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Abstract: In the development of driver adaptive and context aware active 
safety applications, driver–vehicle interaction signals offer excellent 
opportunities for advanced system design, yet limited progress has been 
realised. The implementation of driver adaptive and context aware systems 
requires longer time windows to analyse the current status of the driver and/or 
traffic situation ahead. In this study, a summary of systems that can be realised 
based on the long-term analysis of driver–vehicle interaction signals is 
presented. These signals are readily obtained by using Controller Area Network 
(CAN) Bus via On Board Diagnostic System (OBD) II port that can be utilised 
at low cost. Based on the analysis results, quantitative metrics are suggested 
that can be used in many ways, with two prospects considered here: 
(1) manoeuvres can be recognised for context aware intelligent active safety 
and (2) the models or signal processing methods can be proposed so as to 
distinguish distracted/impaired driver behaviour from normal/safe behaviour. 
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1 Introduction 

The last 20 years have witnessed a transformation of modern automobiles, turning them 
into vehicles packed with sensors, micro-chips and actuators, all forming integrated and 
modular sub-systems of safety, infotainment and energy management. In fact, it is 
reasonable to say that automobiles are the first merged domain of mechanical and 
electrical/electronic components offering flexibility for better control of 

1 energy production and use (i.e. timed/controlled internal combustion engine cycle or 
hybrid technology energy cycle/system switch management) 
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2 vehicle dynamics (i.e. ABS, ESP) 

3 instrument cluster (i.e. better displays, adaptable controls, setting points, etc.) 

4 driver assistance systems (i.e. lane keeping, adaptive cruise control, blind spot 
warning, parking assistance, etc.). 

At the centre of these developments is a protocol that makes it possible to communicate 
messages between sensors, processing units and actuators. That protocol was called 
Controller Area Network (CAN)-Bus introduced in the early 1990s by Bosch, Germany 
(1991). While this transformation has been taking place, other dimensions have caught 
the attention of researchers. All technology in modern vehicles must also consider 
the human component: driver. Although, the pursuit of understanding or modelling 
human driver behaviour is not new as can be seen in McRuer and Weir (1969), 
Pilutti and Ulsoy (1999), Nechyba and Xu (1998), Yang et al. (1997) and Salvucci (2006) 
the long-awaited unification between advanced vehicle concepts and human-centred 
systems has just begun. To be able to design truly cooperative and effective driver 
assistance, safety or infotainment systems, driver behaviour needs to be better 
understood, modelled and incorporated into overall system design. The focus of 
this study is to utilise some of the driver–vehicle interaction signals available from 
CAN-Bus and demonstrate new opportunities of developing more advanced driver 
assistance using CAN-Bus in a novel way. The final point in this study is the 
demonstration of potential impacts of several driver monitoring applications which use 
several other information sources (i.e. video, audio and bio-signals) based on real 
accident data. 

2 Framework and methodology 

To design active vehicle systems operating in a preventative way, it is crucial to take the 
driver, vehicle and environment dynamics into account. Driver dynamics can be 
expanded into several aspects including response time, general characteristics, 
capabilities and performance metrics. Environment dynamics are mostly related to the 
current traffic flow information and neighbouring vehicles, pedestrians and a range of 
road objects. Given the driver and environment dynamics, a contextual baseline model 
for the expected manoeuvres and driver response can be constructed. Acquiring such 
information and developing the corresponding model can help preventative systems to act 
in a responsive manner to avoid accidents 90% of which are caused by human errors 
Salvucci (2006). It should be also noted that not all accidents can be prevented since the 
timeline of the accident sequence combined with the physical limitation of vehicle 
systems render it impossible to avoid some situations. In those cases, a mitigation 
strategy can be employed to reduce the impact of inevitable accidents. There are 
challenges to overcome in order to obtain a reliable model as a baseline or reference to 
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identify abnormal pre-events or indicators before an incident takes place. Some of these 
challenges are as follows: 

Measurement: Most driver dynamics are difficult to quantify, and are usually 
obtained in a qualitative manner. Therefore, fundamental research is needed to 
generate a list of candidate quantitative metrics to characterise and probe driver 
dynamics. 

Complexity: If a complete map of driver and environment dynamics are needed at 
any time instant, a multisensory system is necessary including cameras to monitor 
the road scene and driver, radar or laser-based systems for distance measurements, 
CAN-Bus for vehicle dynamics, and sensors to measure any physiological changes 
in the driver. 

Time latency: Although a multi-sensor approach is the right answer, it is often 
difficult to process single channels and combine such information in a reasonable 
time so that the output can be used by the safety system for prevention. 

Reliability: Most sensor technology is in a set of constant improvement and some 
specific channels may not be operating as expected due to challenges on board 
(i.e. computer vision systems are subjected to illumination change and vibration). 
Therefore, a multi-sensor system which can reconfigure itself based on the available 
channels may guarantee overall system reliability. 

Cost: As the system sensor count increases, the operating the cost of the system also 
increases. Any additional cost to the system needs to be justified adequately, that the 
utility ratio (potential savings in lives/cost) can be maximised for an active safety 
solution. 

The ultimate aim in active vehicle safety (AVS) research and development is to 
overcome these challenges designing a multisensory system such as the conceptual 
system illustrated in Figure 1. 

The prospective sensors are mapped into three domains as shown in the monitoring 
system in Figure 2. In this study, only a CAN-Bus-based system will be implemented in a 
systematic approach. The reason behind this focus is that the most important driver–
vehicle interaction signals from CAN-Bus are already available in any vehicle and can be 
tapped using the OBD-II port, which holds the promise of a low-cost system. In addition, 
these signals are the most relevant in understanding driver and vehicle dynamics together 
(as depicted in Figure 2) since they represent their interaction. The third dimension of the 
problem, namely environment dynamics, deserves a detailed separate study, and therefore 
will not be addressed here. 

Here, a systematic approach to signal processing for driver–vehicle interaction will be 
framed, applied and evaluated as a first step towards realising AVS systems with a 
predictive and/or monitoring attribute. It should be emphasised that only a part of CAN-
Bus signals representing driver–vehicle interaction is used in this study having SWA and 
speed as the primary signal channels. The additional sensor channels are used to construct 
the ground truth and perform the labelling as detailed in Section 3. 
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Figure 1 Conceptual multi-sensor system and block diagram for AVS 

Figure 2 Mapping of sensors in AVS systems to three main domains of driving dynamics 
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One of the most convenient approaches is to identify the context, and then assess if there 
is any deviation from the expected ‘normal’ manoeuvre/behaviour. Therefore, the system 
mainly consists of two sub-modules: 

1 the first sub-module identifies the instant context of driving in terms of expected 
manoeuvres or regulatory tasks 

2 the second sub-module quantifies any deviations from the baseline for that particular 
context and outputs the measure together with a trigger to be delivered to 
correspondent actuators or a supervisory controller system. 

These sub-systems require three different pattern recognition problems to be solved in 
real-time: 

1 Context recognition: this involves classification of manoeuvres and regulatory tasks 
which can be used to reconstruct any route and context of driving. For this 
investigation, the manoeuvres are considered to include right turn (RT), left turn 
(LT), lane change (LC) and stop (ST). For straight segments of the road where no 
manoeuvres are required, the task can be classified either as lane keeping for straight 
segments (LKS) or curved segments (LKC). LKS and LKC are considered as 
regulatory tasks during driving which are essentially different from other 
manoeuvres which include perception, cognition, decision or action sequence. From 
a pattern recognition point of view, this problem can be considered as a 7-class 
classification problem. Therefore, it requires an optimum set of features which would 
separate these classes with the highest of accuracy. Another issue with selection of 
optimal features is that the calculations should not be costly in terms of time. 

2 Abnormality detection: this relates to detection of deviations from the ‘normal’ 
signals for each manoeuvre or regulatory task such as lane keeping (LKS) or curve 
negotiation in LKC. Deviation from the normative behaviour may be caused by 
distraction, sleepiness/drowsiness or stress. Even ignoring the cause of the deviation, 
a module based on CAN-Bus can reveal at least the abnormalities. Essentially, this 
solution can be considered a two class problem for distinguishing abnormalities from 
normal signals. 

3 Prediction of distraction level: this requires expanding the solution to Problem 2. To 
quantify the levels, results from human factors will be employed to map several tasks 
to their predicted distraction levels and used in supervised training. 

To obtain viable solutions to these three problems, the methodology will follow these 
steps: 

1 explore generic feature definitions for recognition of a manoeuvre 

2 define manoeuvre specific features/driver performance metrics to distinguish 
abnormalities/deviations 

3 use feature selection methodologies to obtain a compact reliable feature set for three 
‘pattern recognition in time series’ problems described above 

4 implement manoeuvre recognition (context recognition) and abnormality detection 
sub-modules with selected feature sets and evaluate their performance. 
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Before moving into details of the methodology here, it is necessary to mention the 
dimensions of the problem at hand since it helps construct a road-map for achieving an 
effective AVS system. A categorisation of applications is given in Figure 3 leading to 
different AVS structures. For both context recognition and abnormality detection, the 
application can be either 

1 generic 

2 person-specific. 

Generic systems are expected to address 95% of drivers with reasonable reliability, with 
acceptable false alarm rates (i.e. <2%). Designing such a generic system is difficult 
because of the highly dynamic nature of the driving task including the variations between 
drivers, conditions and even discrepancies between driving sessions on the same route by 
the same driver. Previous work has concentrated on designing a generic system for 
context recognition and abnormality detection using stochastic methods with non-optimal 
features (Boyraz et al., 2007; Sathyanarayana et al., 2008). An alternate to generic 
approach, person-dependent systems reduce the effect of inter-driver variation on the 
performance of recognition. However, driver-dependent AVS systems require the 
personal driving characteristics and/or biometrics to be stored on the in-vehicle system. 
Driver-dependent AVS is expected to have at least three sub-modules 

1 Driver identification: expected to use speaker and/or face recognition or a smart key 
to reduce the complexity of driver monitoring. 

2 Manoeuvre/context recognition: expected to monitor and recognise the context of the 
driving to reduce the complexity of abnormality detection task. 

3 Abnormality detection: given the specific driver characteristics/models and context, 
this model is expected to detect abnormalities (i.e. due to distraction, sleepiness, 
inattention). 

A preliminary driver-dependent framework has been designed and evaluated in previous 
work (Boyraz et al., 2008). 

Another categorisation of AVS systems is related to functioning or operation mode. 
According to how the system is expected to operate, it can be: 

1 predictive/feed-forward 

2 feed-back. 

Predictive systems are expected to measure and analyse the immediate future path of the 
system in a state-space manner and act upon the result, and hence are extremely time-
critical. A predictive system can be employed both as a warning/driver assistance system 
and a supervisory system to activate the controllers and intervene in driving if an 
immediate accident is perceived by peripheral sensors such as radars and vision systems. 
Feed-back systems need not be predictive and are therefore less time-critical. These 
systems should assist the driver, providing feedback as warnings on their performance. 
From an AVS system design perspective, the feed-back systems are neither completely 
active nor passive safety devices, but they do aim to improve driver behaviour and are not 
designed to intervene and take control of the vehicle. 
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Figure 3 AVS systems categorised according to their data/structure and output/end-use 

The proposed system in this paper will be a generic-type in terms of design, and 
feedback-type in terms of operation-mode. However, upgrading the system into a 
predictive one is not difficult if CAN-Bus information is used along with the 
corresponding computer vision and radar systems providing predictive information on the 
road ahead. In addition to this, time-critical recognition will be separately evaluated as a 
first step towards predictive AVS. Two main research phases are considered here. 

First, context recognition achieved using driver–vehicle interaction signals from 
CAN-Bus can be named the ‘manoeuvre recognition module’. If GPS and road scene 
video are available, then the manoeuvre recognition is only used as a redundant module 
to confirm what is inferred from the former two. However, when these two information 
sensors are not available, CAN-Bus-based manoeuvre recognition can provide reliable 
context information, at least at the manoeuvre level for the abnormality detection. For 
manoeuvre recognition system this involves classifying the upstream signals into the 
eight previously defined clusters, representing the most encountered manoeuvres. To 
design such a system, the crucial question is ‘What is the optimal feature set for CAN-
Bus time series to distinguish between different manoeuvres?’ Therefore, the main aim 
for this part is to define a discriminative feature set to obtain classification results with 
clusters as separable from each other as possible. To obtain a preliminary feature set to be 
optimised, we employ two different approaches: 

1 Canonical signal reduction methods in the time series, particularly Fourier Transform 
and wavelet decomposition (WD). 
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2 Statistical feature definition using histogram-based calculations over a time window 
in a time series. 

For classification algorithms, we follow two separate approaches in line with these 
feature sets: 

1 ANN 

2 SVM to work with feature vectors. 
The results are used to determine the most effective compact feature set, independent of 
the classification algorithm. Therefore, to optimise the feature set, we employ 
unsupervised clustering as a guideline. To assess the predictive capability of our 
manoeuvre recognition system, partially incomplete signals are used as a separate test 
batch. 

Second, for abnormality detection, each manoeuvre is investigated separately using: 
1 physical cues of vehicle dynamics 

2 human factors research to define the nominal manoeuvres 

3 pre-labelled normal manoeuvre of that class. 
Based on these nominal definitions, the best set of features to measure 
deviations/abnormalities is sought after for each manoeuvre. Abnormality detection can 
be viewed as a 2-class classification problem or a multi-class level-of-abnormality 
problem. Both of these are considered in the investigation to lay the foundation for 
predictive AVS, since the output of abnormality detection can be used by controllers to 
avoid accidents. 

3 Data collection and organisation 

In this section, the data collection vehicle, experimental procedure and corpus 
organisation are presented. Firstly, the instrumented vehicle is introduced briefly together 
with sensors. Secondly, the data collection procedure and corpus organisation is with a 
description of the corpus demographics. Finally, a much needed tool in multi-media 
signals processing/driver data analysis is introduced for data annotation section. In 
addition to the synchronised data annotation tool (UTDAT), a colour-code representation 
for the driving time-line is proposed as a standardised visualisation tool for interpreting 
and analysing extensive volumes of driving data, increasing the efficiency of exploratory 
research in this area. 

3.1 Instrumented vehicle: UTDrive multi-sensor research platform 

The data collection vehicle is a Toyota RAV4 equipped with following sensors as 
illustrated in Figure 4: 

two CCD cameras for monitoring the driver and the road scene (resolution 480 × 640 
pixels, 30 frames/sec) 

custom-designed microphone array (5 microphones) to capture driver’s speech as 
well as environment noise conditions in the vehicle 
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a close talk microphone to obtain driver’s speech with reduced noise content 

optical distance sensor to obtain the headway distance between the equipped vehicle 
and other vehicles in traffic 

GPS for location tracking 

CAN-Bus OBD II port for collecting vehicle dynamics: vehicle speed, SWA, gas and 
brake inputs from driver 

Gas/brake pedal pressure sensors to collect information concerning pressure patterns 
in car-following and braking behaviour. 

All data collected from these channels are synchronised and time stamped during the 
acquisition stage using a multi-channel data acquisition unit DEWETRON (2009) 
Synchronised data collection facilitates both data mining and multi-sensor information 
fusion in later stages. The data acquisition interface can be seen in Figure 5, depicting 
audio signals along the top row, video channels; road (left) and driver (right) scene, 
CAN-Bus signals and GPS at right bottom corner. 

Figure 4 Instrumented data collection vehicle: UTDrive multi-sensor research platform 
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Figure 5 Data acquisition interface showing audio signals, video channels, CAN-Bus and GPS 

3.2 Database: UTDrive Corpus 

UTDrive Corpus includes data from previously noted sensor channels (13 separate data 
streams: 2 video, 6 audio, 1 GPS, 1 optical distance, 1 CAN-Bus, 2 pressure sensors 
located on the gas/brake pedals). The corpus contains a balance in gender (37 male, 
40 female), age (18–65) and different experience levels (novice to expert) in driving. To 
examine the effect of distraction and secondary common tasks (CT) on these driver 
groups, a close-to naturalistic data collection protocol is used. The routes taken during 
data collection are given in Figure 6, and comprise of a mixture of artillery, service and 
main roads in residential (left) and business districts (right) in Richardson, TX. Each 
driver participating in the study is required to drive these two routes at least twice in each 
session to obtain a baseline and a distracted version of the same route. A session includes 
a mixture of several secondary tasks as listed in Table 1 taking place in the road segments 
depicted in Figure 6. According to this protocol, a participant gives 12 runs of data with 
6 being baselines for that day and that route, the other half featuring several distraction 
conditions. Each session is separated by at least 2 weeks in order to prevent driver 
complacency with the route and vehicle. Almost 60% of the data in the corpus consists of 
a full session profile from drivers; the remaining part contains incomplete sessions and 
data portions due to of consent of the participant not to continue data collection or one of 
potential 13 sensors failures. The secondary tasks represent a low to mild level of 



      

      

   340 P. Boyraz and J.H.L. Hansen    

      

      

      

cognitive and mental load for the drivers. A suggested break-down of tasks and the 
perception channels they load in the driver’s driving process is shown in Figure 7. It 
should be noted that the distribution is just a guideline to depict the workload involved in 
each task, and LCs included here are not voluntary but prompted; therefore seen as a task 
and not a driver event. Regarding the question as to what degree each task loads these 
perception channels, and what would be the impact on total driving performance we 
proposed four different hypotheses which are detailed in the next section as part of 
presenting data annotation tool. The distraction tasks consists of in-vehicle navigator 
directed lane-change, road sign reading (SR), conversation with the in-vehicle operator 
and the dialogue interaction using cell-phone. The two dialogue systems were Tell-Me 
(TM) (voice portal for general info and news) and American airlines (AA) (real-time 
interaction for flight arrival and departure info from Dallas-Fort Worth airport (DFW). 

Figure 6 Data collection routes: residential (left), business (right) segmented to show assigned 
tasks

Table 1 UTDrive corpus data collection protocol 

Secondary tasks 
Part A B C 

1 Lane changing Common tasks (radio, 
AC, etc.) 

Sign reading 

2 Cell phone dialogue Cell phone dialogue Conversation 

3 Common tasks Sign reading Spontaneous 
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4 Spontaneous Conversation Sign reading 
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Table 1 UTDrive corpus data collection protocol (continued) 

Secondary tasks 
Part A B C 

Session 1 
Route 1 Just drive 
Route 1 Secondary task A 
Route 2 Secondary task A 
Route 2 Just drive 

Session 2 
Route 1 Secondary task B 
Route 1 Just drive 
Route 2 Just drive 
Route 2 Secondary task B 

Session 3 
Route 2 Secondary task C 
Route 1 Secondary task C 
Route 2  Just drive 
Route 1 Just drive 

Figure 7 Workload distribution of secondary tasks to visual, auditory, proprioreceptive, cognitive 
and manual loads 

Workload Distribution of Secondary Tasks
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3.3 Data annotation tool: UTDAT and colour-coding for driving timeline 
(CCDT) 

Data annotation is the most crucial step in analysis of any multi-sensor data set since it 
provides the basis for further signal processing. It should be noted that although segments 
of the roads are assigned to different tasks, and driving events can also be detected using 
this information, the data collection is highly dynamic in nature since it takes place in 
real-traffic. Therefore, it is required to tag the events and tasks to record their time tags 
(begin–end). For this particular study, the interest is to recognise the driving manoeuvres 
and detect distractions; therefore two different transcription files are prepared for each 
run. First, using video streams and CAN-Bus channels, driving events are tagged having 
six different labels: RT, LT, LC, LKS, LKC and ST. The events constitute the driving 
event time line parsing the session into meaningful parts which need to be examined 
separately. The second transcription process involves time-tagging of 12 important task-
related events using the audio signal together with video. These 12 labels are: driver talks 
(DT), experimenter talks (ET), navigation instruction (NI), silence (SI), TM dialogue 
system, AA dialogue system, lane change prompts (LP), CT, SR, music playing (MP) and 
two additional driver-response related tags; interrupted utterance (IU) and response delay 
(RD). The UTDAT data annotation tool is written using MATLAB GUI and shown in 
Figure 8. This tool consists of four windows (from top left) audio, video, CAN-Bus 
(lower-left) and transcription (lower right) panels. 

To facilitate the analysis of large-size multi-sensor driving data, a colour code for the 
driving timeline is prepared, visually marking the aforementioned events and task labels 
with certain colours and projecting them as two parallel time-lines. An example of the 
timeline is shown in Figure 9, with the legend of the colour coding for driving timeline 
(CCDT). 

The representation in Figure 9 can be used as a coded way of representing the driving 
history of the driver (driving characteristic print, almost looking like a DNA sequence) 
without pertaining privacy issues. There might be other venues of exploiting this coding 
protocol; such as storing driver’s favourite routes and driver characteristics in a succinct 
way; however, we will strictly use it here as a signal history reference for our analysis. 
Using CCDT, it is possible to observe the events and secondary tasks in a session 
simultaneously. This visualisation tool is heavily used in further analysis stages for 
building the distraction/work-load hypotheses, which exploits the overlaps between task 
and events in the timeline for a multi-layer data analysis. 
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Figure 8 UTDAT multi-media data annotation tool, capable of cross-referencing and 
synchronisation of 2 video, 1 audio and CAN-Bus streams 

Figure 9 Time line of driving events (black band) and tasks (white band) depicted in CCDT 
(see online version for colours) 
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4 System implementation and results 

In this section, a subset of the UTDrive Corpus is employed using all available sessions 
from 10 female and 10 male participants to design the signal processing modules the 
depend only on CAN-Bus information (60 sessions of multi-sensor data). The first 
system involves manoeuvre recognition and is particularly needed for active safety 
applications since the driving context is important in assessing if the driver is at risk of 
having an accident or not. The second system is a distraction detection module using 
manoeuvre/context information together with signal energy/complexity properties and 
vehicle dynamic norms. 

4.1 Manoeuvre recognition 

A general signal decomposition approach is employed using fast Fourier transform (FFT) 
and WD. The coefficients and different level of analysis results from these 
decompositions are taken as features to represent the CAN-Bus signals, reducing the 
dimension of the time-series. After obtaining the feature space, a cluster analysis is 
performed to observe the distribution of the features. Next, geometric constrains for 
clustering are examined and support vector machines (SVM) are determined to be 
convenient for manoeuvre classification task via supervised clustering. As a final step to 
explore potential real-time applicability of the system, a time-window duration analysis is 
also performed. 

4.1.1 Background on FFT and WD for time-series analysis 

Fourier transform has been one of the main tools in time series analysis, especially in the 
examination of spectral attributes of data. In this framework, the FFT is used for data 
reduction. Most coefficients of the FFT have small values and even if they are ignored 
the original signal can be approximated reasonably well; however, this is equivalent to 
having the signal filtered by a low-pass filter. This property makes the FFT a perfect 
match for manoeuvre recognition using driver–vehicle interaction signals. However, 
although Fourier transform is well suited for frequency domain analysis, it loses time-
location information. A discrete Fourier transform (DFT) can be calculated as seen in 
Equation (1) having the time series represented by T = {x0, …, xN 1}.

1
2 ( / )

0

DFT( ) ( = 0, ,  1)
N

i k n N
k n

n

T x x e k N  (1) 

FT and WD are both orthogonal function families; however, WD uses scaling and 
shifting therefore having localisation property and multi-resolution. In addition to this, 
FT is usually more appropriate for smooth functions whereas WD can approximate local 
discontinuities and jumps well. WD coefficients can also be interpreted as low and high 
frequency content. The approximation provided by mother wavelet can be considered as 
low frequency content/general signal trend whereas the details provided by father 
wavelets constitute high-frequency content in the signal. Haar wavelet function family 
which is used in this paper in the next sections is given in Equation (2). 
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[0,1/2) (1/2,1)( ) = ( ) ( )x x x

and 

( ) = 2 2 ,  j / 2 j
j,k x x k j k Z (2)

In the next sections, the resultant feature space distributions are given after FFT and WD 
applications. The effect of the time window is discussed separately. 

4.1.2 FFT analysis 

Three important channels (SWA, speed and brake) from CAN-Bus are used in FFT 
analysis to compress their content to be used in cluster analysis. First, the full length of 
the signals is used to calculate the FFT and only the first coefficient is taken to represent 
the single channel information. This led to formation of 3-D feature space that is shown 
as a 3-D scatter in Figure 10. 

From the scatter plot in Figure 10, it is clear that the clusters constituting different 
manoeuvres are easily distinguishable. A clustering result using simple geometric 
constraints (2 lines and 2 parabolas and a 2-D plane to set the borders between clusters) is 
given in Table 2. The clustering performance is further improved with the application of 
SVMs in following sections. 

Figure 10 3-D feature space formed by first coefficients of FFT using full length signals: SWA, 
speed and brake 
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Table 2 Clustering results on FFT feature space using full length 

True positive rate TPR = TP/P 0.937 
False positive rate FPR = FP/P 0.008 
Accuracy ACC = (TP + TN)/(P + N) 0.937 
Specifity SPC = 1  FPR 0.991 
Positive prediction value PPV = TP/(TP + FP) 0.958 
Negative prediction value NPV = TN/(TN + FN) 0.991 
False discovery rate FDR = FP/(FP + TP) 0.041 

Table 2 demonstrates that just using simple geometric decision surfaces between clusters 
it is possible to classify the manoeuvres (6-class problem) with 93.7% accuracy and a low 
false positive rate (FPR) (0.8%). These encouraging rates indicate that the system might 
have potential to be deployed as a basic manoeuvre recogniser when GPS, turn signal and 
video information is not available. The next important question, if the system can 
recognise the manoeuvres on their onset with narrower time windows, is explored 
separately. The next session explores the alternative time-analysis kernel looking at the 
potential of wavelet functions. 

4.1.3 WD analysis 

The same signals used in FFT analysis are used in WD analysis to observe if they can 
provide better separation. Different wavelet types (i.e. Haar, Daubechies and Symlet) are 
used in the exploratory phase with several levels of decomposition trials. Haar wavelet 
has been selected due to its simplicity and 16th level is identified to provide only one 
coefficient for the signal. The only coefficient provided by Haar WD on 16th level is 
used for each channel to form a new 3-D feature space which is plotted in Figure 11. 

As noted in the comparison of Figures 10 and 11, the wavelet 3-D feature space maps 
the clusters closer to each other; therefore, we decided to use the potential of wavelet for 
the abnormality detection and not for manoeuvre recognition. Therefore, the remaining 
part of the manoeuvre recognition system design will consider only the FFT feature space 
(Figure 10). It should be noted, however, that since we only search for a single coefficient 
from each channel, the full potential off the wavelets are not exploited here. The wavelets 
are employed at lower level decompositions for separation of high and low frequency 
content for abnormality detection in Section 4.2. 

4.1.4 SVM and clustering 

The 2-D projection of the clusters seen in Figure 10, with the exception of the ST class is 
shown in Figure 12. Since the clusters are located well in the 2-D FFT space as well, we 
performed an SVM clustering analysis that includes five classes. Since the ST has FFT-
Brk dimension drastically different from any other driving event, that we have clustered 
this manoeuvre simply by using the brake channel. 
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Figure 11 3-D feature space formed by only coefficients given by WD using Haar at 16th level 

Figure 12 2-D feature space formed by FFT from SWA and Brk channels of CAN-Bus 
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One-against-all algorithm is applied to find the optimum support vectors separating the 
manoeuvre clusters. Here, 150 manoeuvres for each class are used for training and four 
different sets of over 100 manoeuvres are used for testing, where each class comprises all 
20 drivers’ neutral and distracted manoeuvres (LT has a lower number since it does not 
occur often in the routes). The result of the classification on the test set comprising 463 
manoeuvres in total is shown in Figure 13. As expected, results are not significantly 
different from the geometric constraints applied in the feature space, but a definite 
improvement in accuracy and false alarm rate is observed. In fact, the accuracy of the 
SVM classifier is 99%, with the only confusion occurring between the LKS and LKC 
pair. However, it must be noted that if the algorithm is required to work in real-time, it is 
better to save the support vectors, or geometric constraints, as classification constraints in 
a look-up table format for faster operations. 

4.1.5 Time-window analysis 

In active safety systems, the prediction capability and accuracy of the system are prior 
design criteria. However, if the system is required to work in narrow time windows (i.e. 
the systems to be employed as modules in predictive and intervention systems), these 
criteria need to be viewed from a time analysis perspective. Therefore, a time-window 
analysis was performed to measure the accuracy of the generic manoeuvre detection 
system. As can be seen from Figure 14, when the time analysis window length decreases 
from 5 to 1 sec, the accuracy drops to 68%. Acceptable accuracy is above 90%, and this 
rate is reached at a 5 sec analysis time window. Considering that RT, LT and LC might 
take equal or less time than this time-window; reflect the poor overall system 
performance as the analysis time decreases. However, the poor accuracy is caused by 
LKS and LKC manoeuvres, since they require longer time windows to be recognised. 
Taking this fact into account, a separate plot showing only RT, LT and LC manoeuvres is 
examined. From Figure 15, it can be seen that at a 1.5 sec time window length, acceptable 
accuracy is accomplished. Moreover at 3 sec, the FPR drops to 3% which is only 1% 
away from a deployable system. 

4.2 Abnormality detection and level of distraction estimation 

In this section, the second module of the AVS system is implemented for detecting 
abnormalities in driver–vehicle interaction signals from a driver behaviour and 
performance point of view. This system attempts to expand CAN-Bus-based diagnostics 
to driver dynamics for an on-board human-centric active safety module. To achieve this, 
the abnormality and distraction is first defined and our four hypotheses for distraction 
level with respect to task difficulty and overlap between important driving events and 
secondary sub-tasks are considered. This part of the study has a two-fold contribution, 
since it searches for quantitative metrics for distraction detection in addition to testing 
different hypotheses derived from human factors research through a classification 
scheme. 
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Figure 13 Classification results for 463 test manoeuvres for 5-class using one-against-all SVM 
algorithm 

Figure 14 Accuracy of generic manoeuvre recognition with varying time window lengths

Accuracy in Maneuver Recognition for 6 Maneuver Types
Geometrically Defined Decision Surfaces
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Figure 15 True positive and FPRs of generic manoeuvre recognition including only short-term 
manoeuvres (i.e. RT, LT, LC) 
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4.2.1 Definition of abnormality and distraction 

Distraction can be defined as any secondary task, internal condition or external stimuli 
diverting the attention of the driver. In addition to this, driver performance and attention 
span can be affected by sleep deprivation, fatigue, intoxication or physiological 
conditions. This broad spectrum can be grouped under the category of ‘abnormality’. 
Although this paper only focuses on the effect of distraction due to secondary tasks, any 
of the aforementioned conditions may cause a similar observation in the resulting driver–
vehicle interaction signals. It has to be noted that it is not easy to propose quantitative 
metrics for such an ill-defined and ambiguous daily phenomena; however, a general 
systematic approach is followed isolate some part of the problem. For example, the very 
definition of distraction in quantitative terms may depend on the driving 
event/manoeuvre itself. 

Therefore, the metrics or features proposed are expected to be highly manoeuvre-
dependent. It is our motivation that a set of reliable quantitative metrics can be defined 
based on the normality of the manoeuvre with requires separate analysis of the 
manoeuvres. This approach makes the first module of an AVS system, manoeuvre 
recognition, a crucial part of the system since distraction detection relies on recognition 
of the current manoeuvre. Although, manoeuvre-dependent abnormality detection is a 
viable approach connected to actual vehicle dynamics and the definition of safe driving 
behaviour, generic features for abnormality detection are also explored. The next section 
concentrates on the search for generic abnormality detection using WD and sample 
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entropy (SampEnt) by Boer (2001). Next, any manoeuvre dependent abnormality that can 
be seen via driver–vehicle interaction signals is defined and metrics calculated. The last 
section tests the metrics proposed via four hypotheses presented here. 

Using CCDT employing the transcriptions an estimated level of distraction is 
proposed following four different hypotheses on how the secondary tasks affect 
distraction level. 

Hypothesis 1: All secondary tasks during the driving session have the same level of effect 
on distraction and driver performance. The effect lasts as long as the secondary task is 
present. Assuming the arbitrary point in distraction level is represented by Dt, the start 
and finish of the secondary task is represented by ts and tf, in order. The formulation in 
Equation (3) can be applied to describe the Dt based on the CCDT:

( < < ),  =1;  =0If ts t tf then Dt else Dt  (3)

Essentially, this hypothesis is a binary decision based on the distraction being present or 
not (e.g. on/off). 

Hypothesis 2: The distraction level is affected by time on task. In other words, the level of 
distraction is related to the persistency of the secondary task. This is formulated using 
Equation (4), with additional time tags, es and ef, which represent the start and finish of 
the driving event.

( < < ),  =(| |  | |) / (| |);  =0If ts t tf then Dt tf ts ef es ef es else Dt (4)

Hypothesis 3: The distraction level is affected by the task difficulty, and the level remains 
the same as long as the secondary task is present. The formulation is given in 
Equation (5).

, ( < < ),  = ;  =0. [1 5]For task j If ts t tf then Dt j else Dt j (5)

Hypothesis 4: The distraction level is affected by task difficulty as well as time-on-task 
overlap between the driving event and the secondary task as expressed in Equation (6).

( ), (| | | |) / (| |); 0if ts t tf then Dt aj tf ts ef es ef es elseDt (6)

A continuous level of estimated distraction level is calculated based on the CCDT of the 
driving session. An example showing CCDT, CAN-Bus signals and estimated distraction 
level according to Hypothesis 4 is shown in Figure 16. For all 20 subjects’ sessions in the 
sub-set database, a similar plot is drawn and saved to help in the exploratory analysis 
phase. 

4.2.2 Generic features for abnormality detection 

This section concentrates on two different methods in finding generic features for 
abnormality detection: 

1 WD detailing signals with high frequency coefficients 

2 SampEnt. 

The first method, WD, separates the signal into approximation and detail parts at 
different levels. For example, decomposition is seen in Figure 17 for a RT manoeuvre 
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SWA signal. We propose that the detail signals can capture the fluctuation or high 
frequency content in the signal; therefore the total energy of the detail signal can form a 
new metric for micro-corrections in the signal. In fact, micro-corrections in SWA are 
well-known indicators for distraction or drowsiness (Wierwille et al., 1994). Although 
initially suggested for lane keeping performance measurement, we will expand the 
applications of metrics based on SWA high frequency content. 

More traditionally, for SWA, SampEnt, standard deviation (STD) and SWA rate 
(SWAR) are suggested as a means to measure the fluctuations over a time window for 
driver performance measurement, especially during a lane keeping task (Gunay, 2008). 
However, SWA can assume extreme levels during RT and LT manoeuvres; this may 
render statistical metrics unreliable. In addition to that, using metrics for abnormality 
detection, a baseline for each manoeuvre type is required; otherwise the metrics are not 
useful since the magnitude of the signals may change due to the manoeuvre itself, but not 
based on disturbance or distraction. Therefore, metric reliability and hypotheses are 
assessed using correlation analysis over the entire database. Hypotheses 2–4 explained in 
Section 4.2.1 are tested using a correlation analysis between generic metrics of energy of 
WD detail signal (DB4, level 6) and SampEnt for SWA and speed channels from the 
CAN-Bus. Each hypothesis is considered in two parts; one assuming that all metrics 
increase and the other assuming that all metrics decrease with the distraction level. After 
correlation analysis is performed, only correlated cases with r > 0.1 and p < 0.05 are 
taken into account. The percent of data complying with these conditions are stated in 
Table 3. As seen in this table, none of the hypotheses is strong enough to eliminate the 
others and there is significant amount of data supporting all of them. The time window 
for calculation of the metrics used in the correlation analysis was 1 sec. 

Figure 16 Estimated distraction level calculated using CCDT shown together with CAN-Bus 
signals for participant dm4 (see online version for colours) 
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Figure 17 WD of a SWA signal for RT manoeuvre showing the decomposition tree, 
approximation and detail signals 

Table 3 Percent of data complying with Hypotheses 2–4 

Hypothesis testing  Correlation (r > 0.1, p < 0.05)% 

Manoeuvre (+) or ( ) Percentage Task Combine 

Positive 54.16 58.33 54.16 LC 
Negative 58.33 50 54.16 
Positive 25 22 19.4 LKC 
Negative 38 38 41.6 
Positive 17 17 0 LKS 
Negative 50 50 0 
Positive 46.8 31.2 40.6 LT 
Negative 59 62.5 53.1 
Positive 50 37.5 50 RT 
Negative 37.5 45.8 37.5 

Average + 38.592 33.206 32.832 
Average  48.566 49.26 37.272 

Table 3 shows that a general trend concerning the distraction detection with proposed 
metrics and hypothesis cannot be confirmed if all the metrics are expected to increase or 
decrease together without regard to type of manoeuvre. Therefore, another table is 
obtained to consider the performance of metrics complying with the hypothesis in terms 
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of percent. Table 4 shows these percentages of metrics correlated with our three 
hypotheses. 

From Table 4, it can be noticed that for a specific manoeuvre metrics might change in 
different direction from the general positive or negative expectation. Therefore, using this 
observation a general trend of each metric change for each manoeuvre is constructed as 
seen in Table 5. In this table, a zero means that hypothesis is wrong and 1 means a true 
value. Therefore, for example, for LC manoeuvre the pattern of metrics change is ( , +, 

, +) whereas it is the reverse for LT and RT. 
A new correlation analysis is performed considering the new hypothesis constructed 

on observations based on metric trends. The results are shown in Table 6. 
Table 4 Percentage of data where the metrics were correlated with the hypotheses 

Metric testing Correlation (r > 0.1, p < 0.05)% 

 (+) or ( ) SWA_WDE Speed_WDE SWA_Ent Speed_Ent 

Positive 16.6 72.2 33.3 100 LC 
Negative 88.9 38.9 72.2 16.6 
Positive 33.3 11.1 18.5 25.9 LKC 
Negative 40.7 33.3 37 48.1 
Positive 15.4 10.2 15.4 5 LKS 
Negative 28.2 46.1 23 38.4 
Positive 25.6 20.5 35.9 7.7 LT 
Negative 25.6 35.9 20.5 46.1 
Positive 33.3 12.8 23 15.4 RT 
Negative 12.8 20.5 12.8 28.2 

Average + 24.84 25.36 25.22 30.8 
Average  39.24 34.94 33.1 35.48 

Table 5 New hypothesis and trends in metrics change 

New hypothesis 

SWA_WDE Speed_WDE SWA_Ent Speed_Ent 

0 1 0 1 LC 
1 0 1 0 
0 0 0 0 LKC 
1 1 1 1 
0 0 0 0 LKS 
1 1 1 1 
0 0 1 0 LT 
0 1 0 1 
1 0 1 0 RT 
0 1 0 1 
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Table 6 New hypothesis based on metric trends 

Correlation (r > 0.1, p < 0.05)% 
Hypothesis testing Percentage Task Combine 

LC 83.3 75 83.3 
LKC 38 38 41.6 
LKS 50 50 0 
LT 71.8 65.6 65.6 
RT 62.5 33.3 62.5 
Average 54.9 51.8 53.6 

As it can be seen from Table 6, the generic distraction detection with proposed metrics 
and new hypothesis can be achieved with improved performance (e.g. 83.3% for LC, 
62.5% for RT and 71.8% for LT). However, LKS and LKC manoeuvres cannot be 
assessed with high accuracy in terms of distraction detection with the generic system. The 
possible causes of the poor performance on LKS and LKC is due to 

1 narrow time window (1 sec) 

2 driver characteristics and different complacency zones/error accumulation-correction 
habits of drivers during regulatory tasks such as LKS and LKC. 

The next section proposes a manoeuvre and driver dependent, long-term distraction 
detection system building on these observations from this evaluation. 

4.2.3 Manoeuvre and driver-dependent system 

CAN-Bus signals can reveal the distraction level of the driver when the variability due to 
manoeuvres and driver characteristics are eliminated or dealt with so as to not cause false 
alarms. Therefore, a methodology using abaseline for each individual driver, and 
particular manoeuvre, is proposed to obtain better detection performance compared to a 
generic system. A general flow-diagram of the methodology is given in Figure 18. The 
variation in the signals due to the manoeuvre/particular road segment is eliminated here 
by manoeuvre classification given in Section 3.1 of this paper. 

After the feature extraction process, distraction detection is performed by taking the 
driver’s baseline for a given manoeuvre obtained from the same route segment (marked 
as 2 in Figure 6) as the neutral conditions. Since the UTDrive Corpus includes multiple 
sessions collected from the same route and same driver under different conditions, 
baselines can easily be obtained. The algorithm flow for distraction detection is shown in 
Figure 19. A normalised comparison ratio ( ) is calculated for each element in the feature 
vector. The comparison ratio is used in multiple interval thresholds. Each threshold 
interval is assigned to a probability. For example, if the ratio is between 0.1 and 1, the 
probability of distraction is 0.7, and if the ratio is larger than 20, it is 1. Such an 
assignment approach allows for probabilistic assessment of the distraction, and it can also 
give an idea of the distraction level. 
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Figure 18 Flow diagram of general methodology used for CAN-Bus-based analysis (see online 
version for colours) 

Figure 19 Distraction detection algorithm flow based on features extracted from CAN-Bus signals 
(see online version for colours) 

Comparison values greater than 0.1 in magnitude are considered as indication of 
significant distraction. If the comparison value magnitude is below 0.1, the session is 
assumed to be sufficiently close to baseline to be considered neutral. As the comparison 
ratio increases, the probability of being distracted increases, with the highest value being 
1 as shown in Figure 19. At the end of this probability mapping, the probabilities are 
summed along the feature vector (now comprising comparison ratios) and normalised by 
dividing the resultant likelihood value in the feature vector dimension. The next sections 
explain the feature extraction process and motivation behind the particular feature vector 
elements selected. 
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4.2.3.1 CAN-Bus-based features The CAN-Bus features are selected based on their 
relevance to distraction and the definition of the manoeuvre. Using the colour coded 
driving timeline plots; it was observed that route segment 2 contains lane keeping and 
curve negotiation tasks in terms of driving. For lane keeping, several driver performance 
metrics are suggested in the literature, mostly using SWA to calculate a metric indicating 
the fluctuations or micro-corrections in SWA input. Amongst these metrics, a widely 
accepted method is the SampEnt (Boer, 2001) and STD. If available, the lane deviation 
measurements also reflect if the driver is fully attentive and in control. The reversal rate 
of steering wheel is also considered to be a reliable metric to assess driver performance in 
a lane keeping task. Boer (2005) recently updated their previous work and suggested 
adjustments that include taking high frequency terms into account. It was also pointed out 
in the work by Boyraz et al., a thorough analysis that the speed interval for which the 
SWA dependent metric is being calculated is important, since lower speeds require more 
SWA inputs to achieve the same amount of lateral movement of the car compared to a 
higher speed. For curve negotiation, a constant input angle is required using the visual 
input of the road curvature. A novice or distracted driver may have fluctuating inputs in 
the SWA, and their general trend is that the speed should be reduced while taking the 
curves to balance the centrifugal force. Although different in nature, lane keeping and 
curve negotiation can be seen as regulatory control tasks from the driver’s point of view. 
Therefore, we selected a seven dimensional feature vector using available information 
and observations about driver performance/behaviour including: energies of high 
frequency components WD, SampEnt, STD and standard deviation of rate of change 
(R-STD). All features are extracted for SWA and speed channels, except for R-STD 
which is only applied to SWA. The time window length is taken as equal to the 
manoeuvre length, and the effect of the signal length is eliminated in the calculation of 
features. The entries of the feature vector are listed with their definitions in Table 7. 

For the WD, Daubechies (1988) wavelet kernel with 4th order is used and detail 
signal is taken at the 6th level. Daubechies wavelet is chosen since it can approximate to 
signals with spikes and discontinuous attributes well. The level and order are adjusted to 
be able to extract the high frequency content in the signal which is in the limitation of 
human control, the higher details are ignored since they might be caused by other 
disturbances in the measurement rather than driver. Scaling functions (a), wavelet 
function coefficients (b), scaling function (c) and wavelet function (d) for DB4 are given 
in Equation group (6). 

0 1 2 3
1+ 3 3+ 3 3 3 1 3, = , = , =
4 2 4 2 4 2 4 2

h h h h  (6a) 

0 3 1 2 2 1 3 0,  ,  ,  g h g h g h g h  (6b) 

0 2 1 2 1 2 2 2 3 2 3i i i i ia h s h s h s h s  (6c) 

0 2 1 2 1 2 2 2 3 2 3i i i i ic g s g s g s g s  (6d) 

SampEnt, which is used as a measure to quantify regularity and complexity of the signal, 
is a perfect match for measuring the regularity of the SWA signal. It is known that 
measures based on entropy have long been employed in bio-signal processing such as 
EEG, ECG and EMG to measure regularity and detect abnormality. The method used 
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here to calculate the SampEnt follows the work described by Xie et al. (2008). The STD 
is calculated in a canonical form with statistics. 

4.2.3.2 Distraction detection performance Using the algorithm flow depicted in 
Figure 19, and feature vectors explained in Table 4, 96 comparison cases for lane keeping 
and 113 cases for curve negotiation were examined using 14 drivers’ (20 sessions, 
7 female and 7 male drivers) data. As insight, the WDE_SWA feature member is given 
for lane keeping manoeuvres in Figure 20. It can be easily seen that the distracted 
sessions are generally greater than the baseline for this metric. The dashed line represents 
the mean neutral cases, and solid line represents distraction cases representing the 
magnitude of the steering wheel angle (WDE-SWA). 
Table 7 Feature vector and definitions 

Notation Definition 

WDE_SWA WD detail signal energy for SWA 
WDE_Speed WD detail signal energy for speed 
SampEnt_SWA Sample entropy of SWA 
SampEnt_Speed Sample entropy of SWA 
STD_SWA Standard deviation of SWA 
STD_Speed Standard deviation of SWA 
STD_SWAR Standard deviation of SWA rate 

Figure 20 WD details signal energy for SWA calculated for 96 comparison cases of lane keeping 
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Table 8 Accuracy of distraction detection 

Manoeuvre Threshold 0.2 0.1 0 (Binary) 

Count 72/96 62/96 84/96 76/96 95/96 76/96 LKS 
Accuracy 
(%) 

75 64 87 79 98 79

Count 65/113 64/113 82/113 79/113 95/113 79/113 LKC 
Accuracy 
(%) 

57 56 72 69 84 69

Next, overall performance is considered. The accuracy of distraction detection is given in 
Table 8 using the seven dimension feature vector (LKS), and using four dimension 
feature vector subset containing only SWA related features (LKC) with threshold values 
of 0.2, 0.1 and 0 for the final classification result. 

From Table 8, it can be seen that if any probability value higher than zero is taken 
into account, the distraction can be detected with 98% accuracy using lane keeping 
segments (LKS), and at an 84% accuracy using curve negotiation segments (LKC) during 
TM/AA cell-phone dialogues. 

5 Conclusion and discussions 

In this study, driver–vehicle interaction signals available from CAN-Bus was analysed to 
recognise manoeuvres and detect driver distraction together with its estimated 
level/impact. This module can be a crucial part in preventative active safety systems to 
intervene for imminent accidents. In addition to exploring the feasibility of driver-
behaviour related information extraction from CAN-Bus for active safety systems, a 
time-window analysis was also performed showing that systems can be both long-term 
and short-term. In addition to this realisation, both generic and driver-dependent schemes 
were explored. From performance evaluation of the systems, generic system is found to 
be more appropriate scheme for manoeuvre recognition whereas the distraction detection 
is observed to heavily depend on driver and manoeuvre information. To demonstrate the 
future impact of this system, a utility analysis is also performed projecting the effect of 
this system on real accident data obtained from FARS accident data base (2009). First, a 
query is run on the FARS database to obtain the number of fatalities as the column, and 
several driver related factors on the rows. This table is rearranged into a more compact 
form and shown in Appendix A. In this table, categories of causation are grouped under 
three major groups: driver impairment, driver errors and in-vehicle devices. Refining 
these big groups into seven categories and matching them with potential CV systems 
appropriate to prevention of the accidents results in a new table shown in Appendix B. 
The refined categories are: driver impairment, poor decision making, reckless driving, 
poor lateral control, poor longitudinal control, poor manoeuvring and in-vehicle devices. 
The distribution of the database is shown in Figure 21. From this figure, it can be seen 
that only 34% of the fatalities are caused by driver related factors, however, 66% of the 
data is unclassified and therefore their cause is unknown. Therefore, we may say that 
34% is an underestimated figure. Nevertheless, the distribution within this 34% of the 
fatalities in terms of causation give us important information about which types of driver 
errors can be prevented and where the drivers require the most assistance. From the 
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distribution of the causation of accidents, we can clearly see that poor lateral and 
longitudinal control and manoeuvring accounts for up to 65%. Using only this figure, we 
can clearly see that driver assistance or active safety systems (DAS and AVS) can 
prevent at least 65% of accidents caused by human errors in poor manoeuvring or poor 
regulatory performance. The actual accident data is given in Appendix A. 

Figure 21 Driver-related factors in crashes and its distribution (see online version for colours) 

In conclusion, this study has explored the capabilities of signal processing approaches in 
the CAN-Bus domain and proposed an intelligent module to recognise manoeuvres and 
assess the distraction/abnormality level of manoeuvres. Projecting the effect of this 
system on FARS accident data, 65% of human-caused accidents could be prevented if the 
proposed system could be used within vehicles. The authors hope that these encouraging 
results will attract more research in preventative active safety research using less 
explored but low-cost driver–vehicle interaction information from the CAN-Bus. 
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Appendix A 

Accident causation data from FARS database in 2007 

Categories of causation Driver related factors (2) [FARS] # of fatalities 

None 52,976 
Drowsy, sleepy, asleep, fatigued 330 
Ill, passed out, blackout 130 
Emotional (depression, angry, disturbed 26 

None 

Medication, alcohol, drugs 2,190 
Inattentive (talking, eating, etc.) 1,657 
Road rage/aggressive driving 42 
Impaired due to previous injury 6 
Other physical impairment 24 
Mentally challenged 7 
Seat position not correctly adjusted 3 
Travelling on prohibited traffic ways 8 
Overloading or improper loading of vehicle 110 
Towing or pushing the vehicle improperly 7 
Failing to use headlights properly 38 
Operating without required equipment 351 
Following improperly 223 
Improper or erratic lane-changing 219 
Failure to keep proper lane 8,645 
Illegal driving on road shoulder, ditch, sidewalk 32 
Improper entry/exit (merging errors) 34 
Starting or backing improperly 31 
Passing through prohibited signs 151 
Passing with insufficient distance 

Driver impairment 

Failing to yield to overtaking vehicle 
177

Operating the vehicle in an erratic, reckless manner 1,406 
Failure to yield right of the way 1,120 
Failure to obey traffic sign, control devices or officers 1,168 
Passing through or around barrier 13 
Failure to observe warnings on vehicles on display 27 
Failure to signal the intentions 24 
Driving too fast, excess of the posted max speed limit 7,327 
Driving less than posted minimum 11 
Racing 93 
Making RT from LT lane or vice versa 17 

Driver errors 

Other improper turn 1,048 
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Accident causation data from FARS database in 2007 (continued)

Categories of causation Driver related factors (2) [FARS] # of fatalities 

Driving in wrong way, wrong side of the road 331 
Operator inexperience 336 
Unfamiliar with route 84 
Stopped in roadway 33 
Under-riding a parked truck 5 
Overcorrecting 1,981 

In-vehicle devices Cellular phone present in vehicle 477 
Cellular phone in use in vehicle 77 
Navigation systems 7 
Computer, fax, printer 1 

Note: Total number of fatalities in 2007 is 87,849. 
Source: FARS (2009). 

Appendix B 

Recategorisation of FARS query for accident causation related to driver and potential CV systems 
for prevention 

Recategorisation of 
causation Driver related factor [FARS] # of fatalities CV system 

None None 52976 None 
Drowsy, sleepy, asleep, fatigued 330 EHT 
Ill, passed out, blackout 130 EHT 
Emotional (depression, angry, disturbed) 26 ER 
Medication, alcohol, drugs 2190 EHT 
Inattentive (talking, eating, etc.) 1657 EHT–ER 
Road rage/aggressive driving 42 None 
Impaired due to previous injury 6 None 
Other physical impairment 24 None 

Driver impairment 

Mentally challenged 7 None 
Seat position not correctly adjusted 3 None 
Travelling on prohibited traffic ways 8 None 
Overloading or improper loading of vehicle 110 None 
Towing or pushing the vehicle improperly 7 None 
Failing to use headlights properly 38 None 
Operating without required equipment 351 None 
Illegal driving on road shoulder, ditch, 
sidewalk 

32 RAR 

Poor decision making 

Improper entry/exit (merging errors) 34 RAR–
VDT–LT 
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Recategorisation of FARS query for accident causation related to driver and potential CV systems 
for prevention (continued)

Recategorisation of 
causation Driver related factor [FARS] # of fatalities CV system 

Starting or backing improperly 31 VDT–PDT 
Passing through prohibited signs 151 TSR 
Passing with insufficient distance 
Failing to yield to overtaking vehicle 

177 VDT 

Failure to yield right of the way 1120 VDT 
Failure to obey traffic sign, control devices 
or officers 

1168 TSR 

Driving in wrong way, wrong side of the 
road 

331 None 

Stopped in roadway 33 None 
Under-riding a parked truck 5 None 
Operating the vehicle in an erratic, reckless 
manner 

1406 LT–OF 

Failure to observe warnings on vehicles on 
display 

27 TSR 

Reckless 
driving/inattention 

Failure to signal intentions 24 None 
Improper or erratic lane changing 219 LT–LCR–

OF 
Poor lateral control 

Failure to keep proper lane 8645 LT 
Driving too fast, excess of posted speed 
limit 

7327 OF–TSR 

Driving less than posted limit 11 OF–TSR 
Racing 93 OF 

Poor longitudinal control 

Following improperly 223 OF–VDT 
Making RT from LT lane or vice versa 17 None 
Other improper turn 1048 None 

Poor Manoeuvring 

Overcorrecting 1981 None 
Cellular phone present in vehicle 477 None 
Cellular phone in use in vehicle 77 None 
Navigation systems 7 None 

In-vehicle devices 

Computer, fax, printer 1 None 
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