Next, the
evaluation moves to actual in-vehicle speech data.

E. Real-Life In-Vehicle Condition: CU-Move Corpus

The proposed temporal-frequency correlation-based method
was also evaluated on a real-life in-vehicle condition obtained
from the CU-Move corpus [2]. The CU-Move project was de-
signed to develop reliable car navigation systems employing a
mixed-initiative dialog. This requires robust speech recognition
across changing acoustic conditions. The CU-Move database
consists of five parts: 1) command and control words; 2) digit
strings of telephone and credit numbers; 3) street names and ad-
dresses; 4) phonetically balanced sentences; and 5) Wizard of
Oz interactive navigation conversations. A total of 500 speakers,
balanced across gender and age, produced over 600 GB of data

4AFE showed the best performance without SS or CMN.
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TABLE VII
PERFORMANCE COMPARISON IN WER (%) IN ALL SNRS CONDITIONS
AS AVERAGE OVER FOUR TYPES OF BACKGROUND NOISE CONDITIONS,
WHERE F-MFR AND TF-MFR ARE WITH PRM-BASED MASK
ESTIMATOR: RELATIVE IMPROVEMENT OF TF-MFR COMPARED
TO F-MFR IS SHOWN IN A PARENTHESIS (+X.XX%)

5B | 10dB | 15dB | Avg
Baseline 8285 | 60.79 | 3981 | 6LI5
SS+CMN 6727 | 4220 | 2562 | 45.03
VTS 6898 | 3894 | 2062 | 42.85
VTS+SS+CMN 59.19 | 3560 | 2217 | 3899
AFE 5086 | 3134 | 2032 | 34.17
F-MFR+SS 278 | 4125 | 2751 | B85

6270 | 3920 | 2548 | 42.46
TF-MFR+SS (+0.33) | (+5.80) | (+9.59) | (+5.24)
F-MFR+SS+CMN 627 | 3835 | 2404 | 4155

60.94 | 3563 | 2120 | 39.26
TF-MFR+SSHCMN | 504y | (+7.63) | (+12.62) | (+7.50)

during a six-month collection effort across the U.S. The data-
base and noise conditions are discussed in detail in [2]. For the
evaluation in this study, we selected 949 utterances (length of 1
hour and 40 min) spoken by 20 different speakers (9 males and
11 females), which were collected in Minneapolis, MN. The test
samples represent an average 8.48 dB5 SNR calculated by the
NIST STNR Speech Quality Assurance software [41].

Table VIII shows the performance evaluation of the proposed
TF-MEFR on the CU-Move corpus. Here, we employed the iden-
tical PRM-based mask estimation as presented by (17), where
the posterior-based representative mean estimates are compared
to a threshold for binary decision. These results demonstrate
that TF-MFR+SS brings consistent improvement compared to
the original F-MFR+SS on the real-life in-vehicle condition as
well, resulting in +4.56% and +16.72% relative improvements
solely used and combined with CMN, respectively. It is noted
that the proposed TF-MFR+SS combined with CMN signifi-
cantly outperforms the sole TF-MFR+SS (32.62% — 28.30%),
while the original F-MFR+SS+CMN is slightly better than the
F-MFR+SS (34.18% — 33.98%). We believe that the TF-MFR
generates a more accurate spectral contour in the time domain
by utilizing temporal correlation, having CMN more effectively
estimate convolutional noise components which would be found
in actual in-vehicle environments. The results also show that
the performance of the proposed TF-MFR+SS+CMN is con-
siderably more effective on the CU-Move corpus, compared to
SS+CMN, VTS, and AFE. The proposed TF-MFR+SS+CMN is
still worse than VTS+SS+CMN in this experiment, however, the
performance difference could be compensated with a more ef-
fective mask estimator. The results here also prove that the pro-
posed TF-MFR method could be applicable to real-life in-ve-
hicle conditions to improve performance of speech recognition.

V. CONCLUSION

In this paper, a missing-feature reconstruction method was
proposed to improve speech recognition performance in various
types of background noise environments. The conventional
cluster-based missing-feature reconstruction method utilizes

50-dB and 5-dB SNR test samples of the car noise condition of Aurora2.0
show 7.15-dB and 11.66-dB average SNRs, respectively, using the NIST tool.
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TABLE VIII
RECOGNITION PERFORMANCE IN WER (%) COMPARISON FOR THE CU-MOVE
CORPUS WITH PRM-BASED MASK ESTIMATION: RELATIVE IMPROVEMENT
COMPARED TO F-MFR IS SHOWN IN A PARENTHESIS (+X.XX%)

Baseline 70.02

SS+CMN 39.90

VTS 48.31
VTS+SS+CMN 23.29

AFE 3145

F-MFR+SS 34.18
TF-MFR+SS 32.62 (+4.56)
F-MFR+SS+CMN 33.98
TF-MFR+SS+CMN | 2830 (+16.72)

only log-spectral correlation across frequency bands. To in-
crease performance of the missing-feature reconstruction by
leveraging temporal correlation across neighboring frames,
temporal spectral feature analysis was developed which uses
the log-spectral coefficients with a time-lag. In a manner similar
with the original reconstruction method, a Gaussian mixture
model was obtained by training on the extracted temporal
spectral feature set and a bounded MAP estimation was used
for feature reconstruction. The missing-feature was finally
reconstructed by a selective combination of the original fre-
quency correlation-based method and the proposed temporal
correlation-based method.

The performance of the proposed method was evaluated on
the TIMIT speech corpus using various types of additive back-
ground noise conditions and the CU-Move actual in-vehicle
corpus. Experimental results demonstrated that the proposed
method is more effective at increasing speech recognition
performance in adverse conditions. A suitable size time-lag
for the temporal spectral feature extraction was needed for
improved reconstruction performance. By employing the pro-
posed temporal-frequency correlation based reconstruction
method with oracle mask information, we obtained a +17.71%
average relative improvement in WER for white, car, speech
babble, and background music conditions over 5-, 10-, and
15-dB SNR, compared to the original frequency correlation
based method. The proposed method also obtained a +16.72%
relative improvement employing an actual mask estimation in
real-life in-vehicle conditions using CU-Move data.
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