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Discriminative Training for Multiple Observation
Likelihood Ratio Based Voice Activity Detection
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Abstract—It is possible to show that the likelihood ratio (LR)
test from multiple observations can enhance the performance of a
statically modeled voice actively detection (VAD) system. However,
the combination weights for the likelihood ratios (LRs) in each
observation are rather empirical and heuristical. In this study,
the optimal combination weights from two discriminative training
methods are studied to directly improve VAD performance, in
terms of reduced misclassification errors and improved receiver
operating characteristics (ROC) curves. As shown in the evalua-
tions, VAD performance, both in terms of absolute performance
and consistency across noise types, can be significantly improved
using the proposed method.

Index Terms—Discriminative training, receiver operating char-
acteristics (ROC), voice activity detection (VAD).

I. INTRODUCTION

A N important problem in statistically modeled voice
actively detection (VAD) is that fluctuations in the in-

stantaneous likelihood ratio (LR) generates a high miss-hit
rate in the speech offset region or false-alarm rate in the noise
nonstationary region. Therefore, VAD decisions are generally
made from multiple observations rather than a single instanta-
neous observation, taking advantage of the strong correlation in
the consecutive time-frames of speech. A “hangover” scheme
based on hidden Markov model (HMM) was previously ex-
plored in [1]. Later, a simple but effective first-order smoothed
LR scheme was employed in [2]. Recently, a multiple observa-
tion likelihood ratio test (MO-LRT) was considered in [3] and
shown to outperform traditional decision smoothing methods.

While testing statistics from multiple observations could re-
duce detection errors, the strategy to effectively utilize them is
rather empirical and heuristical. In [4], a discriminative training
method is introduced in the statistically modeled VAD context,
however, more advanced methods are possible. In the present
study, two discriminative training methods are further studied
for effective combination of multiple observation LRs, in terms
of misclassification errors and receiver operating characteristics
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(ROC) curves, as shown in Section III. Next, an extensive set of
evaluations is conducted in Section IV with conclusions drawn
in Section V.

II. PROBLEM FORMULATION

A. Signal Model and Single Observation LLR

Here, assume that the speech is degraded by an uncorrelated
additive noise . Under two hypotheses (speech-pause) and

(speech-active), the observation in the short-time Fourier
transform (STFT) domain can be written as

(1)

where and are the frequency-bin and time-frame index, re-
spectively. Suppose there is in total of frequency-bins, and
denote as a vector contains all
the STFT coefficients in the th time-frame, a statistic for a
time-frame-wise VAD decision can be obtained from maximal
a posteriori (MAP) criterion as

(2)

where is the log-likelihood ratio (LLR) of the th time-frame;
with is the a priori probability of either speech-

pause or speech-active and in principle does not depend on the
observation; also, is the likelihood based on the prob-
ability density function (pdf) modeled for [1], [5]. With this,
the decision rule can be established as

(3)

where is the detection threshold that controls the tradeoff be-
tween the miss-hit rate and false-alarm rate. Clearly, this deci-
sion rule is based on the instantaneous LLR, whose fluctuations
lead to serious false-alarm errors and miss-hit errors as previ-
ously discussed.

B. Multiple Observation LLRs

A more sophisticated method is to incorporate contextual in-
formation into the decision rule. Suppose that a collection of

sequential LLRs from the current time-frame , denoted as
, is used to make VAD decision

for the current time-frame , a new statistic that reflects the de-
pendence on the current time-frame as well as its previous
time-frames, can be expressed as
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(4)

where is a vector of the combination
weights for different time-frames. The decision rule can then be
established as

(5)

The criterion on how to choose the combination weights is
the primary focus of this study. Under the assumption of inde-
pendence between each time-frame, equal weighting was pre-
viously studied in [3] and showed better performance over con-
ventional VADs. However, the optimality of equal weights may
be challenged from two aspects: strong correlation exists be-
tween consecutive noisy speech frames and an unclear relation
with the overall VAD performance. These issues are addressed
using discriminative training in this study.

III. DISCRIMINATIVE TRAINING

Suppose there is a set of labeled LLRs for training, denoted
as , where and

represent the portion of the training
set containing all the LLRs labeled as speech-active or speech-
pause, respectively. Here we use super script and to denote
the labels. In discriminative training, VAD performance is di-
rectly associated with a designed objective function, which can
be optimized within the training data.

A. Minimal Classification Error Training

Minimum classification error (MCE) training [6] is a well
known discriminative training approach, which aims at mini-
mizing the misclassification errors over the entire training set.
The MCE loss function and can be defined as

(6)

where is an indicator function where for argument ,

(7)

and can be approximated by a sigmoid function which
could be differentiated during the optimization as

(8)

where is the rate of decay of the sigmoid function.
Basically, the minimization of MCE loss function in (6) can

improve the VAD performance in terms of reduced amount of
two types of errors, (e.g., the miss-hit errors and false-alarm er-
rors). However, its relation with the receiver operating charac-
teristics (ROC) curve is implicit. To this concern, an alternative
novel criterion is considered here to directly improve ROC per-
formance.

B. Maximal Area Under the ROC Curve Training

The ROC curves are frequently used to completely describe
the VAD performance. A ROC curve is drawn by varying the
decision threshold to reflect the relationship between speech-hit

Fig. 1. Illustration of ROC curve and AUC.

rate (HR1), defined as the fraction of all actual speech frames
that are correctly classified as speech-active frames against the
false-alarm rate (FAR0), defined as the the fraction of all the
actual speech-pause (e.g., noise only) frames that are incorrectly
classified as speech frames.

Intuitively as illustrated in Fig. 1, the closer the ROC curve is
toward the upper left corner, the better the classifier’s ability to
discriminate between the two classes. Thus, the area under the
ROC curve (AUC) is a general, robust measure of classifier dis-
crimination performance, regardless of the decision threshold,
which may be unknown, changeable over time, or might vary
depending on how the classifier will be used in practical appli-
cations.

As shown in [7], the AUC for a binary classifier can be de-
noted by the value of the normalized Wilcoxon–Mann–Whitney
(WMW) statistics at the output of the classifier as

(9)

Obviously, WMW statistics from a pairwise perspective com-
pares the output of the VAD classifier based on the speech-active
LLRs and speech-pause LLRs (e.g.,

), and counts on the classification accuracy regard-
less of the decision threshold . The larger the WMW statis-
tics, the higher the accuracy of the classification. The optimal
weights can be obtained upon the maximization of the WMW
statistics. Define a new LLR vector as

(10)

which represents the pairwise difference between the LLRs
from the speech-active frame and speech-pause frame. With
this, the amount of will be . Finally, the
MaxAUC loss function can be written as

(11)

C. Comparison Between MCE and MaxAUC

As in (6), MCE training requires the decision threshold
to be pre-selected; thereby, optimal weights could be

computed such that the weighted sum of either or
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Fig. 2. Optimal values of the loss functions [(a) MCE and (b) MaxAUC] for different number of observations in different AURORA noises.

is separated as far as possible from this particular threshold.
However, optimal weights from MaxAUC training are ob-
tained through maximizing the pairwise distance between the
speech-active LLRs and speech-pause LLRs, regardless of
the decision threshold. Therefore, MaxAUC training has two
distinct characteristics: it maximizes the ROC performance
on average rather than for a specific threshold; it sufficiently
utilizes the training data through a pairwise computation, but in
alternative, sacrifices more computation resources, which has
to process an amount of training data compared
to the data for MCE training.

D. Optimization Algorithm

Here, an optimization algorithm is derived for MaxAUC
training (noticing that same derivation can be applied to MCE
training). As suggested in [4], should satisfy the constraints
of and ; hence, a parameter trans-
formation could be employed:

(12)

where denotes an element-wise square operation (i.e.,
). This parameter transform automatically

guarantees the non-negativeness of . For another constraint
of , a corresponding constraint of is
used, with denoting the Euclidean norm (i.e., ).

The optimization can be formulated in a compact form as

(13)

Solving for the optimal weights also leads to optimal .
Here, (13) is a norm constraint optimization problem with so-
lutions lying in a unit hypersphere. Hence, using an efficient
natural gradient algorithm [8], [9], the optimal weights could
be updated with a steepest descent technique as follows:

(14)

(15)

(16)

where is the learning rate for updating and is the iteration
index; is an identity matrix and is the gradient of the
WMW statistics and could be obtained as

(17)

where denotes an element-wise multiplication. The param-
eter transform step in (12) and (16), and the normalization step
in (15) guarantee the constraints on are satisfied throughout
the iterations. Here, the natural gradient is employed due to its
optimality for the increasing direction on a hypersphere.

IV. EVALUATIONS

A. Implementation

The proposed VAD is evaluated using an analysis window
time-frame of 32 ms, with a 50% overlapping frame for record-
ings at an 8 kHz sample rate. The STFT is calculated using a
Hamming window with an FFT length of 256. The IMCRA [10]
and Ephraim–Malah [11] estimators are used for noise power
estimation and LLR computation. For all the training, the com-
bination weights are uniformly initialized and for the
sigmoid function defined in (8); the learning rate is set as

with maximal iteration of set to 1000 for
MCE and 300 for MaxAUC, respectively.

B. Evaluation for AURORA Data

In this section, the relation between the number of mul-
tiple LLRs, , and the VAD performance is studied using
the AURORA database [12]. Here, six different noisy sce-
narios are considered, with each having nonoverlapping 10
minutes of training data and 10 minutes of test data. The
percentage of hand-marked speech-active frames is 53.4%. The
signal-to-noise ratio (SNR) is about 5 dB.

Fig. 2(a) shows how the misclassification errors at a pre-se-
lection threshold (e.g., ) drops when increases. How-
ever, excessive observations will not necessarily improve per-
formance at that selected threshold. The optimal varies for
different noise types as well as the decision threshold. The AUC
loss shown in Fig. 2(b) gives a more meaningful performance
measure regardless of a particular threshold; here, the optimal

that gives the best results could be chosen. As a example,
Fig. 3 illustrates the ROC curves for different values of eval-
uated for the babble noise.

C. Evaluation for In-Vehicle UTDrive-Noise Data

In this section, the two discriminative training methods are
compared. The noises are chosen from the in-vehicle UTDrive-
Noise database [13], which consists of diverse noises from 30
different vehicles (including five trucks, five SUVs, and 20 cars)
at various driving scenarios. Clean speech is selected from the
TIDigits database [14]. Nonoverlapping 10 minutes of training
data and 10 minutes of testing data are used for evaluation in
each of the vehicle types (e.g., truck, SUV, and car) and the
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Fig. 3. (a) MCE with � � ��� and (b) MaxAUC ROC curves for different number of observations in the AURORA babble noises.

Fig. 4. ROC curves for UTD-In-Vehicle-Noise database: (a) truck, (b) SUV,
and (c) car.

percentage of hand-marked speech-active frames is 47.8%. The
overall SNR is about 0 dB.

Fig. 4 shows the ROC curves for three different sized vehi-
cles [(a) trucks, (b) SUV and (c) car], when observa-
tion LLRs are used. Both MCE training and MaxAUC training
can significantly enhance VAD performances in all vehicle noise
types versus the baseline VAD (e.g., , for instanta-
neous LLR). However, MCE training needs experimental se-
lection of a working threshold through investigation of various
ROC curves while MaxAUC training guarantees a global en-
hancement of ROC curve.

V. CONCLUSION

In this study, two discriminative training methods for mul-
tiple observation based VAD is investigated and evaluated in
various noisy environments. A significant VAD improvement
was achieved using an automatically obtained environment-de-
pendent weights that can effectively combine the LLRs from
multiple observations.

REFERENCES

[1] J. Sohn, N. S. Kim, and W. Sung, “A statistical model-based voice
activity detection,” IEEE Signal Process. Lett., vol. 6, no. 1, pp. 1–3,
Jan. 1999.

[2] Y. D. Cho, K. Al-Naimi, and A. Kondoz, “Improved voice activity
detection based on a smoothed statiscial likelihood ratio,” in Proc.
ICASSP, 2001, vol. 2, pp. 737–740.

[3] J. Ramírez, J. Segura, C. Beníez, L. García, and A. Rubio, “Statistical
voice activity detection using a multiple observation likelihood ratio
test,” IEEE Signal Process. Lett., vol. 12, no. 10, pp. 689–692, Oct.
2005.

[4] S.-I. Kang, Q.-H. Jo, and J.-H. Chang, “Discriminative weight training
for a statistical model-based voice activity detection,” IEEE Signal
Process. Lett., vol. 15, pp. 170–173, 2008.

[5] J.-H. Chang, N. S. Kim, and S. K. Mitra, “Voice activity detetion based
on multiple statistical models,” IEEE Trans. Signal Process., vol. 54,
no. 6, pp. 1965–1976, Jun. 2006.

[6] B. H. Juang and S. Katagiri, “Discriminative learning for minimum
error classification,” IEEE Trans. Signal Process., vol. 40, no. 12, pp.
3043–3054, Dec. 1992.

[7] L. Yan, R. Dodier, M. C. Mozer, and R. Wolniewicze, “Op-
timizing classifier performance via an approximation to the
Wilcoxon–Mann–Whitney statistic,” in Proc. ICML, 2003, pp.
848–855.

[8] S. Amari, “Natural gradient works efficiently in learning,” Neural
Comput., vol. 10, no. 2, pp. 251–276, Feb. 1998.

[9] S. C. Douglas, S. Amari, and S. Y. Kung, “On gradient adaptation with
unit-norm constraints,” IEEE Trans. Signal Process., vol. 48, no. 6, pp.
1843–1847, Jun. 2000.

[10] I. Cohen, “Noise spectrum estimation in adverse environments: Im-
proved minima controlled recursive averagings,” IEEE Trans. Speech
Audio Process., vol. 11, no. 5, pp. 466–475, Sep. 2003.

[11] Y. Ephraim and D. Malah, “Speech enhancement using a minimum
mean-square error short-time spectral amplitude estimator,” IEEE
Trans. Acoust., Speech, Signal Process., vol. ASSP-32, no. 12, pp.
1109–1121, Dec. 1984.

[12] H. G. Hirsch and D. Pearce, “The AURORA experimental framework
for the performance evaluations of speech recognition systems under
noisy condidions,” in ISCA ITRW ASR2000, Sep. 2000.

[13] [Online]. Available: http://www.utdallas.edu/research/utdrive/UT-
Drive-Website.htm

[14] R. Leonard, “A database for speaker independent digit recognition,” in
Proc. ICASSP, 1984.


