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Abstract—This paper proposes a novel mask estimation method
for missing-feature reconstruction to improve speech recognition
performance in various types of background noise conditions.
A conventional mask estimation method based on spectral sub-
traction degrades performance, due to incorrect estimation of
the noise signal which fails to accurately represent the variations
of background noise during the incoming speech utterance. The
proposed mask estimation method utilizes a Posterior-based Rep-
resentative Mean (PRM) estimate for determining the reliability
of the input speech spectral components, which is obtained as
a weighted sum of the mean parameters of the speech model
using the posterior probability. To obtain the noise-corrupted
speech model, a model combination method is employed, which
was proposed in our previous study for a feature compensation
method. Experimental results demonstrate that the proposed
mask estimation method provides more separable distributions
for the reliable/unreliable component classifier compared to the
conventional mask estimation method. The recognition perfor-
mance is evaluated using the Aurora 2.0 framework over various
types of background noise conditions and the CU-Move real-life
in-vehicle corpus. The performance evaluation shows that the
proposed mask estimation method is considerably more effective
at increasing speech recognition performance in various types
of background noise conditions, compared to the conventional
mask estimation method which is based on spectral subtraction.
By employing the proposed PRM-based mask estimation for
missing-feature reconstruction, we obtain�23.41� and�9.45�
average relative improvements in word error rate for all four types
of noise conditions and CU-Move corpus, respectively, compared
to conventional mask estimation methods.

Index Terms—Background noise, mask estimation, missing-fea-
ture, posterior-based representative mean (PRM) estimate, robust
speech recognition.

I. INTRODUCTION

A COUSTIC environment mismatch between training
and operating conditions for actual speech recognition

systems severely degrades recognition performance, with
background noise as one of the primary corrupting sources.
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Typical examples can be found in the corpora of NOISEX-92
[3], Speechdat-Car [4], SPINE (SPeech In Noise Environ-
ments, [5]), UTDrive [6], CU-Move [7], the National Gallery
of Spoken Word (NGSW) [8], Collaborative Digitization Pro-
gram (CDP) [9], Speech Under Simulated and Actual Stress
(SUSAS) including Lombard effect [10], and others, which
make speech recognition technology challenging in real-life
scenarios. To minimize this mismatch, extensive research
has been conducted in recent decades, which includes many
types of speech/feature enhancement methods such as spectral
subtraction, cepstral mean normalization, and a variety of
feature compensation schemes [2], [11]–[18]. Various model
adaptation techniques have been successfully employed such as
the maximum a posteriori (MAP), maximum-likelihood linear
regression (MLLR), and parallel model combination (PMC)
[19]–[21]. Recently, missing-feature methods have shown
promising results [22]–[29].

In this paper, the missing-feature method is considered as a
solution to address background noise for speech recognition.
This method depends primarily on characteristics of speech
that are resistant to noise, rather than on the characteristics of
the noise itself, showing its effectiveness at improving speech
recognition in adverse environments [22], [23], [25]. The
missing-feature method consists of two steps. The first step is
estimation of a “mask” which determines which spectral parts
of the noisy input speech are unreliable. The second step is to
reconstruct the unreliable regions or bypass them for alternative
processing.

This paper focuses on the step of mask estimation. One of
the most common conventional methods for mask estimation
employs the signal-to-noise (SNR) ratio, where the noise signal
is estimated from non-speech segments and the clean speech
signal is obtained by applying spectral subtraction method [23],
[25], [27], [30]. This SNR-based mask estimation method gen-
erally depends on the performance of spectral subtraction. Since
the noise estimate would not effectively represent the change of
background noise during the actual speech utterance, it could
provide incorrect estimation of clean speech by spectral subtrac-
tion, resulting in performance degradation of mask estimation.

In previous studies, Bayesian classifier based mask estima-
tion methods have been proposed [31]–[33], where several ro-
bust speech features were employed, and artificially-generated
noise samples were used for training the classifier for the pur-
pose of an environment-independent mask estimation method.
However, their performance combined with missing-feature re-
construction method was still outperformed by other conven-
tional preprocessing methods for robust speech recognition. A
method to evaluate the spectral reliability using the likelihood
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computed from a hidden Markov model (HMM) has also been
proposed [34]. A number of studies on mask estimation ex-
ploiting spatial information from multiple microphones of in-
coming speech have also been conducted [35]–[37]; however,
they are beyond our focus in this paper where we are interested
only in single channel input.

In this paper, a novel mask estimation method for
missing-feature reconstruction is proposed to improve speech
recognition in background noise conditions. The proposed
method utilizes the representative mean estimates of clean
speech and noise-corrupted speech which are obtained using
the posterior probability. A model combination method is
employed to generate the noise-corrupted speech model for the
proposed mask estimation method. It will be demonstrated that
the proposed posterior-based representative mean estimates
provide more reliable mask estimation, by decreasing the risk
of incorrect estimates of clean speech which is observed in the
spectral subtraction based method. The proposed mask estima-
tion method, combined with the missing-feature reconstruction
method, will be evaluated on various types of background
noise conditions including car, factory, speech babble, and
background music, and also the CU-Move in-vehicle data.

This paper is organized as follows. We first review a conven-
tional mask estimation method in Section II. Section III presents
details of the proposed mask estimation method, followed by
cluster-based missing-feature reconstruction in Section IV Rep-
resentative experimental procedures and their results are pre-
sented with discussion in Section V. Finally, in Section VI we
state the main conclusions of our work.

II. CONVENTIONAL MASK ESTIMATION METHOD BASED

ON SPECTRAL SUBTRACTION

In this paper, we consider a conventional mask estimation
method which employs spectral subtraction to estimate clean
speech [23], [30]. In this method, an averaged spectrum of the
noise signal at the th frequency band in the log-spec-
tral domain is estimated from silence (i.e., non-speech) seg-
ments, which are assumed to exist at the beginning and ending
parts of the input speech in this study. Here, indicates
the log-spectral domain. These log-spectral coefficients are ob-
tained by taking a logarithm of the Mel-filterbank outputs which
are generated during a standard Mel-frequency cepstral coeffi-
cients (MFCCs) feature extraction.

In this spectral subtraction based mask estimation method,
a subtraction of the estimated speech obtained
by spectral subtraction from the input noise-corrupted speech

is compared to a threshold as follows:

(1)

where

if
otherwise.

(2)
Here, the threshold is empirically determined in our exper-
iment and is a flooring factor.

This conventional mask estimation method mostly relies on
the estimated clean speech signal, the correctness of which is
dependent on the performance of spectral subtraction as given
by (2). Since in general the noise estimate is obtained from si-
lence segments, the estimated noise signal does not represent
the temporal variations of the noise signal within the speech
utterance, especially for time-varying background noise condi-
tions, resulting in incorrect estimation of clean speech signal
by spectral subtraction. Therefore, the mask estimation method
based on spectral subtraction would degrade in performance for
time-varying background noise conditions1.

In our initial study [1], we also evaluated another type of
mask estimation as a conventional method, which employs
signal-to-noise ratio, which also generally depends on noise
estimates from silence segments in a manner equivalent to
the spectral subtraction-based method; however, the spectral
subtraction based method with (1) and (2) showed consis-
tently better performance compared to the SNR-based method.
Furthermore, considering that the proposed mask estimation
method in this study employs statistical estimates of input
noisy speech and clean speech, we believe that the spectral sub-
traction method is a more “comparable” conventional method
which uses input noisy speech and estimated clean speech.

III. MASK ESTIMATION EMPLOYING POSTERIOR-BASED

REPRESENTATIVE MEAN ESTIMATE

To address the performance degradation of the spectral sub-
traction-based mask estimation due to incorrect estimation of
background noise and clean speech signal, we propose to use
estimates of model parameters for the reliability decision, and
not directly use estimates of the noise and clean speech. In this
paper, we present a new mask estimation method utilizing a rep-
resentative mean estimate for measuring the reliability of spec-
tral components of the input speech, which is determined by
posterior probability. Sections IV–VI present the entire proce-
dure of the proposed mask estimation method step by step.

A. Step 1: Speech Model Estimation Employing Model
Combination

In our previous study, we proposed the Parallel Com-
bined Gaussian Mixture Model (PCGMM)-based feature
compensation method, showing improved speech recognition
performance in various types of background noise conditions
[2]. In this method, the noise-corrupted speech model (i.e.,
Gaussian mixture model, GMM) is generated by combining the
clean speech GMM and noise model. A series of experiments
in this study has confirmed that the noise-corrupted speech
model obtained by the PCGMM procedure effectively charac-
terizes the input noise-corrupted speech. From this motivation,
we integrate the PCGMM-based model estimation method
for obtaining the speech model into our mask estimation
method in this study. As presented in Step 2, by employing the
PCGMM-based model estimation, an advantage emerges that
enables us to calculate the representative mean estimate for the

1Here “time-varying” background noise does not only include non-stationary
noise (e.g., speech babble, background music) but also slowly time-varying
background noise which is widely considered to be stationary noise such as car
noise condition.



1436 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

clean speech by using the same posterior probability of input
noise-corrupted speech.

The distribution of the clean speech feature in the cepstral
domain is represented with a GMM consisting of components
as follows:

(3)

A noise model is estimated from silence (i.e., non-speech)
segments within the input speech as a single Gaussian pdf

in the cepstral domain. The noise-corrupted speech
model is obtained through a model combination procedure
using the clean speech and noise models, which was employed
by the PCGMM-based feature compensation method [2] as

(4)

where denotes a function representing the model combi-
nation. In this study, we employ “log-normal approximation”
method for the model combination, where it is assumed that
the addition of two log-normal distributions also results in a
log-normal formulation [2], [21].

Before combining the clean speech and noise models, it is
required to convert the model parameters from the cepstral do-
main to the log-spectral domain. The mean and covariance of
the cepstral domain are transformed to the log-spectral domain
using an inverse discrete cosine transform (DCT) as follows:

(5)

After both models for clean speech and noise are converted into
the log-spectral domain by (5), the model parameters of the
noisy speech distribution can be estimated using the model com-
bination procedure which is implied by (4). Finally, the param-
eters of the noisy speech model must be returned to the cepstral
domain via the DCT transform, which is the inverse process of
(5). The resulting GMM of the noise-corrupted speech is repre-
sented in the cepstral domain as follows:

(6)

where the same weight is just used as the clean speech model
in (3) as carried over to (6).

B. Step 2: Posterior-Based Representative Mean Estimation

In the proposed mask estimation method, posterior-based
representative mean (PRM) estimates of noise-corrupted and
clean speech at time are employed for determining the relia-
bility of the spectral component. Here, the PRM estimate of the
noise-corrupted speech in the cepstral domain is defined
as a weighted sum of mean parameters of the noise-corrupted

speech , using the posterior probability as shown
as

(7)

The posterior probability in (7) is given by

(8)

In a similar manner, the PRM estimate of the clean speech
is obtained using the same posterior probability and the corre-
sponding clean speech mean parameter as follows:

(9)

Here, the mean vector of the clean speech also corresponds
to the mean vector of the noise-corrupted speech for the
same Gaussian component index , since is generated from

through the model combination as presented in Step 1.
Therefore, to use the posterior probability for esti-
mating the PRM estimate of the clean speech in this study is
an acceptable procedure. Fig. 1 illustrates the proposed PRM
estimation procedure presented through Step 1 and 2. Here, it
is assumed that the feature vector consists of two components
(i.e., 2-D feature vector) and the GMM for the speech model is
modeled as three Gaussian components.

C. Step 3: Mask Estimation

In this final step, the mask of the th frequency band at time
is determined by assessing the difference of the th PRM com-
ponents of the noise-corrupted and speech in the log-spectral
domain as follows:

(10)

where

(11)

The threshold for the PRM-based mask estimation is em-
pirically found in a similar manner as that seen in the spectral
subtraction based method.

As presented, the proposed PRM-based mask estimation uti-
lizes a difference of the PRM estimates of the noise-corrupted
and clean speech which are obtained using posterior probabili-
ties of the input speech . We believe that to employ these
PRM estimates for mask estimation will be more reliable, com-
pared to conventional mask estimation which relies on noise
and speech estimates via spectral subtraction. As seen in (9), the
PRM estimate of the clean speech is estimated by a weighted
sum of the mean parameters of the clean speech which are
obtained through clean speech training as represented by (3).
Therefore, this procedure will reduce the risk of over or under
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Fig. 1. Illustration of the procedure of obtaining the posterior-based representative mean estimates for input noisy speech and clean speech. (a) Noise-corrupted
speech GMM generation by model combination. (b) PRM estimation for � ���. (c) PRM estimation for � ���. (d) Final PRM estimates.

subtraction which mostly originates from incorrect estimation
of the noise spectrum and results in degraded performance in
the conventional spectral subtraction method.

Fig. 2 shows plots of (a) input noise-corrupted speech and es-
timated clean speech in the log-spectral domain which are used
for the spectral subtraction-based method, and (b) PRM esti-
mates of input speech and clean speech for the proposed PRM-
based method. In the plots of (a), the estimates of clean speech
(plain solid line) are considerably smaller compared to the orig-
inal clean speech components (dashed line) for the Mel-filter-
bank index 10, 11, and 14 to 23. These are results of over-sub-
traction or taking a floor factor due to incorrect estimation of the
background noise signal. In particular, the frequency bands of
index 10, 11, and 14 to 17 should be determined as reliable com-
ponents, since the noise corrupted speech components are still
very similar with the original clean speech components in the
log-spectral level. However, in this example, the small values of
the estimated clean speech lead to decision of unreliable compo-
nents, which represent incorrect mask information. We can see
the PRM estimates for clean speech (plain line) in (b) are closer
to the PRM estimates of noise-corrupted speech (plus line) in
the log-spectral level for the index 10, 11, and 14 to 17, which
will result in more accurate mask estimation.

The PRM estimate of the noise-corrupted speech is obtained
using the noise-corrupted speech mean parameters which are
estimated by the model combination process as presented in
Step 1. As a consequence, the obtained model parameters of
the noise-corrupted speech model by model combination should
reflect the variance of the noise signal . Although the noise
model is estimated from non-speech segments in this

Fig. 2. Example of spectral estimates in log-spectral domain for mask estima-
tion. (a) Input noise-corrupted speech and estimated clean speech for the spectral
subtraction-based method. (b) PRM estimates of input speech and clean speech
for the proposed PRM-based method.

study, the obtained noise variance would represent the range
of change in the noise signal during speech to some extent.
Therefore, compared to conventional spectral subtraction based
method which reflects a “static” noise estimate, the PRM es-
timates of noise-corrupted and clean speech employed in this
proposed method are expected to be a more reliable represen-
tation for the noise corruption process with background noise
signals which change in characteristics during the input speech
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utterance duration. Furthermore, in the proposed method, esti-
mation of the models for clean speech, noise, and noisy speech
as well as the posterior probability are conducted in the cepstral
domain. The cepstral coefficients are less correlated with each
other than the log-spectral coefficients, leading to more accurate
model estimation for small data sizes with diagonal covariance
matrix.

IV. MISSING-FEATURE RECONSTRUCTION2

A cluster-based missing-feature reconstruction method was
previously proposed by Raj, et al. [25]. The method restores un-
reliable spectral parts of input speech using known distributions
of clean speech and reliable regions determined by masks. The
distribution of the log-spectra of clean speech is modeled by
a Gaussian mixture with clusters

(12)

Suppose that a clean speech vector has reliable compo-
nents with the latent original components in an unreliable
(i.e., missing) region . That is, . The
reliable component is identical to the corresponding ob-
servation . The cluster of the clean speech model is de-
termined by the posterior probability. Since contains un-
reliable elements, the marginal computation is applied by inte-
grating out their dependency:

(13)

where represents the observed value of the unreliable
parts and is assumed to be greater than because it is
corrupted by additive background noise. Finally, the unreliable
part is reconstructed using bounded MAP estimation
based on the observations in the reliable regions with
the model parameters of the cluster selected by (13), and an
upper bound as follows [25]:

(14)

Fig. 3 summarizes the resulting block diagram of the missing-
feature reconstruction scheme employing the PRM-based mask
estimation method proposed in this study.

V. EXPERIMENTAL RESULTS

Our evaluations of the proposed method are performed within
the Aurora 2.0 evaluation framework which was provided by
the European Language Resources Association (ELRA) [38].
The task is connected English-language digits consisting of

2In this section, all feature vectors and model parameters for missing-feature
reconstruction are represented in the log-spectral domain. The symbol ���� has
been omitted here.

Fig. 3. Block diagram of the missing-feature reconstruction scheme employing
the proposed PRM-based mask estimation method. The data flows for mask
estimation and missing-feature reconstruction are in the cepstral domain and
the log-spectral domain respectively.

eleven words, with each whole word represented by a contin-
uous-density HMM with 16 states and three mixtures per state.
The feature extraction algorithm suggested by the European
Telecommunication Standards Institute (ETSI) is employed for
all experiments [39]. An analysis window of 25-ms duration
is used with a 10-ms skip rate for 8-kHz speech data. The
computed 23 Mel-filterbank outputs are transformed to 13
cepstrum coefficients including c0 (i.e., c0-c12). The first- and
second-order time derivatives are also included, so the feature
vector is 39-dimensional.

The HMMs of the speech recognizer were trained using a
database that contains 8440 utterances of clean speech. In order
to evaluate the performance under various types of background
noise conditions, car noise and speech babble condition were
selected from the Aurora 2.0 test database, and new test data sets
were generated by adding factory noise and background music
samples to clean speech samples. The factory noise sample was
obtained from NOISEX92 [3], [40], and the background music
samples consist of prelude parts of ten Korean popular songs
with varying degrees of beat and tempo. Each test set consists
of 1001 samples at five different SNRs (i.e., 0, 5, 10, 15, and
20 dB), resulting in a total of 20 kinds of background noise
conditions.

A. Performance of Baseline and Conventional Methods

The performance of the baseline system (no compensation)
was examined with comparison to several conventional pre-pro-
cessing methods in terms of speech recognition performance.
Spectral subtraction (SS) [41] combined with cepstral mean nor-
malization (CMN) was selected as one of the conventional al-
gorithms. This represents one of the most commonly used tech-
niques for additive noise suppression and removal of channel
distortion, respectively. We also evaluated a feature compensa-
tion method, vector Taylor series (VTS) for performance com-
parison, where the noisy speech GMM is adaptively estimated
using the EM algorithm over each test utterance [15]. The ad-
vanced front-end (AFE) algorithm developed by ETSI was also
evaluated as one of the state-of-the-art methods, which contains
an iterative Wiener filter and blind equalization [42]. Table I
demonstrates speech recognition performance word error rate
(WER) of the baseline system and conventional algorithms on
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TABLE I
RECOGNITION PERFORMANCE OF BASELINE SYSTEM AND

CONVENTIONAL METHODS (WER, %)

the four types of background noise conditions with different
SNRs. From the results, it can be seen that the AFE algorithm
showed the best performance among the considered conven-
tional methods and VTS combined with SS also showed better
performance compared to SS CMN.

B. Posterior-Based Representative Mean-Based Mask
Estimation

Here, we present analysis of performance of the proposed
posterior-based representative mean based mask estimation
method. For the PRM-based mask estimation method in the all
experiments of this paper, a 128-mixture GMM and a single
Gaussian pdf for speech and noise models, respectively, were
used both with diagonal covariance. Fig. 4 shows distributions
of the difference values which are used for comparison to the
threshold in the mask estimation methods, that are the terms of
the left-hand side of (1) and (10), respectively. The difference
value for the spectral subtraction based method is a subtraction
of the estimated clean speech from the input noisy speech in
the log-spectral domain (i.e., ). The
value for the PRM-based method is a subtraction of the PRM
estimate of clean speech from the PRM estimate of the noise
corrupted speech (i.e., ). The plots
in Fig. 4 were generated using the car noise condition at 5-dB
SNR. The solid circle and empty circle represent mean values
(i.e., average) of the difference values at each Mel-filterbank
index for reliable components and unreliable components,
respectively, also showing their standard deviations with small
bars. The thresholds for mask decision (i.e., and )
could be formulated between the mean values for reliable
and unreliable components. From these plots, it can be seen
that the distributions of the difference values of the proposed
PRM-based method formulate more distinctively for reliable

Fig. 4. Distributions of the left-hand side terms of equations (1) and (10) in
car noise condition at 5-dB SNR: solid circles and empty circles indicate mean
values of the distributions for reliable and unreliable components respectively.
(a) SS-based mask estimation. (b) PRM-based mask estimation.

Fig. 5. Histograms of the difference values of the 8th Mel-filterbank index in
car noise condition at 5-dB SNR. (a) SS-based mask estimation. (b) PRM-based
mask estimation.

and unreliable components, compared to the spectral subtrac-
tion based method. We believe that this more separable property
of the proposed PRM-based mask estimation method will result
in improved performance compared to the SS-based method.

Fig. 5 displays a detailed illustration of the distributions
(i.e., histograms) of the difference values at the 8th Mel-filter-
bank index for the SS-based and PRM-based mask estimation
methods. Here, the mean values and their standard deviations
were presented also, which are matched to ones presented at
the 8th index in Fig. 4. We can also see the distributions of the
difference values for reliable and unreliable components are
more separable in (b) the proposed PRM-based method com-
pared to (a) the SS-based method. Fig. 6 shows a comparison
of the distributions of the difference values for the SS-based
and PRM-based methods for speech babble noise conditions.
From the comparison of the plots we also can see the proposed
PRM-based method represents more separable distributions.
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Fig. 6. Distributions of the left-hand-side terms of the equations (1) and (10) in
speech babble condition at 5-dB SNR: solid circles and empty circles indicate
mean values of the distributions for reliable and unreliable components, respec-
tively. (a) SS-based mask estimation. (b) PRM-based mask estimation.

TABLE II
RECOGNITION PERFORMANCE OF MISSING-FEATURE RECONSTRUCTION (MF)
EMPLOYING SS-BASED (SSM) AND PRM-BASED (PRM) MASK ESTIMATION

METHODS IN FOUR TYPES OF BACKGROUND NOISE CONDITIONS (WER, %)

C. Missing-Feature Speech Recognition Performance
Employing Mask Estimation

Tables II and III show recognition performance using the
missing-feature (MF) reconstruction method employing the
mask estimation methods for four types of background noise
conditions. In missing-feature reconstruction for all our ex-
periments, a 23rd-order log-spectral coefficients (i.e., log of
Mel-filterbank output) were used for the feature vector and
a 64-mixture GMM with a full covariance was employed.
The reconstructed feature in the log-spectral domain is trans-
formed to the cepstral coefficients and then submitted to the
speech recognizer with a clean condition trained HMM. The
WERs with the “Oracle” mask (i.e., Oracle-MF) represent
the recognition performance with perfect knowledge of the
reliable/unreliable regions, providing an upper bound on per-
formance for evaluating mask estimation methods. The Oracle
mask was generated by comparing the noise-corrupted speech

TABLE III
RECOGNITION PERFORMANCE OF MISSING-FEATURE RECONSTRUCTION (MF)

COMBINED WITH SPECTRAL SUBTRACTION (SS), EMPLOYING SS-BASED

(SSM) AND PRM-BASED (PRM) MASK ESTIMATION METHODS IN FOUR

TYPES OF BACKGROUND NOISE CONDITIONS (WER, %)

TABLE IV
THRESHOLD VALUES USED FOR THE MASK ESTIMATION IN THE EXPERIMENTS

signal to the original clean speech at the log-spectrum level.
For noise estimates for both the spectral subtraction based and
the proposed PRM-based mask estimation methods, we used
the silence (i.e., non-speech) duration at the beginning and end
parts of each utterance which consists of a total of 24 frames.

As shown in these results, there were significant relative im-
provements in WER by employing the proposed PRM-based
mask estimation method (PRM-MF). We obtained ,

, , and average relative improve-
ments3 in WER for car, factory, babble, and music noise condi-
tions respectively, compared to the reconstruction method with
the spectral subtraction-based mask estimation (SSM-MF). The
threshold values (i.e., and ) for both SS-based and
PRM-based mask estimation were determined in a empirical
way to achieve the best performance in an average WER for
all SNRs. It was found that the PRM-based method shows con-
sistently improved performance with a single frequency-depen-
dent threshold for all noise conditions. We used 0.8 for the fre-
quency range below 1 kHz and 1.2 for the range over 1 kHz of
input speech signal. For the spectral subtraction based method,
a similar frequency-dependent threshold did not show a consis-
tent performance improvement. The used threshold values are
presented in Table IV.

We found that the missing-feature reconstruction method
produces a significant improvement in WER when com-
bined with the conventional spectral subtraction prior to the
missing-feature processing. For the combination scheme, input
speech signal is first enhanced using the spectral subtraction,
and then fed to the missing-feature reconstruction method.
The mask estimation methods are also applied to the en-
hanced input speech signal. Table III shows the performance
of missing-feature reconstruction combined with spectral sub-
traction employing the two types of mask estimation methods.

3The average relative improvement is computed by taking the average of the
obtained relative improvements.
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TABLE V
RECOGNITION PERFORMANCE OF MISSING-FEATURE RECONSTRUCTION

(MF) WITH PRM-BASED (PRM) MASK ESTIMATION METHODS EMPLOYING

VOICE ACTIVITY DETECTOR (VAD) IN FOUR TYPES OF BACKGROUND NOISE

CONDITIONS (WER, %); RELATIVE IMPROVEMENTS ARE OBTAINED BY

COMPARISON TO SSM-MF OF TABLE II AND ���-��� �� OF TABLE III

As shown in these results, there were also consistently sig-
nificant relative improvements in WER by employing the
proposed PRM-based mask estimation method. We obtained

, , , and average relative
improvements in WER for the car, factory, babble, and music
conditions, respectively, compared to - .

For real-life application, we employed a voice activity detec-
tion (VAD) algorithm for noise estimation for the PRM-based
mask estimation, which does not require prior knowledge
of non-speech segments locations of input speech. Here we
employed a simple VAD method which is based on quantile
statistics of energy values. In our method, the energy values
of all frames of every input utterance are sorted and then a
median value is selected for the threshold to decide speech
or non-speech frames. The recognition performance of the
missing-feature reconstruction with the proposed PRM-based
mask estimation method employing the VAD algorithm

- is presented in Table V with relative
improvements obtained by comparing to the -
of Tables II and III. These results prove that to employ the VAD
algorithm for the PRM-based method still results in consid-
erable improvements compared to - , although
there was performance degradation at higher SNRs for car and
factory noise conditions. We believe that more reliable VAD
algorithm will compensate the performance degradation and
bring more improved performance.

The comparison of performance of the missing-feature
method employing the proposed PRM-based mask estimation
with other conventional methods are summarized for different
types of background noise conditions (Table VI) and different
SNR conditions (Table VII). From these results, we can see
that the proposed PRM-based method showed and

average relative improvements for all noise con-
ditions compared to the SS-based method, solely used and
combined with with spectral subtraction, respectively. We
note that the average WERs of the missing-feature method
employing the proposed PRM-based mask estimation method

TABLE VI
PERFORMANCE COMPARISON IN WER (%) IN FOUR TYPES OF BACKGROUND

NOISE CONDITIONS AS AVERAGE OVER ALL SNRS; 0, 5, 10, 15 AND 20 dB

TABLE VII
PERFORMANCE COMPARISON IN WER (%) IN DIFFERENT SNR CONDITIONS AS

AVERAGE OVER ALL FOUR BACKGROUND NOISE TYPES

outperforms the AFE4 for babble (14.71% versus 15.11%) and
background music (16.15% versus 18.29%) conditions. By
employing the VAD algorithm, 22.82 and 23.41 av-
erage relative improvements compared to the -
were obtained for all noise conditions. It also provides more
effective performance for babble (14.93% versus 15.11%) and
background music (15.22% versus 18.29%) noise conditions
compared to the AFE algorithm. It is worth to note that the
proposed PRM-based mask estimation method shows effective
performance with a single frequency-dependent threshold as
shown in Table IV which is independent of the noise condition,
while selection of the threshold for the conventional SS-based
method is highly sensitive to the background noise type to
produce the best performance.

D. Real-Life In-Vehicle Condition: CU-Move Corpus

The proposed mask estimation method for missing-feature re-
construction was also evaluated on a real-life in-vehicle condi-
tions obtained from the CU-Move corpus [7]. The CU-Move
project was designed to develop reliable car navigation sys-
tems employing a mixed-initiative dialog. This requires robust
speech recognition across changing acoustic conditions. The
CU-Move database consists of five parts: 1) command and con-
trol words; 2) digit strings of telephone and credit numbers;
3) street names and addresses; 4) phonetically-balanced sen-
tences, and 5) Wizard of Oz interactive navigation conversa-
tions. A total of 500 speakers, balanced across gender and age,

4AFE showed the best performance when used in isolation without SS.
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TABLE VIII
RECOGNITION PERFORMANCE IN WER (%) COMPARISON FOR

THE CU-MOVE CORPUS: RELATIVE IMPROVEMENT COMPARED

TO SSM-MF IS SHOWN IN A PARENTHESIS

produced over 600 GB of data during a six-month collection ef-
fort across the United States. The database and noise conditions
are discussed in detail in [7]. For the evaluation in this study, we
selected 949 utterances (length of 1 hour and 40 min) spoken
by 20 different speakers (9 males and 11 females), which were
collected in Minneapolis, MN. The test samples represent an
average 8.48 dB5 SNR calculated by the NIST STNR Speech
Quality Assurance software [43].

Table VIII shows the performance evaluation of the proposed
PRM-based mask estimation for missing-feature reconstruc-
tion on the CU-Move corpus. These results demonstrate that
missing-feature reconstruction with the proposed PRM-based
mask estimation brings consistent improvement compared
to the SSM-MF on the real-life in-vehicle condition as well,
resulting in 12.84 relative improvement when combined
with spectral subtraction. By employing the identical VAD
algorithm presented in Section V-C, we obtained 9.45 of
relative improvement. Here also the same threshold value as
presented in Table III for the PRM-based method was em-
ployed. These results also show that the performance of the
proposed - schemes slightly outperform both

and AFE. The results here prove that the proposed
PRM-based mask estimation method could be applicable to
real-life in-vehicle conditions to improve performance of
speech recognition.

VI. CONCLUSION

This study has proposed a novel mask estimation method for
missing-feature reconstruction to improve speech recognition
in various types of background noise conditions. In the pro-
posed method, a posterior-based representative mean estimate
was utilized to determine the reliability of the input speech
spectrum, which is obtained as a weighted sum of mean param-
eters of the speech model using the posterior probability. To
obtain the noise-corrupted speech model, a model combination
method was employed, which was previously proposed for
feature compensation in our past study. Experimental results
demonstrated that the proposed mask estimation method pro-
vides more separable distributions for the reliable/unreliable
component classifier compared to the conventional mask es-
timation method. The recognition performance was evaluated
using the Aurora 2.0 framework over four types of background
noise conditions (e.g., car, factory, speech babble and back-
ground music) and the CU-Move corpus which is for real-life
in-vehicle conditions. The performance evaluation showed

50 dB and 5 dB SNR test samples of the car noise condition of the Aurora 2.0
corpus show 7.15 dB and 11.66 dB average SNRs, respectively, using the NIST
STNR tool.

that the proposed mask estimation method is considerably
more effective at increasing speech recognition performance
in various types of background noise conditions, compared to
the conventional mask estimation method which is based on
spectral subtraction. By employing the proposed PRM-based
mask estimation for missing-feature reconstruction, we ob-
tained 23.41 and 9.45 average relative improvements in
WER for all four types of noise conditions and the CU-Move
corpus, respectively, compared to conventional mask estimation
methods. It is noted that the proposed missing-feature method
with spectral subtraction outperformed the ETSI AFE algo-
rithm in speech babble and background music for the Aurora
2.0 framework and CU-Move corpus. These advancements
contribute to the increased viability of missing-feature theory
for robust speech systems in time-varying noisy environments.

REFERENCES

[1] W. Kim and J. H. L. Hansen, “Mask estimation employing poste-
rior-based representative mean for missing-feature speech recognition
with time-varying background noise,” in Proc. IEEE ASRU’09,
Merano, Italy, Dec. 2009, pp. 194–198.

[2] W. Kim and J. H. L. Hansen, “Feature compensation in the cepstral
domain employing model combination,” Speech Commun., vol. 51, no.
2, pp. 83–96, 2009.

[3] A. P. Varga, H. J. M. Steeneken, M. Tomlinson, and D. Jones, “The
NOISEX-92 study on the effect of additive noise on automatic speech
recognition,” in Tech. Rep., Speech Res. Unit, Defense Res. Agency,
Malvern, U.K., 1992, (Available from NOISEX-92 CD-ROMS).

[4] H. Heuvel, J. Boudy, R. Comeyne, S. Euler, A. Moreno, and G. Richard,
“The Speechdat-Car multilingual speech databases for in-car applica-
tions: Some first validation results,” in Proc. Eurospeech’99, Sep. 1999.

[5] T. Crystal, A. Schmidt-Nelson, and E. Marsh, “Speech in noisy envi-
ronments (SPINE) adds news dimension to speech recognition R&D,”
in Proc. HLT Conf., San Diego, CA, Mar. 2002.

[6] P. Angkititrakul, M. Petracca, A. Sathyanarayana, and J. H. L.
Hansen, “UTDrive: Driver behavior and speech interactive systems
for in-vehicle environments,” in Proc. IEEE Intell. Veh. Conf., 2007,
pp. 566–569.

[7] J. H. L. Hansen, X. Zhang, M. Akbacak, U. Yapanel, B. Pellom,
W. Ward, and P. Angkititrakul, “CU-move: Advances for in-vehicle
speech systems for route navigation,” in DSP for In-Vehicle and
Mobile Systems, Abut, J. H. L. Hansen, and Takeda, Eds. New York:
Springer., 2004, ch. 2.

[8] J. H. L. Hansen, R. Huang, B. Zhou, M. Seadle, J. R. Deller Jr., A. R.
Gurijala, M. Kurimo, and P. Angkititrakul, “Speechfind: Advances in
spoken document retrieval for a National Gallery of the Spoken Word,”
IEEE Trans. Speech Audio Process., vol. 13, no. 5, pp. 712–730, Sep.
2005.

[9] W. Kim and J. H. L. Hansen, “Speechfind for CDP: Advances in spoken
document retrieval for the U.S. collaborative digitization program,” in
Proc. IEEE ASRU2007, 2007, pp. 687–692.

[10] J. H. L. Hansen, “Analysis and compensation of speech under stress
and noise for environmental robustness in speech recognition,” Speech
Commun., vol. 20, no. 2, pp. 151–170, 1996.

[11] S. F. Boll, “Suppression of acoustic noise in speech using spectral sub-
traction,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-27,
no. 2, pp. 113–120, Apr. 1979.

[12] Y. Ephraim and D. Malah, “Speech enhancement using minimum
mean square error short time spectral amplitude estimator,” IEEE
Trans. Acoust., Speech, Signal Process., vol. ASSP-32, no. 6, pp.
1109–1121, Dec. 1984.

[13] J. H. L. Hansen and M. Clements, “Constrained iterative speech en-
hancement with application to speech recognition,” IEEE Trans. Signal
Process., vol. 39, no. 4, pp. 795–805, Apr. 1991.

[14] J. H. L. Hansen, “Morphological constrained enhancement with adap-
tive cepstral compensation (MCE-ACC) for speech recognition in noise
and Lombard effect,” IEEE Trans. Speech Audio Process., vol. 2, no.
4, pp. 598–614, Oct. 1994.

[15] P. J. Moreno, B. Raj, and R. M. Stern, “Data-driven environmental
compensation for speech recognition: A unified approach,” Speech
Commun., vol. 24, no. 4, pp. 267–285, 1998.

[16] N. S. Kim, “Feature domain compensation of nonstationary noise for
robust speech recognition,” Speech Commun., vol. 37, pp. 231–248,
2002.



KIM AND HANSEN: NOVEL MASK ESTIMATION METHOD EMPLOYING PRM ESTIMATE FOR MISSING-FEATURE SPEECH RECOGNITION 1443

[17] V. Stouten, H. Van hamme, and P. Wambacq, “Joint removal of additive
and convolutional noise with model-based feature enhancement,” in
Proc. ICASSP’04, 2004, pp. 949–952.

[18] A. Sasou, T. Tanaka, S. Nakamura, and F. Asano, “HMM-based fea-
ture compensation methods: An evaluation using the Aurora2,” in Proc.
ICSLP’04, 2004, pp. 121–124.

[19] J. L. Gauvain and C. H. Lee, “Maximum a posteriori estimation for
multivariate Gaussian mixture observations of Markov chains,” IEEE
Trans. Speech Audio Process., vol. 2, no. 2, pp. 291–298, Apr. 1994.

[20] C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear
regression for speaker adaptation of continuous density HMMs,”
Comput. Speech Lang., vol. 9, pp. 171–185, 1995.

[21] M. J. F. Gales and S. J. Young, “Robust continuous speech recog-
nition using parallel model combination,” IEEE Trans. Speech Audio
Process., vol. 4, no. 5, pp. 352–359, Sep. 1996.

[22] J. Barker, M. Cooke, and P. Green, “Robust ASR based on clean speech
models: An evaluation of missing data techniques for connected digit
recognition in noise,” in Proc. Eurospeech’01, 2001, pp. 213–216.

[23] M. Cook, P. Green, L. Josifovski, and A. Vizinho, “Robust automatic
speech recognition with missing and unreliable acoustic data,” Speech
Commun., vol. 34, no. 3, pp. 267–285, 2001.

[24] K. J. Palomaki, G. J. Brown, and J. P. Barker, “Techniques for handling
convolutional distortion with missing data automatic speech recogni-
tion,” Speech Commun., vol. 43, pp. 123–142, 2004.

[25] B. Raj, M. L. Seltzer, and R. M. Stern, “Reconstruction of missing
features for robust speech recognition,” Speech Commun., vol. 43, no.
4, pp. 275–296, 2004.

[26] H. Van Hamme, “Robust speech recognition using cepstral domain
missing data techniques and noisy masks,” in Proc. ICASSP’04, May
2004, pp. 213–216.

[27] B. Raj and R. M. Stern, “Missing-feature approaches in speech recog-
nition,” IEEE Signal Process. Mag., vol. 22, no. 5, pp. 101–116, Sep.
2005.

[28] W. Kim and J. H. L. Hansen, “Missing-feature reconstruction for band-
limited speech recognition in spoken document retrieval,” in Proc. In-
terspeech’06, Sep. 2006, pp. 2306–2309.

[29] W. Kim and J. H. L. Hansen, “Time-frequency correlation based
missing-feature reconstruction for robust speech recognition in
band-restricted conditions,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 17, no. 7, pp. 1292–1304, Sep. 2009.

[30] A. Vizinho, P. Green, M. M. Cooke, and L. Josifovski, “Missing data
theory, spectral subtraction and signal-to-Noise estimation for robust
ASR: An integrated study,” in Proc. Eurospeech’99, Sep. 1999, pp.
2407–2410.

[31] M. L. Seltzer, B. Raj, and R. M. Stern, “A Bayesian classifier for spec-
trographic mask estimation for missing-feature speech recognition,”
Speech Commun., vol. 43, no. 4, pp. 379–393, 2004.

[32] W. Kim, R. M. Stern, and H. Ko, “Environment-independent mask es-
timation for missing-feature reconstruction,” in Proc. Interspeech’05,
Sep. 2005, pp. 2637–2640.

[33] W. Kim and R. M. Stern, “Band-independent mask estimation for
missing-feature reconstruction in the presence of unknown background
noise,” in Proc. ICASSP’06, May 2006, pp. 305–308.

[34] P. Jancovic, M. Kokuer, and F. Murtagh, “High-likelihood model based
on reliability statistics for robust combination of features: Applica-
tion to noisy speech recognition,” in Proc. Eurospeech’03, 2003, pp.
2161–2164.

[35] S. Harding, J. Barker, and G. J. Brown, “Mask estimation based on
sound localisation for missing data speech recognition,” in Proc.
ICASSP’05, 2005, pp. 537–540.

[36] S. Srinivasan, N. Roman, and D. Wang, “Binary and ratio time-fre-
quency masks for robust speech recognition,” Speech Commun., vol.
48, no. 11, pp. 1486–1501, 2006.

[37] H. Park and R. M. Stern, “Spatial separation of speech signals using
amplitude estimation based on interaural comparisons of zero cross-
ings,” Speech Commun., vol. 51, no. 1, pp. 15–25, 2009.

[38] H. G. Hirsch and D. Pearce, “The AURORA experimental framework
for the performance evaluations of speech recognition systems under
noisy conditions,” in Proc. ISCA ITRW ASR2000, 2000.

[39] ETSI Standard Document, ETSI ES 201 108 v1.1.2 (2000-04), 2000.
[40] [Online]. Available: http://spib.rice.edu/spib/select_noise.html
[41] R. Martin, “Spectral subtraction based on minimum statistics,” in Proc.

EUSIPCO-94, 1994, pp. 1182–1185.
[42] ETSI Standard Document, ETSI ES 202 050 v1.1.1 (2002-10), 2002.
[43] NIST SPeech Quality Assurance (SPQA) Package Version 2.3 [On-

line]. Available: http://www.nist.gov/speech

Wooil Kim (M’06) received the B.S., M.S., and
Ph.D. degrees in electronics engineering from
Korea University, Seoul, in 1996, 1998, and 2003,
respectively.

He has been a Research Assistant Professor in the
Erik Jonsson School of Engineering and Computer
Science, University of Texas at Dallas (UTD),
Richardson, since September 2007. He is also a
member of the Center for Robust Speech Systems
(CRSS) at UTD. Previously, he was a Research
Associate at UTD (August 2005–August 2007)

and a Post-Doctoral Researcher in the Electrical and Computer Engineering
Department, Carnegie Mellon University, Pittsburgh, PA (August 2004–August
2005) and Korea University (September 2003–August 2004). His research
interests are robust speech recognition in adverse environments, acoustic
modeling for large-vocabulary continuous speech recognition, and spoken
document retrieval.

John H. L. Hansen (S’81–M’82–SM’93–F’07) re-
ceived the B.S.E.E. degree from the College of Engi-
neering, Rutgers University, New Brunswick, NJ, in
1982 and the M.S. and Ph.D. degrees in electrical en-
gineering from Georgia Institute of Technology, At-
lanta, GA, in 1983 and 1988, respectively.

He joined the Erik Jonsson School of Engineering
and Computer Science, University of Texas at Dallas
(UTD), Richardson, in the fall of 2005, where he
is Professor and Department Head of Electrical
Engineering, and holds the Distinguished University

Chair in Telecommunications Engineering. He also holds a joint appointment
as Professor in the School of Behavioral and Brain Sciences (Speech and
Hearing). At UTD, he established the Center for Robust Speech Systems
(CRSS) which is part of the Human Language Technology Research Institute.
Previously, he served as Department Chairman and Professor in the Department
of Speech, Language, and Hearing Sciences (SLHS), and Professor in the
Department of Electrical and Computer Engineering, at the University of
Colorado at Boulder (1998–2005), where he co-founded the Center for Spoken
Language Research. In 1988, he established the Robust Speech Processing
Laboratory (RSPL) and continues to direct research activities in CRSS at UTD.
His research interests span the areas of digital speech processing, analysis and
modeling of speech and speaker traits, speech enhancement, feature estima-
tion in noise, robust speech recognition with emphasis on spoken document
retrieval, and in-vehicle interactive systems for hands-free human–computer
interaction. He has supervised 51 (22 Ph.D., 29 M.S./M.A.) thesis candidates.
He is author/coauthor of 380 journal and conference papers and eight textbooks
in the field of speech processing and language technology, coauthor of the
textbook Discrete-Time Processing of Speech Signals, (IEEE Press, 2000),
co-editor of DSP for In-Vehicle and Mobile Systems (Springer, 2004), Advances
for In-Vehicle and Mobile Systems: Challenges for International Standards
(Springer, 2006), In-Vehicle Corpus and Signal Processing for Driver Behavior
(Springer, 2008), and lead author of the report “The Impact of Speech Under
‘Stress’ on Military Speech Technology,” (NATO RTO-TR-10, 2000).

Prof. Hansen was named IEEE Fellow in 2007 for contributions in “Robust
Speech Recognition in Stress and Noise,” and is currently serving as Member of
the IEEE Signal Processing Society Speech Technical Committee (2005–2008;
2010–2013; elected Chair-elect in 2010), and Educational Technical Committee
(2005–2008; 2008–2010). Previously, he has served as Technical Advisor to
U.S. Delegate for NATO (IST/TG-01), IEEE Signal Processing Society Distin-
guished Lecturer (2005/2006), Associate Editor for the IEEE TRANSACTIONS ON

SPEECH AND AUDIO PROCESSING (1992–1999), Associate Editor for the IEEE
SIGNAL PROCESSING LETTERS (1998–2000), Editorial Board Member for the
IEEE Signal Processing Magazine (2001–2003). He has also served as a Guest
Editor of the October 1994 special issue on Robust Speech Recognition for the
IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING. He has served on
the Speech Communications Technical Committee for the Acoustical Society
of America (2000–2003), and is serving as a member of the ISCA (International
Speech Communications Association) Advisory Council. In 2010, he was rec-
ognized as an ISCA Fellow, for contributions on “research for speech processing
of signals under adverse conditions.” He was recipient of The 2005 University
of Colorado Teacher Recognition Award as voted on by the student body. He
also organized and served as General Chair for ICSLP/Interspeech-2002: Inter-
national Conference on Spoken Language Processing, September 16–20, 2002,
and served as Co-Organizer and Technical Program Chair for IEEE ICASSP-
2010, Dallas, TX.


