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Abstract—State-of-the-art Gaussian mixture model (GMM)-
based speaker recognition/verification systems utilize a universal
background model (UBM), which typically requires extensive re-
sources, especially if multiple channel and microphone categories
are considered. In this study, a systematic analysis of speaker veri-
fication system performance is considered for which the UBM data
is selected and purposefully altered in different ways, including
variation in the amount of data, sub-sampling structure of the fea-
ture frames, and variation in the number of speakers. An objective
measure is formulated from the UBM covariance matrix which is
found to be highly correlated with system performance when the
data amount was varied while keeping the UBM data set constant,
and increasing the number of UBM speakers while keeping the
data amount constant. The advantages of feature sub-sampling
for improving UBM training speed is also discussed, and a novel
and effective phonetic distance-based frame selection method is
developed. The sub-sampling methods presented are shown to
retain baseline equal error rate (EER) system performance using
only 1% of the original UBM data, resulting in a drastic reduction
in UBM training computation time. This, in theory, dispels the
myth of “There’s no data like more data” for the purpose of UBM
construction. With respect to the UBM speakers, the effect of
systematically controlling the number of training (UBM) speakers
versus overall system performance is analyzed. It is shown ex-
perimentally that increasing the inter-speaker variability in the
UBM data while maintaining the overall total data size constant
gradually improves system performance. Finally, two alternative
speaker selection methods based on different speaker diversity
measures are presented. Using the proposed schemes, it is shown
that by selecting a diverse set of UBM speakers, the baseline
system performance can be retained using less than 30% of the
original UBM speakers.

Index Terms—Acoustic modeling, intelligent speaker selection,
speaker recognition, speaker verification, universal background
model (UBM).
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1. INTRODUCTION

N recent years, Gaussian mixture model (GMM)-based
I approaches in text independent speaker identification
systems have received considerable attention. Although, many
distinct algorithms have been developed in this area, the use
of GMMs for modeling acoustic features have become almost
exclusive. The most fundamental GMM-based speaker recog-
nition methods include the classical maximum a posteriori
(MAP) adaptation of universal background model parame-
ters [2] (GMM-UBM) and support vector machine (SVM)
modeling of GMM super-vectors (GMM-SVM) [3]. Both of
these approaches improve when using additional normalization
schemes, such as factor analysis [4], eigenvoice [5], or nuisance
attribute projection (NAP) [6]. Many groups employ these
schemes successfully as individual subsystems in the recent
2008 National Institute of Science and Technology (NIST)
speaker recognition (SRE) evaluations [7]-[10].

An important mutual element of these subsystems is the
UBM. It is essentially a very large GMM trained to represent
the speaker-independent distribution of the speech features [2]
for all speakers in general, and is employed as the expected
alternative speaker model during the verification task. It is
also employed in open-set speaker recognition systems as
well. In the two primary GMM-based systems (GMM-UBM,
GMM-SVM), all speaker models are dependent on the UBM,
making it a key element. However, despite its importance, fo-
cused research on UBM training has not yet been conducted in
the literature [2]. The general trend is to use as many speakers
and speech comprising a wide range of speech/channel condi-
tions, without much thought regarding performance tradeoff.
Though, recent research has focused on other aspects of the
UBM, such as [11] where an adaptive individual background
model training is considered, or [12], where the application
of speaker normalization techniques on the UBM data is in-
vestigated, the basic and fundamental questions regarding the
construction of a UBM and its implications in system perfor-
mance is still an open unaddressed question. In this paper, we
give an in depth consideration of the UBM training process and
attempt to gain insight on how system performance is related
to specific UBM composition.

There are a number of different parameters involved in the
UBM training process. It is possible to classify these parame-
ters into two broad categories as, 1) algorithm parameters and
2) data parameters. The algorithm parameters are the variations
in the training process which include the number of mixtures,
method of training, number of iterations, method of initializa-
tion, etc. The data parameters include different ways of defining
the subset of available training data. These parameters consider
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the corpus, the amount of data, number of speakers in the data,
amount of data per speaker, method of selecting speakers,
ways of using the feature vectors, data balancing according to
channel, microphone, language, or other variability, and so on.
Since the only available objective criteria that can measure the
quality of a UBM is overall/final system performance, finding
a better UBM becomes a challenge since it will generally rely
on a trial and error-based endeavor, making it very impractical
to vary all the mentioned parameters and find the optimal
combination that gives the best performance. Thus, in order
to limit the scope of this research, we only focus on a limited
set of the data parameters, and attempt to analyze their effect
on system performance in order to answer some fundamental
questions concerning UBM training.

The first question that arises concerning the UBM data is the
required amount. A common assumption in UBM training is that
the more data used, the better the system performance. UBMs
with 512, 1024, 2048 or more mixtures are sought after, with
the assumption that they represent the definitive world speaker
acoustic space. Research groups involved in the NIST SRE typi-
cally use 5-min utterances from all NIST 2004-2005 data along
with the Switchboard Cellular I and II data [10]. However, there
is no concrete evidence that using the maximum amount of data
would guarantee the best overall performance. According to [2],
as long as the development speaker population is kept the same,
a small amount of data is sufficient for reasonable system perfor-
mance. This suggests that, the degree of inter-speaker variation
in the data is more important than the absolute amount of data
per speaker. In this paper, we systematically analyze this aspect
of UBM training, determine a measure of data variability from
the UBM parameters, and relate this to system performance.

The issue of using a subset of features from a given UBM ut-
terance arises as an inevitable consequence of using a reduced
amount of data. The simplest methods for sub-sampling fea-
ture frames would include decimation and random feature se-
lection, which have already been utilized to improve the CPU
training time of a GMM [13]. Clearly, these feature sub-sam-
pling methods do not consider the actual acoustic content of the
features, and select features rather blindly. Here, we consider an
adaptive phoneme dependent feature sub-sampling scheme for
effectively capturing the subtle nuances of features in each utter-
ance using a very small amount of data. The goal is to maximize
the data variability that can be captured from a given UBM ut-
terance using a minimal number of features. This is motivated
by considering the feature selection issue at the phoneme level.
Since inter-speaker variability in the UBM data has a higher
contribution to system performance [2], intra-speaker phoneme
variation should be less relevant for the UBM. When a long du-
ration utterance is used for a speaker, some phones will occur
more frequently and with greater duration, and therefore would
contribute to probability density function (pdf) components in
the UBM that represent the intra-speaker distribution of that
phoneme, causing an imbalance. Thus, reducing the develop-
ment data by means of proper selection of the training feature
vectors will obviously improve computation speed, with a pos-
sible improvement in overall system performance as well.

The inter-speaker variability of the UBM data is directly
related to the number of speakers present in the data-set. In our
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study, we systematically control the number of speakers in the
UBM data in an attempt to gain valuable insight on an overall
system performance relation with inter-speaker variability.
Considering the idea that speaker diversity is a key factor for
UBM data selection, approaches of diverse speaker selection is
also investigated.

This paper is organized as follows. In Section II we discuss
the definition of the UBM and how data parameters should be
set for an ideal UBM. Section III describes our baseline system.
In Section IV, we analyze the effect of changing the amount of
data in the UBM and in Section V, we consider feature sub-sam-
pling approaches. Next, in Section VI we analyze the effect of
changing the number of unique speakers in the UBM data and in
Section VII we discuss different ways of sub-sampling speakers.
Finally, in Section VIII we draw conclusions. It should be noted
that UBM training is analogous to baking a cake, there are many
ingredients that can be adjusted, but the final outcome will still
have the same basic structure. It is expected that improved UBM
construction may not have a significant impact in performance
metrics such as equal error rate (EER) or minDCF. However,
from a scientific perspective, formulating a more effective UBM
using less training data should reduce computational require-
ments and produce a more balanced UBM that represents the
overall speaker acoustic space.

II. THE IDEAL UBM

As noted earlier, the UBM is a speaker-independent Gaussian
mixture model (GMM) trained with speech acoustic features
from a large set of speakers to represent the general, speaker-in-
dependent distribution of features. The concept of a UBM be-
comes important because of the likelihood ratio test performed
in the verification task. Given an observation O, and a hypoth-
esized speaker S, the task of speaker verification can be stated
as a hypothesis test between

Hy : O is from speaker S
H; :Ois not from speaker S. (1)

In general, the hypothesis Hy and H; are represented by a
speaker-dependent model Ags and the background model Az.
Thus, for the observed feature vectors X, the likelihood ratio
test is performed by evaluating

_ p(X[As) [ >0,
X) = Xrs) {< 0,

Thus, ideally, the background model Az should be a model
that represents the entire space of all possible alternatives to
the hypothesized speaker .S, which leads to a speaker specific
background model. This approach has been adopted by many
researchers in the past [11], [14]-[16]. However, creating a
speaker specific background model for each enrolled speaker
can be computationally expensive, especially for a large number
of speakers, which is typically the case in the NIST SRE eval-
uations [7]. Also, it may not always be necessary to represent
all outside speakers, only those that may attempt to enter the
speaker verification system as imposters. Thus, most modern
speaker verification systems use a single speaker-independent
background model, (i.e., the UBM) for modeling the alternative

accept Hy

reject Hy. 2)
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hypothesis in the likelihood ratio test. Generally, the UBM is
trained using a large amount of data coming from a variety of
different speakers and channel/microphone conditions, so that
the model contains at least some aspect of the variabilities that
could be encountered in the unknown test data.

A. Data Balancing

Inspired by the general guideline of UBM data as presented
in [2], the data requirements for an ideal UBM can be specified
as follows. Let the following variables be

S={si}, 1<i<N, 3)

M ={m;},1<i< N,y )
and

C={c}, 1<i<N. 5)

denote the set of all available speakers, microphone types, and
transmission channel types, respectively, in a single gender data-
base. Here N, N,,, and N, denote the number of speakers,
microphones and transmission channels, respectively. Let X =
{x1,%X2...xn} denote the set of all available features in the
database. Next, define the following data sets

X, ={xj|x; belongs to speaker s;}
X, ={x;|x; wasrecorded with mic. m,}

X., ={x;|x; comes from channel c¢;}. (6)

Obviously, considering the total number of speakers, micro-
phones, and channels, the union of each reflects the total data
available:

X = (Uf\;slxsi) = (UfwzniX"h) = (Uf\;clxci) -

If X1 C X denote the set of features that should be used for the
ideal UBM, it should contain features from all these variabilities
in equal proportions with respect to the test data. If, the prior
probabilities of the occurrence of a speaker, microphone type,
or channel condition in the test data is known, the feature set X
should fulfill the following constraints:

n(Xs, N X1) =R (p(s;)n(X1)), Vs; € S (8
(X, NX1) =R (p(mi)n(X1)),  Vm; € M (9)
n(Xe, NX1) =R (p(ci)n(Xr1)) , Ve, € C (10)

where n(-), R(-) and p(-) indicate the number of elements in
a set, the round-off operation and the prior probability of an
element in the test data, respectively. Typically, there is no prior
knowledge about the test data condition distribution, leaving the
system designer with the only option of assuming these prior
probabilities are equal. This is known as balancing of the UBM
data as discussed in [2]. It should be noted that (8) assumes
all the speakers to be considerably diverse in nature otherwise
similar speakers (i.e., the cohorts) may introduce unbalance in
the data. This issue is further discussed in Section VII.
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B. Data Amount

It is clear that the set X of all available data features should
be large enough to represent all variabilities faithfully. For ex-
ample, if there is only 5 min of data for a cordless phone in
the entire 10-h UBM data set, trying to balance the microphone
type would require us to use only 5 min of data from each mi-
crophone type, which may lead to insufficient amounts of UBM
data. However, what defines a data amount to be sufficient or in-
sufficient is rather vague and probably system dependent. Gen-
erally, for a given data set, the amount of data that appropriately
represents the variability of the entire corpus should be sufficient
for the UBM. Since human speech features can only occupy a
limited region in the feature space due to physiology constraints,
it is expected that the variability of the data would be saturated
when the data amount becomes very large, assuming other con-
ditions (e.g., channel, microphone, or language variability) are
kept the same. Let ¥(-) represent a function that can measure
the variability of the UBM data, then as the size of the set Xy
increases, ¥J(X) should approach some constant value. Mathe-
matically, this can be written as follows:

lim

$(Xy) = 0.
n(Xp)—oo ( I) g

(1)

Having defined the scope of the data characteristics, it is now
possible to consider alternative UBM training schemes. A base-
line system scenario is first considered in the next section.

III. BASELINE SYSTEM DESCRIPTION

A. System Overview

Since the objective of this research is focused only on UBM
training, a fairly standard GMM-UBM [2] baseline system is
employed without any mismatch compensation and score nor-
malization. A prime reason for not using expanded or enhanced
GMM-based systems (i.e., joint factor analysis (JFA) or Eigen-
channel [4]), is because they require time consuming training of
the Eigenchannel and Eigenvoince matrices each time the UBM
is retrained. Given the number and extent of the experiments re-
quired in this study, it was decided that using such enhancements
would be impractical. Future studies could further explore the
impact in UBM construction with other system processing tasks.

For the front-end, 39-dimensional MFCC features
(MFCC+A+AA) are extracted using a 25-ms analysis window
with 10-ms shift. Next, feature warping [17] based on applying
a 3-s sliding window, is performed. To remove silence frames,
a phone recognizer based voice activity detector (VAD) is
utilized. For baseline UBM training, 1024 mixtures are used.
UBM training is performed using the maximum-likelihood
(ML) criterion with HTK [18] tools, performing 15 iterations
per mixture split. Here, only male speaker trials are considered.
For modeling, gender dependent UBMs are adapted to each
enrollment speaker-dependent model using classical MAP
adaptation [2] with one iteration and a relevance factor of 19.
In scoring, a standard 20-best expected log likelihood ratio
scoring is employed. The 5-min tel-tel condition trials [7] of
the NIST 2008 SRE are used for all evaluations.
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B. UBM Database

Here, two different database sets are employed for con-
structing the UBM: 1) 2019 male utterances from the NIST
SRE 2004 1-s (5-min training) data, consisting of 126 unique
speakers; 2) 5685 male utterances from NIST SRE 2004 and
NIST SRE 2006 (that include channel and microphone labels),
consisting of 392 unique speakers. For these two data set cases,
the resulting baseline system EER was 11.43% and 11.41%,
respectively.

C. Computational Resources

The speaker ID system was implemented on a high-perfor-
mance Rocks computing cluster running the CentOS Linux
distribution. The cluster comprises 18 HP Intel Quad-Core
Xeon 2.33-GHz CPU’s, yielding 72 CPU cores. A total of
126-GB RAM is available internally on the system. A 4-TB
external RAID disk array is attached to the cluster by means of
a storage area network (SAN). The array is connected with the
cluster nodes through a 1-Gbit Ethernet switch. For calculation
of CPU times for UBM training, the time required for each
parallel process in the 72 CPUs were separately calculated
and accumulated. Thus, the CPU times reported in this work
represent a close estimation of the training time that would be
required if only a single CPU was available.

IV. UBM DATA: WHAT IS A SUFFICIENT AMOUNT

As discussed in Section II, the UBM data should contain
enough variability in a sufficient amount to represent each of the
different channel and microphone conditions. However, using
an enormously large database may not be necessary for the best
performance, as long as the required variability is maintained.
In this section, system performance variation is examined by
increasing the total amount of data for UBM training, while
keeping the speaker population the same.

An experiment was performed using the UBM database-1 as
described in Section III. It should be noted that in this UBM
data set, a single speaker may occur multiple times in different
channel/mic conditions. This database is used mainly because
of the following reasons:

 the NIST SRE 04 1-s corpus contains sufficient variability;

 other research groups have shown success in UBM training

using this set alone ([8], [9], [19]);

* the actual number of speakers in this experiment is not a

primary concern;

 each utterance is 5 min in duration, making it convenient

to extract equal amounts of data from each utterance

uniformly.
The total duration of the data is 168.25 h. Next the UBM is
trained using only the first n feature frames from each utterance,
and evaluated the GMM-UBM system (described in Section III)
for the male trials only. For different values of n, the equivalent
total data amount in hours, the EER and CPU times required for
training are obtained.

A simple formula is proposed to measure the variability of
the data. Since a variance measure of a 39-dimensional feature
vector may not provide an accurate measure of variability of the
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data, an analysis of the UBM covariance matrix is performed.
Here, a parameter, average weighted variance (AWV) is defined
which is computed from the UBM diagonal covariance matrices
as follows. Let the UBM be expressed as

=S v
(12)

where w;, p;, ¥;, K, and M denote the weights, mean vec-
tors, covariance matrices, feature dimension, and number of
Gaussian mixtures, respectively. Assuming a diagonal covari-
ance matrix ¥, let

—12 x—q-TE,_lx— i
F(xAusy) K/2|2 e (R )

¥

(13)
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Next, define the average weighted variance (AWYV), 3, as

(14)

M K
_ 1 9
=1 j=1

From Fig. 1(b), it is clear that performance is comparable to
the baseline system using only ~ 1.5 h of UBM data, which
results in about ~ 2.7 s of data from each utterance. This is
not very surprising since this ~ 1.5 h of data contains all the
inter-speaker variabilities present in all the utterances in the
original NIST SRE 04 corpus used. Very interestingly, from
Fig. 1(a), a clear relation with ¥ and system EER is observed.
After using more than 1.5 h of data, the variance parameter
3, saturates, which indicates that the 2.7 s of data used from
each utterance is actually sufficient to represent the variability
it has to offer for the UBM, in this case. Obviously this dura-
tion measure cannot be completely generalized. The scatter plot
in Fig. 2(b) shows the correlation between % and EER more
clearly, with these two parameters having a correlation coeffi-
cient of —0.8372. From Fig. 2(a), an exponential relation can be
seen between UBM training CPU time and the total UBM data
amount. In these experiments, it was observed that using about
1.5 h of data requires about 30 CPU minutes to train the UBM,
while more than 200 CPU minutes are needed if all the data is
used. Since CPU computation time can be considered linearly
proportional to the complexity of training, this indicates that,
contrary to popular belief, that “more training data is better,”
the addition of five times the computational resources with more
than 160 hours of training data actually has a negligible contri-
bution to improving overall system performance.

Thus, the conclusion drawn here is that if the selected UBM
data set is well chosen, (i.e., contains sufficient speech/speaker
variability) using all the features of each utterance is not
necessary. In the next section, we investigate how system

performance is affected based on alternative feature selection
methods.

V. SUBSAMPLING OF FEATURE FRAMES

In the previous section, it was established that only 2.7 s of
data from each 5 min utterance of the UBM data is sufficient
for system performance equivalent to the baseline configuration.
In this section, several alternative approaches for selecting this
subset of development data for UBM training are considered for
more effective representation of the feature space of each utter-
ance. Time versus frequency spectrograms of these approaches
are illustrated in Fig. 3(b)—(e) using a spectrogram of an original
TIMIT utterance, shown in Fig. 3(a). The use of the first n fea-
ture vectors from each utterance, as done in the previous section,
is termed as “leading feature selection” (LFS) and is depicted in
Fig. 3(b). As noted earlier, subsampling the feature frames can
also be done uniformly or randomly [13]. These methods are de-
noted as UFS (“uniform feature selection”) and RFS (“random
feature selection”) [13], and illustrated in Fig. 3(c) and (d), re-
spectively. Now, though the subsampling methods LFS, UFS
and RFS would reduce computation time, they are overly sim-
plified and completely data independent. These methods do not
consider the specific distribution of the phonetic content over
time. Thus, we propose a generic method termed as “intelli-
gent” feature selection (IFS), which aims to select a diverse
set of n training feature frames from input training utterances.
This method assesses the similarity of successive frames using
a phonetically motivated distance measure, with selection of a
feature frame only if the corresponding dissimilarity is higher
than some threshold. In Fig. 3(e), a conceptual IFS method that
attempts to select a frame from the beginning of each distinct
phoneme is illustrated.

Clearly, there can be variations in this approach if alternative
distance criteria between features are used. Since one design cri-
teria here is training speed, in this phase the Euclidean distance
is used due to its simplicity.
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A. Feature Selection Based on Euclidean Distance

In this section, an intelligent feature selection (IFS) scheme is
proposed based on the simple Euclidean distance between fea-
tures (IFS-EU). The aim here is to estimate similarity between
successive feature frames using this distance measure, and se-
lect a feature frame only if the frame is sufficiently different
from those previously selected. From an intuitive understanding
of the Euclidean distance, it is noted that this distance measure is
related to the smoothed log-spectral distance [20] when applied
to cepstral feature vectors. The formulation is started by de-
riving the pdf of the distance function between feature vectors.

1) PDF of Euclidean Distance Between Features: Assume
that the K-dimensional feature vectors of the development
speaker data, originating from a specific phone, can be mod-
eled by an independent, wide sense stationary (WSS), white
Gaussian vector random sequence X|[n] with a covariance
function matrix K x x[m, n] given by

Kxx[m,n] = diag(A; ... Ag)d[m — n] (15)

where m, n denotes the feature indices, and A\, (p = 1,..., K)

are the variances of the individual cepstral coefficients. The Eu-

clidean distance between the mth and nth feature vector will be

d(m,n) = || X[m] — X[n]||"/>. (16)

The feature vectors have a common mean, and thus the term

inside the parenthesis in (16) will be a zero mean vector random

sequence. Also, due to the independence assumption, d(m,n)
is independent of m and n. Thus,

d(m.n) = d = | Z]|"? a7)
where Z is a zero mean Gaussian random vector having a co-
variance matrix K 7z and found to be

KZZ :diag(Z/\l...Z/\K). (18)

The factor of 2s are introduced because each element
of Z is constructed from the subtraction of two indepen-
dent white Gaussian random variables having variances A,
(p=1,...,K). From (17), it is possible to write

K

K
d* = Z 7z} = Z(QAi)WL?a
i=1

i=1

where W; ~ N(0,1). (19)

For simplification, assume that the effect of the individual \;
values in (19) can be approximated using a lumped parameter
A. Thus,

K
d® m 20 WP =2\Y

(20)
i=1
where ) is defined as the average variance given by
1 E
A= ; A Q1)
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In 20), Y = Zf;l W? is a squared sum of zero mean in-
dependent Gaussian random variables, and thus will follow a
chi-squared distribution given by

()"
r(%)

From (20), d = V2)\Y. Using this transformation in (22), the
pdf of d can be obtained as

Y UE/2=1) /2

fy(y) =

(22)

21—K dK—l d2

The mean and variance of this distribution can be found as

(23)

2VAr (4

WD =757k
(%)

0% =2K\ — 2, respectively.

and 24)
(25)

Note that the pdf of d will provide the likelihood of the distance
between any two features in the data set. In other words, if the
goal is to select feature vectors that are farther apart on average,
a set of features should be selected in which each pair has a
distance greater than pp.

2) Calculation of Distance Threshold: In this feature selec-
tion problem, the data is processed on a frame-by-frame basis.
Assuming that the pdf parameters are known for the current
frame, select the next frame if its distance from the current frame
is greater than a threshold d,y,. For a fixed value « € [0, 1], de-
fine dy;, as

Pld > dyp] = h fp(z)dz = a.

Jdp

(26)

The process is illustrated in Fig. 4(b) for « =0.1 and 0.2. This
implies that a feature vector is selected only if its distance from
the current feature is so high that the event is less probable than
o, suggesting a high likelihood of a change in the phone repre-
sented by the feature. It is observed that the pdf fp(d) can be
closely approximated by a Gaussian distribution having a mean
pp and variance 0% . Fig. 4(a) compares the function fp(d), its
Gaussian approximation f p(d), and a histogram plot, estimated
from 13-dimensional MFCC coefficients of a UBM utterance.
Using the Gaussian approximation, it is possible to obtain from
(26)

din, = pp + ﬁaperfc_l(&x) 27
where erfc ™" is the inverse of the complementary error function
(erfc). Here, erfc() is defined as

2 [T
erfc(z) = 4/ —/ et dt.
T™Jo

3) Estimation of PDF Parameters: Here a recursive method
is employed for estimating the feature vector mean and variance

(28)
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Fig. 4. (a) Comparison of the theoretical pdf, its Gaussian approximation and the actual pdf obtained from histogram. 13-dimensional MFCC coefficients were
used and the parameter A was calculated directly from the data. For this data, A = 281.6836, up = 83.9506, and o7, = 276.07. (b) A pdf of inter-feature
Euclidean distance and the proposed distance threshold (shown for o« = 0.1 and 0.2).

similar to [21]. Denoting A[rn] as the vector containing the diag-
onal elements of Kxx|[0,0], and px[n] as the mean vector of
the nth frame, the equations

jix[n) = uiix[n =1+ (1 = f,)Xn], and
Ax[n] =BuAx([n — 1] + (1 = B,)[IX[n] — Ax[n]l| (29)

are used, where G,,, B, €
parameters.

4) Implementation: Let ¢ denote the current frame index and
set j = i+ 1. For initialization ( = 1), X[7] is always selected,
and fix[i] and Ax[i] are calculated from X[i] and X[;] as

[0,1) are overall smoothing

fxcli] =0.5(X[i] + X[j]) and
Axli] =0.5(X[i] > +X[j]%) - fix[i]?

(30)
€2y

where ()-2 denotes an element-wise square operation. Next, A
and d,, are calculated using (21) and (27). Now, j is iteratively
incremented by 1 and d(i, 7) is calculated from (16). The values
fix[7] and Ax[7] are updated in each step using (28) and (29),
along with the threshold dyy,. If d(i,j) > dy, is found, X[j]
is selected. Next, © = j and j = ¢ + 1 is set and the process
is repeated until the desired number of features are selected. In
our experiments, the settings used are « = 0.1, 3,,, = 0.8, and
By = 0.6.

B. Performance of Subsampling Schemes

The EER performance along with the computation time re-
quired for UBM training using the set of presented approaches
is shown in Table I. Baseline performance with 100% of the data
used to train the UBM is 11.43%. It is clear that all four UBM
training methods considered here, using a mere 1% of UBM
data employed can provide performance equivalent to the base-
line system with up to a 7 times reduction in CPU computation
time. In addition, using the proposed feature selection scheme,
denoted by IFS-EU, it is noted that a ~ 0.4% reduction in EER
is achieved in comparison to the baseline system. This is be-
cause the selected features in the IFS-EU method are better able
to represent the diverse speaker pool, while suppressing some
of the fine model traits of the intra-speaker phoneme variability,
which, it is believed, are less important for construction of an

TABLE I
COMPARISON OF DIFFERENT UBM TRAINING SCHEMES WITH
RESPECT TO EER AND TRAINING CPU TIME

Method | %data | EER (%) | CPU Time
h:mm

Baseline 100% 11.43 3:46

LFS 1% 11.48 0:24

UFS 1% 11.54 0:22

RFS 1% 11.41 0:18

IFS-EU 1% 10.99 0:27

effective UBM. However, we clarify that we do not claim that
the 99% data not used for UBM training are definitely harmful
for the system. We simply emphasize the fact that more data is
not necessarily better, and sub-sampling this data properly can
provide equivalent or even better performance than using all the
data.

VI. UBM DATA: NUMBER OF SPEAKERS

In this section, the impact of changing the number of unique
speakers in the UBM training data on system performance is
considered. It was shown in the previous section, that if the
data contains sufficient variability, a very small portion of
data should be sufficient for training the UBM. Now, different
speakers should possess different feature speech/physiology
characteristics, indicating that an increase in the number of
speakers in the UBM should lead to an increase in the variance
of the data. Intuitively, this should be beneficial to overall
system performance. An experiment is performed to validate
this hypothesis.

In this experiment, the amount of data was kept fixed and
the number of unique speakers was varied from 10 to 320 in
an exponential manner. The UBM dataset-2 was used in this
case because it has a larger number of speakers. For each UBM
training run, the specified number of speakers are selected ran-
domly from the pool and system performance is computed for
the UBM trained with those speakers’ features. Five indepen-
dent experimental runs are performed and the average of those
EER are calculated. The AWV values are also calculated for
each UBM using (14). In Fig. 5(a) and (b), AWV (2) and EER
are plotted against the number of UBM speakers. As we have ex-
pected, the system performance is improved drastically, as the
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Fig. 5. Variation of (a) AWV (2) and (b) system performance with the change
of number of UBM speakers.

number of UBM speakers are increased, with an increase of the
AWYV. At some level, overall performance saturates. Thus, we
justify that introducing a new speaker increases the variability
of the UBM data (as reflected in the increase in AWYV), which
can benefit system performance. This in effect helps further jus-
tify the argument of [2] regarding the amount of training data.

VII. SELECTION OF UBM SPEAKERS

In this section, the goal is to investigate the issue of using
a subset of all the available speakers in the UBM. It has been
established that having a large number of dissimilar speakers in
the UBM data aids in improving system performance. However,
it is known that many speakers have similar acoustic properties,
(i.e., the cohort speakers) that may again introduce an unbalance
in the UBM data. This issue can be illustrated with a hypothet-
ical feature space in Fig. 6. In this data-set, if equal amounts
of data from all speakers are used to train the UBM, the sim-
ilar speakers that are clustered together, (i.e., cohort groups 1,2,
and 3) will be emphasized in the UBM. This would result in
a higher score from the UBM in the likelihood ratio test if the
test speaker is from that cohort group. Now, it would be better
if these speakers are spread out in the feature space as much as
possible so that the entire acoustic space is uniformly covered
(assuming a uniform open speaker test space). However, practi-
cally there are some problems in that scenario.

* The feature space is multidimensional, which means
uniformly covering this space would require an infinite
number of speakers.

* In reality, the speaker features are not very easily distin-
guishable as in the simplistic illustration in Fig. 6, rather
they are highly overlapping.

Thus, the motivation here is to use a reduced number of speakers
than all the available speakers according to some speaker diver-
gence criteria, so that closely related speakers are not used in
the UBM (i.e., if the speaker is already included in the training
set, do not include an acoustically close neighbor as well).
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Fig. 6. Schematic diagram of the speaker space in the UBM.

A. KL Divergence-Based Speaker Selection (KL-D)

Here a UBM speaker selection method is developed using
the Kullback—Leibler (KL) divergence between speaker models.
For each UBM speaker s;, i € (1, Ng), a GMM model A; is
trained. To calculate the similarity between GMMs, the sym-
metric KL divergence [22], [23], is used, given by

A(X)

Dicr(Ai, Aj) = Ea (x) [Iog ﬁ} Ex x) [log
J

Aj(X)}
Ai(X()

where A;(X) and A;(X) are likelihoods of occurrence of the
observation vector X, given that it belongs to speaker model A;
and Aj, respectively. Next, compute the N, x N, divergence
matrix, obtaining the KL score for each pair of speakers. To
measure how diverse a speaker ¢ is from the all other speakers,
define a diversity factor D;, given by

DI = = ST Di(AeA). 6Y)
® JEN..j#i

This relation means D; is a measure of the average divergence

of the model A; from all other speaker models. Thus, after com-

puting all D; values, they are sorted according to their absolute

value, and the top Np most divergent speakers are selected for

the UBM.

B. Speaker Selection Using Prototype UBM (P-UBM)

In this method, to find the most divergent speakers, all the
data is pooled and a prototype UBM model, Ay is trained. As-
suming this UBM holds a central position in the GMM space, an
attempt to find speakers that are most divergent from this UBM
is performed. The diversity factor for each speaker 7 is computed
simply from the likelihood of occurrence of that speaker’s fea-
tures given the model Ay

DI = Ao(Xs). (34)
In a similar way, the D,EP) values are sorted and the top Np
divergent speakers from the prototype UBM is selected. It is
noted that this is a simplistic method for speaker selection and
does not guarantee that the selected speakers are diverse among
themselves.

C. Results of Speaker Selection Methods

In these experiments, the UBM database-2 is used and the
total amount of data is held fixed to 1.5 h. The system is evalu-
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Fig. 7. System performance variation with the change of number of UBM
speakers selected using different methods.

ated by varying the number of speakers, Np from 20 to 300 in
an exponential fashion while the proposed KL-D and P-UBM
methods were used for selecting the best speakers. The exact
number of frames were selected from each utterance using
the LFS method (described in Section V) from the selected
speakers’ data such that the total amount of data equals 1.5 h.
For all values of Np, the EER values obtained are plotted in
Fig. 7. It should be noted that 1.5 h of data used in this case is
only 0.3% of the complete UBM database-2 (which contains
473.75 h of data). Thus, according to experiments in Section IV,
this amount is not sufficient to retain the baseline system per-
formance. However, this lower amount is still employed so that
(a) it is more convenient to analyze the effect of the selected
speakers data, and (b) enough data per speaker is available for
the case of a lower number of selected speakers.

From Fig. 7 we observe that, though there are some fluctua-
tions,! it can be seen that both methods perform very close to the
baseline system using a significantly lower number of speakers
(i.e., 60 and 100 for methods KL-D and P-UBM, respectively).
Notice that this close to baseline performance is achieved with
only 1.5 h of data, instead of 473.75 h of data. Interestingly,
after a certain point, system performance actually degrades as
the number of speakers is increased in the proposed methods,
which we believe is due to the introduction of similar/redun-
dant speakers that are creating an imbalance in the UBM data.
As expected, the performance does not reach the baseline for a
larger number of speakers for either method due to the use of 1.5
h of data which is not sufficient to retain the variability of the
dataset. Now that we identified the regions in the plot where the
proposed methods perform the best, we attempt to increase the
data amount for the selected speakers for further performance
improvement. For the KL-D approach using 60 speakers, we in-
creased the amount of data from 1.5 h to 3 h and obtained an im-
provement in EER from 11.46% to 11.30%, which is better than
the baseline EER. For the P-UBM method, using 100 speakers

I'We believe this fluctuation in EER is due to the fact that the GMMs are
trained on multiple utterances of the same speaker from different channels. This
creates a mild bias toward the dominating channel type in each GMM, resulting
in slight channel dependent clustering in some cases. Future studies could ex-
plore UBM construction by removing channel effects from the UBM utterances
using techniques like JFA, total variability features[24], IIFA [25], etc.

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 7, SEPTEMBER 2011

TABLE II
COMPARISON OF DIFFERENT SPEAKER SELECTION APPROACH FOR UBM
TRAINING WITH RESPECT TO EER AND NO. OF SPEAKERS

Method % data | Number of | EER (%)
speakers
Baseline 100% 392 11.41
KL-D 0.31% 60 11.46
KL-D 0.62% 60 11.30
P-UBM 0.31% 100 11.32

and 1.5 h of data already provides a slight improvement over
baseline system which uses the full UBM database-2. The re-
sults are summarized in Table II.

Note that there are 392 speakers in UBM database-2, which
means less than 30% of the speakers were used in both proposed
methods. Also, less than 1% of the total amount of data was used
for training the UBM. Thus, we conclude that if a diverse set
of speakers can be carefully selected, a much lower number of
speaker data can provide performance equivalent to/better than
the baseline system.

VIII. CONCLUSION

In this paper, an organized method is developed for deter-
mining the data to be selected for effective UBM training.
Rigorous experiments were performed showing the relation-
ship between data variance and overall speaker verification
system performance. Four efficient sub-sampling schemes for
feature frame selection were presented with potential benefits
of reducing the computation time by up to seven-fold. A new
intelligent feature frame sub-sampling algorithm is proposed
which is experimentally shown to outperform the baseline
system that uses all the available data. The implication of selec-
tively using speaker data for UBM construction was analyzed
and two effective speaker selection methods were proposed
and evaluated. The results show that carefully selected reduced
speech data size and speaker count are sufficient to achieve
effective speaker verification performance.
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