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Abstract

This study proposes a novel model composition method to improve speech recognition performance in time-varying background
noise conditions. It is suggested that each element of the cepstral coefficients represents the frequency degree of the changing components
in the envelope of the log-spectrum. With this motivation, in the proposed method, variational noise models are formulated by selectively
applying perturbation factors to the mean parameters of a basis model, resulting in a collection of noise models that more accurately
reflect the natural range of spectral patterns seen in the log-spectral domain. The basis noise model is obtained from the silence segments
of the input speech. The perturbation factors are designed separately for changes in the energy level and spectral envelope. The proposed
variational model composition (VMC) method is employed to generate multiple environmental models for our previously proposed par-
allel combined gaussian mixture model (PCGMM) based feature compensation algorithm. The mixture sharing technique is integrated to
reduce computational expenses, caused by employing the variational models. Experimental results prove that the proposed method is
considerably more effective at increasing speech recognition performance in time-varying background noise conditions, with
+31.31%, +10.65%, and +20.54% average relative improvements in word error rate for speech babble, background music, and real-life
in-vehicle noise conditions respectively, compared to the original basic PCGMM method.
� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Acoustic mismatch between training and operating con-
ditions of an actual speech recognition system is one of the
primary factors severely degrading recognition perfor-
mance. To minimize this mismatch, extensive research
has been conducted in recent decades, which includes many
types of speech/feature enhancement methods such as spec-
tral subtraction (Boll, 1979; Martin, 1994), cepstral mean
normalization, and a variety of feature compensation
schemes (Ephraim and Malah, 1984; Hansen and Cle-
ments, 1991; Hansen, 1994; Moreno et al., 1998; Kim,

2002; Sasou et al., 2004; Stouten et al., 2004; Kim and Han-
sen, 2009a). Various model adaptation techniques have
also been successfully employed such as maximum a poste-
riori (MAP) (Gauvain and Lee, 1994), maximum likelihood
linear regression (MLLR) (Leggetter and Woodland, 1995)
and parallel model combination (PMC) (Varga and
Moore, 1990; Gales and Young, 1996). Recently, missing-
feature methods have shown promising results (Cook
et al., 2001; Raj et al., 2004; Kim and Hansen, 2009b),
and some advanced schemes utilize no prior knowledge
of the background noise (Kim and Stern, 2006).

Existing conventional methods have achieved successful
results for improving speech recognition performance in
noisy environments. These methods however, generally
assume the target background noise to be stationary or
slowly changing over the input speech duration, or that
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even an a prior amount of knowledge of the noise signal is
available. To estimate the background noise, many of these
existing methods estimate the noise signal from the leading
silence duration employing a voice activity detector. Vari-
ous approaches for adaptive noise estimation have also
been employed, however, they obtain only representative
characteristics of the target noise signal (Martin, 1994,
2001; Hirsch and Ehrlicher, 1995; Gales and Young,
1996; Kim et al., 1997; Moreno et al., 1998; Frey et al.,
2001; ETSI, 2002; Kim, 2002; Kim and Hansen, 2009a),
and fail to reflect the true dynamic changes of background
noise over both time and frequency domains. Therefore,
they continue to suffer from ineffectiveness in time-varying
background noise conditions, where the noise characteris-
tics need to be effectively estimated as time evolves. In par-
ticular, a Monte Carlo based method was proposed
utilizing the states of the speech model (i.e., Hidden Mar-
kov Model (HMM)) which are obtained by Viterbi decod-
ing, where the updated noise model is used for updating the
noise-corrupted HMM (Yao and Nakamura, 2001). Such
an approach is out of the scope of our paper, where the fea-
ture compensation method is considered as a front-end
procedure independent from back-end speech recognizer.

Speech signals are severely corrupted by time-varying
background noise in real-life scenarios, and many of these
reported advancements have yet to be employed in actual
noisy speech recognition scenarios (i.e., speech obtained
in the actual environment including noise, Lombard effect,
and potential task induced stress). Such actual examples
can be easily found in the corpora of in-vehicle scenarios
such as UTDrive (Angkititrakul et al., 2007, 2009) and
CU-Move (Hansen et al., 2004), or spoken document
retrieval of diverse audio data such as the National Gallery
of Spoken Word (NGSW) (Hansen et al., 2005) and the
Collaborative Digitization Program (CDP) (Kim and Han-
sen, 2007), and others, which make the transition of speech
recognition technology to real environments most challeng-
ing in everyday real-life.

In this study, a novel model composition method is pro-
posed to address time-varying background noise for
improved speech recognition. Our motivation is that each
order of the cepstral coefficients represents a frequency
degree of the changing components in the log-spectrum
envelope (Deller et al., 2000). In the proposed method, var-
iational noise models are generated by selectively applying
perturbation factors to the mean parameters of a basis
noise model aimed at achieving a range of spectral patterns
to reflect the background noise signal included during the
speech interval. The proposed variational model composi-
tion method is employed to generate multiple environmen-
tal models for our previously proposed gaussian mixture
model (GMM) based feature compensation algorithm
(Kim and Hansen, 2009a). In order to reduce the computa-
tional expense caused by employing the variational models,
a mixture sharing method (Kim and Hansen, 2009a) is inte-
grated into the proposed feature compensation scheme
employing the variational model composition method.

The proposed method will be evaluated on various types
of background noise including speech babble and back-
ground music within the Aurora 2.0 evaluation framework
(Hirsch and Pearce, 2000). The CU-Move corpus (Hansen
et al., 2004) is also used for performance evaluation to
prove the effectiveness of the proposed scheme in a real-life
in-vehicle scenario.

The paper is organized as follows. First, the motivation
of the proposed variational model composition method is
presented and the detailed procedure of the proposed
method is described in Section 2. A multiple-model based
feature compensation method, as an application of the pro-
posed study, is presented in Section 3 which has been devel-
oped in our previous study. The mixture sharing technique
is presented in Section 4. The representative experimental
procedures and results are presented and discussed in Sec-
tion 5. Finally, Section 6 presents our conclusions and dis-
cussion for future work.

2. Variational model composition

In this section, a novel method is proposed to effectively
estimate time-varying background noise corrupting the
speech utterance by using information contained in the
neighboring silent segments. As initial knowledge for our
discussion, first, the effect on log-spectral coefficients
caused by adding a gain to the cepstral coefficients is pre-
sented. From the fundamentals of the cepstrum, which is
obtained by a discrete cosine transformation (DCT) of
the log-spectrum, each order of the obtained cepstral coef-
ficients represents the frequency of the log-spectrum enve-
lope changes (i.e., quefrency Deller et al., 2000). For
example, the lower order cepstral coefficients indicate a
measure of the slowly changing components in the enve-
lope of the log-spectrum, having the 0th cepstral coefficient
represent the DC component (i.e., energy) of the log-spec-
trum at a frame. Therefore, applying a weight to each order
of the cepstral coefficients could generate a variation of the
original cepstrum in terms of the frequency of the envelope
change along the log-spectral axis.

Assume that a vector of cepstral coefficients x consists of
0th to (N � 1)th components. A variation of the cepstrum
vector can be obtained by adding a gain vector g as follows:ex ¼ xþ g: ð1Þ

If the gain is applied only to the 0th coefficient such as
g = [±g00 . . .0], the log-spectral coefficients, which can
be calculated by an inverse DCT of the obtained variationex, will have a different energy level from the original log-
spectrum. In Fig. 1, the plots in (a) show log-spectra of
the variations which are generated by adding gains of ±g

to the 0th cepstral coefficient. The plain solid line indicates
the original log-spectral coefficients and the lines with solid
or open circles indicate the resulting log-spectrum by
applying +g and �g to the 0th cepstral component respec-
tively. We can see the two variations have different energy
levels, while maintaining an identical spectral envelope
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shape in the original coefficients. Plots (b) and (c) present
the log-spectra of the variations generated by applying
weights only on the 1st and 4th cepstral components
respectively. The variations in (b) show a smooth change
of the envelope in the log-spectrum, with larger changes
in low and high frequency bins, and the plots of the varia-
tions in (c) are varying relatively faster with several cross-
over points over frequency bins from 0 to 4 kHz.

With this motivation, we believe that a range of models
could be generated by parameter perturbation, which can
be accomplished by applying a combination of weights to
the mean parameter of an original model in the cepstral
domain. In our proposed method, it is assumed that: (i) a
basis noise model can be obtained from periods of silence
within the input speech, and (ii) the variations (in terms of
energy level or change of spectral envelope) of the estimated
basis model might represent the target time-varying noise
included in the speech duration. The variational models are
generated by selectively applying weights on each component
of the mean vector of the basis model in the cepstral domain
(i.e., mean parameter perturbation). Here, we propose a
novel algorithm to generate a collection of variational noise
models by model perturbation in the following sections.

2.1. Step 1: basis model estimation

A basis noise model is obtained from silent duration seg-
ments within the input speech, which generally exists at
beginning and end parts of an utterance. The basis model
is estimated as a single Gaussian pdf (l,r2) in the cepstral

domain. The parameter vectors l and r consist of a total of
N individual components as follows:

l ¼ l1 l2 . . . lN½ �; r ¼ r1 r2 . . . rN½ �: ð2Þ

While r represents the standard deviation vector, the vari-
ance vector r2 is actually used.

2.2. Step 2: Variational component determination

The V largest components {v1,v2, . . . ,vV} from the vari-
ance vector r2 of the basis model obtained from Step 1 are
selected. These terms are named the variational components,
which are considered to have a statistically large range of
variations from the original components (i.e., mean param-
eters of the basis model). In particular, the component v1 is
determined as the index of the 0th cepstral coefficient for
the purpose of assigning a separate perturbation factor
from the other components. In this paper, we use 13 ceps-
tral coefficients including c0 are used for the feature vector
and locate c0 as the first component (i.e., c0–c12). There-
fore, the v1 is forcedly set to be the first component in
the proposed method, even though rv1

(i.e., variance of
c0) will in general have the largest value. The remaining
components {v2,v3, . . . ,vV} are determined in a size-
ordered rank1 as follows:

rv2
P rv3

P � � �P rvV : ð3Þ
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Fig. 1. Examples of variational log-spectral coefficients generated by applying a weight to the (a) 0th, (b) 1st, and (c) 4th cepstral coefficients.
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has the same order as rv2
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P � � �P rvV ,
since all standard deviations are positive values.

W. Kim, J.H.L. Hansen / Speech Communication 53 (2011) 451–464 453



Author's personal copy

2.3. Step 3: model composition by mean perturbation

A variation of the mean vector is generated by selec-
tively applying gains to the mean parameters of the basis
model. The elements of the mean vector for applying the
gains correspond to the determined variational compo-
nents {v1,v2, . . . ,vV}. From the motivation presented, it
can be seen that applying a gain to the 0th component of
the mean in the cepstral domain (i.e., v1) will change the
energy level of a basis noise model, while perturbing the
other components will affect the frequency distribution of
the envelope in the log-spectral domain (e.g., as illustrated
in the example log-spectral feature plots in Fig. 1).

In our experiment, it was found that applying different
styles of perturbation factors for v1 and {v2,v3, . . . ,vV} sep-
arately is more effective at increasing the ability of the noise
model to characterize the unseen time-varying background
noise structure. It is noted that the noise during speech is
“unseen” because we are only able to capture a snapshot
of the noise spectral structure during periods of leading/
trailing silence. According to our finding, a variation of
the mean vector ~l ¼ ½~l1; ~l2; . . . ; ~lN � is obtained by applying
two different styles of perturbation factors pE and pS to the
variational components via Eq. (4):

~li ¼
li þ pE; if i ¼ v1;

li þ pS ; else if i 2 fv2; v3; . . . ; vV g;
li; otherwise:

8><>: ð4Þ

Here, the proposed perturbation factors pE and pS have
three different types respectively as follows:

pE ¼ f0;�ali; or alig; ð5Þ
pS ¼ f0;�bri; or brig: ð6Þ

The combinations of these three types of perturbation fac-
tors for the V variational components generate a collection
of variational models f~k ¼ ð~l; r2Þg consisting of a total 3V

members. All variation models share the same original var-
iance vector r2 of the basis noise model. Determination of
the coefficients for the perturbation factors a and b, and the
number of the variational components V, will be discussed
in Section 5 where we present the experimental results.

Table 1 presents an example of the variational model
composition method proposed in this section. Here, the
feature vector consists of 13 distinct cepstral coefficients
(i.e., c0–c12), a set of 3 variational components are
employed (i.e., V = 3). The first, fourth, and second
indexes are selected for the variational components in this
example (i.e., {v1,v2,v3} = {1,4,2}). The three columns
under the “Perturbation factor” show the combinations
of the perturbation factors for the determined variational
components {v1,v2,v3}. Here, 27 (=33) represents the num-
ber of variational models that can be generated by employ-
ing the variations of the mean parameter of the basis model
~l1 to ~l27. Fig. 2 illustrates examples of the variational noise
models (i.e., mean parameters in the log-spectral domain)
generated by the example presented in Table 1. The

responses show various spectral patterns generated by
combinations of the weights at the selected variational
cepstral components using a basis model which is presented
as the dashed line in each figure. In this paper, we name our
proposed method as the variational model composition
(VMC) method. In the next section, we integrate this
scheme into our feature compensation method.

3. PCGMM-based feature compensation employing

variational model composition

In this section, as an application of the proposed varia-
tional model composition method, the parallel combined
gaussian mixture model (PCGMM) based feature compen-
sation algorithm is presented, which has been proposed in
our previous study (Kim and Hansen, 2009a) to address
time-varying background noise for speech recognition. In
the PCGMM method, parameters of the noise-corrupted
speech GMM are obtained through a model combination
procedure using clean speech and noise GMMs.

The clean speech model {xk,lx,k,Rx,k} consists of K
Gaussian components and the noise model is estimated
with a single Gaussian pdf {ln,Rn} both in the cepstral

Table 1
An example of the proposed variational model composition with V = 3.

Variational
model

Perturbation
factor

Parameter computation
ðerk;i ¼ ri for all iÞ

v1 v2 v3

~l1 0 0 0 ~l1;i ¼ li for all i
~l2 �a 0 0 ~l2;1 ¼ l1ð1� aÞ;

~l2;i ¼ li for all other i

~l3 a 0 0 ~l3;1 ¼ l1ð1þ aÞ;
~l3;i ¼ li for all other i

..

. ..
. ..

. ..
. ..

.

~l7 0 b 0 ~l7;4 ¼ l4 þ br4;

~l7;i ¼ li for all other i

~l8 �a b 0 ~l8;1 ¼ l1ð1� aÞ;
~l8;4 ¼ l4 þ br4;

~l8;i ¼ li for all other i

~l9 a b 0 ~l9;1 ¼ l1ð1þ aÞ;
~l9;4 ¼ l4 þ br4;

~l9;i ¼ li for all other i

~l10 0 0 �b ~l10;2 ¼ l2 � br2;

~l10;i ¼ li for all other i

..

. ..
. ..

. ..
. ..

.

~l26 �a b b ~l26;1 ¼ l1ð1� aÞ;
~l26;2 ¼ l2 þ br2;

~l26;4 ¼ l4 þ br4;

~l26;i ¼ li for all other i

~l27 a b b ~l27;1 ¼ l1ð1þ aÞ;
~l27;2 ¼ l2 þ br2;

~l27;4 ¼ l4 þ br4;

~l27;i ¼ li for all other i

Basis model: l = [l1,l2, . . . ,l13], r = [r1,r2, . . . ,r13].
Variational Components: {v1,v2,v3} = {1,4,2}.
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domain. Before combining the models, first, the model
parameters need to be converted into the log-spectral
domain using an inverse discrete cosine transform (DCT)
as follows:

lflsg ¼ C�1l;

Rflsg ¼ C�1RðC�1ÞT : ð7Þ

Next, they need to be converted to the linear-spectral do-
main by Eq. (8), resulting in the parameters for a log-nor-
mal distribution:

lflingi ¼ exp lflsgi þ Rflsg
ii =2

� �
;

Rfling
ij ¼ lflingi lflingj exp Rflsg

ij

� �
� 1

h i
; ð8Þ

where i and j indicate the element index of the mean vector
and covariance matrix. For the model combination of the
PCGMM method, we employ “log-normal approxima-
tion” method, where it is assumed that the addition of
two log-normal distributions also results in a log-normal
formulation (Gales and Young, 1996; Kim and Hansen,
2009a). The mean and covariance of the noise-corrupted
speech in the linear-spectral domain are obtained by

l
fling
y;k ¼ l

fling
x;k þ glflingn ;

Rfling
y;k ¼ Rflingx;k þ g2Rflingn ; ð9Þ

where g denotes a factor for addition gain and it is set to
0.5 in this study. The obtained parameters of the noise-

corrupted speech model in Eq. (9) need to be converted
back to the log-spectral domain using an approximation
equation (Gales and Young, 1996) as follows:

lflsgi � log lfling
i

� �
� 1

2
log

Rfling
ii

lfling
i

� �2
þ 1

0B@
1CA;

Rflsg
ij � log

Rfling
ij

lfling
i lfling

j

þ 1

 !
: ð10Þ

Finally, the mean and covariance obtained by Eq. (10)
must be returned to the cepstral domain via the DCT trans-
form, which is the inverse process of Eq. (7). The resulting
GMM of the noise-corrupted speech {xk,ly,k,Ry,k} also
consists of same K number of Gaussian components and
the same weight parameter xk is just used as the clean
speech model.

A constant bias transformation of the mean parameters
of the clean speech model is assumed in the cepstral
domain under an additive noisy environment, which is
the assumption generally taken by other data-driven meth-
ods (Moreno, 1996; Moreno et al., 1998) as follows:

ly;k ¼ lx;k þ rk; ð11Þ

where ly,k and lx,k denote mean vectors of the kth compo-
nent of GMMs for noise corrupted speech y and clean
speech x respectively. The bias term rk is estimated by
Eq. (11), once the mean parameters of the clean speech
model and corresponding noise-corrupted speech model

Fig. 2. Mean parameters of variational models in log-spectral domain generated by the example variational model from Table 1.
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are obtained by the model combination procedure as pre-
sented through Eqs. (7)–(10).

The utilization of multiple environmental models is con-
sidered to be effective for compensating input features
adaptively under time-varying noisy conditions (Kim and
Hansen, 2009). In the multiple model method, a sequential
posterior probability of each possible environment is esti-
mated over the incoming noisy speech. Given the input
noisy speech feature vectors Yt = [yt�d+1,yt�d+2, . . . ,yt]

T

over a d interval, the sequential posterior probability of a
specific environment GMM Gi among all models can be
written as:

p GijYtð Þ ¼ P Gið Þp YtjGið ÞPE
e¼1P Geð Þp YtjGeð Þ

; ð12Þ

where pðYtjGiÞ ¼
Qt

s¼t�dpðysjGiÞ and P(Gi) is a prior prob-
ability of each environment i represented as a GMM.
Based on Eq. (12), the clean feature at frame t is recon-
structed by the weighted combination of the compensation
terms obtained from a set of E multiple environments as
follows:

~xt;MMSE ffi yt �
XE

e¼1

p GejYtð Þ
XK

k¼1

re;kp kjGe; ytð Þ; ð13Þ

where re,k is a constant bias term from the kth Gaussian
component of the eth environment model and p(kjGe,yt)
is the posterior probability for environment Ge. Here, we
use 3 frames for the interval d in our experiment.

The variational noise models obtained by the proposed
variational model composition method in this study are
used to generate the environmental models {Ge}, which
are estimated through the model combination procedure
using the clean speech GMM and the obtained variational
noise models. With V number of variational components,
3V(=E) environmental models are generated, and then
the corresponding bias terms {re,k} are also obtained by
Eq. (11). A uniform prior probability is set on all the
obtained environmental models in this study, which could
be modified in future scenarios based on known acoustic
noise conditions (e.g., for in-vehicle applications, wind/
road noise is more common than wiper-blade or horn
noises). Fig. 3 shows the resulting integrated block diagram
of PCGMM-based feature compensation employing the
proposed variational model composition method.

4. Computational reduction by mixture sharing

As expected, as the number of variational components V

increases, the number of the generated variational models
exponentially increase as 3V. The amount of computation
for the PCGMM method depends primarily on the number
of Gaussian components to be computed. Consequently,
the computational expense increases in proportion to the
number of multiple models generated by the variational
model composition method. In this section, in an effort
to reduce the computational complexity caused by employ-

ing the variational model composition, our previously pro-
posed technique is introduced, where the statistically
similar components among the multiple environment mod-
els are effectively shared (Kim and Hansen, 2009a).

In the mixture sharing method, the Gaussian compo-
nents which are statistically similar to each other across
the different environmental models are selected and the
common components for sharing are generated through a
smoothing step of the similar components. Suppose there
are a total of E environmental models (i.e., noise corrupted
speech GMMs) {G1,G2, . . . ,GE} obtained by combining
the E(=3V) variational noise models with the clean speech
GMM. The procedure of selecting the similar components
is presented in the following Steps 0–3, where D is the set of
distances between the Gaussian components, and CS is the
set of shared Gaussian components:

� Step 0: D = {d1,d2, . . . ,dK}, CS = ;

dk ¼
XE

e¼2

KL dist g1;k; ge;k

� �
; 1 6 k 6 K: ð14Þ

� Step 1: bk ¼ arg min
k

dk 2 D.
� Step 2: CS ¼ CS [ fbkg;D ¼ D� dbkn o

.

� Step 3: if N(CS) = KS, then stop, else go back to Step 1.

In the steps, dk is the sum of Kullback–Leibler distances
(e.g., KL_dist(�)) between the kth Gaussian component of
each environmental model ge,k and the kth Gaussian com-
ponent of the first environmental model g1,k, and N(�)
denotes the number of resulting shared elements. The first
environmental model plays the pivot role in computing the
distance to the Gaussians in the models. The order of the
environments from 1st to Eth can be arbitrarily deter-
mined. Finally, the Gaussian search process is halted when
the combined Gaussian set CS reaches the desired KS num-
ber of Gaussian components, which are now tagged as sim-
ilar pdfs across the noisy speech models. The parameters of
the merged Gaussian components which are shared are
computed as follows:

l
fSg
y;k ¼

1

E

XE

e¼1

ly;e;k; k 2 CS ; ð15Þ

Fig. 3. Block diagram of the PCGMM method employing the proposed
variational model composition method.
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RfSgy;k ¼
1

E

XE

e¼1

Ry;e;k þ ly;e;k � l
fSg
y;k

� �
ly;e;k � l

fSg
y;k

� �T
� �

;

k 2 CS : ð16Þ

The likelihood functions which contain the unique Gauss-
ian components included in set CS are replaced by the
merged Gaussian components:

p yje; kð Þ ¼
p y; l

fSg
y;k ;R

fSg
y;k

� �
; if k 2 CS ;

p y; ly;e;k;Ry;e;k

� �
; otherwise:

8><>: ð17Þ

The constant bias terms used for feature reconstruction in
Eq. (13) are also shared if their indices are included in set
CS:

re;k ¼
l
fSg
y;k � lx;k; if k 2 CS

ly;e;k � lx;k; otherwise:

(
ð18Þ

The computations over the E � K number of Gaussian
likelihood functions can be reduced to KS + E(K � KS),
leading to a computational reduction by as much as
(E � 1)KS via sharing the components.

5. Experimental results

5.1. Experimental setup and baseline performance

Our evaluations of the proposed method were per-
formed within the Aurora 2.0 evaluation framework as
developed by the European Language Resources Associa-
tion (ELRA) (Hirsch and Pearce, 2000). The task is con-
nected English-language digits consisting of eleven words,
with each whole word represented by a continuous-density
Hidden Markov Model (HMM) with 16 states and 3 mix-
tures per state. The feature extraction algorithm suggested
by the European Telecommunication Standards Institute
(ETSI) was employed for all experiments (ETSI, 2000).
An analysis window of 25 ms duration is used with a
10 ms skip rate for 8-kHz speech data. The computed 23
Mel-filterbank outputs are transformed to 13 cepstrum

coefficients including c0 (i.e., c0–c12). The first and second
order time derivatives are also included, resulting in a final
feature vector of 39 dimensions.

The HMMs of the speech recognizer were trained using
a database that contains 8,440 utterances of clean speech
from the Aurora 2.0 database. In order to evaluate perfor-
mance under time-varying background noise conditions,
speech babble condition was selected from the Aurora 2.0
test database, and a new test data set was generated by
combining clean speech samples with background music
which consists of prelude parts of ten Korean popular
songs with varying degrees of beat and tempo. Each test
set consists of 1,001 samples at five different SNRs: 0, 5,
10, 15, and 20 dB. Figs. 4 and 5 present example time wave-
forms and spectrograms of speech babble and background
music which are used as additive noise signals in the
experiments.

The performance of the baseline system with no
compensation was examined with comparison to several
existing preprocessing algorithms in terms of speech recog-
nition performance. The framework throughout this study
is a clean condition trained HMM, so we focus only on
speech/feature enhancement methods for the performance
comparison, and do not consider acoustic model (i.e.,
HMM) adaptation methods (e.g., MAP, MLLR, PMC,
etc.). spectral subtraction (SS) (Boll, 1979; Martin, 1994)
combined with cepstral mean normalization (CMN) was
selected as one of the conventional algorithms. This repre-
sents one of the most commonly used techniques for addi-
tive noise suppression and removal of channel distortion
respectively. We also evaluated a feature compensation
method, Vector Taylor Series (VTS) for performance
comparison where the noisy speech GMM is adaptively
estimated using the expectation–maximization (EM) algo-
rithm over each test utterance (Moreno et al., 1998). The
advanced front-end (AFE) algorithm developed by ETSI
was also evaluated as one state-of-the-art method, which
contains an iterative Wiener filter and blind equalization
(ETSI, 2002). Table 2 demonstrates speech recognition
performance (i.e., Word Error Rate, WER) of the baseline
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Fig. 4. A sample of speech babble: (a) time domain, and (b) spectrogram.
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system and the conventional algorithms on speech babble
and background music conditions.

5.2. Determination of the perturbation factor

In this section, we discuss selection of the perturbation
factor for the proposed variational model composition by
assessing performance across a range of perturbation
factors. The performance was evaluated using the speech
recognition ability of the reconstructed speech employing
the PCGMM method and the variational model composi-
tion method. First, we will observe the performance depen-
dency on the perturbation factor pE as shown in Fig. 6. To
see the impact of only the pE on recognition performance, a
single variational component (i.e., V = 1) was used and the
WER performance was plotted as a change of a from 0 to
0.1 for pE over four kinds of background noise conditions2.
Here, the WER is an average value of all SNR conditions
(i.e., 0, 5, 10, 15, and 20 dB) for each background noise and
the plot with the black-filled circles reflects average perfor-
mance of the four kinds of noise conditions. The perfor-

mance of the case with a = 0 indicates the basic
PCGMM method employing only a basis model without
the variational model composition method, which is a tar-
get system for performance comparison of the proposed
VMC–PCGMM. It is interesting to note that each plot
shows a concave shape, providing a local minimum WER
in the range of 0.05 to 0.07 for a values. These results sug-
gest that a suitable value for a needs to be determined to
achieve effective performance in the proposed variational
noise model composition method. We believe that a prop-
erly determined a will be effective in generating a noise
model with an energy level matched to the actual back-
ground noise corrupting the input speech, since a is applied
to the first variational component v1 which corresponds to
the 0th indexed cepstral coefficient. Based on the average
performance plot, 0.06 was selected for a of the perturba-
tion factor pE in all following experiments.

Next, we discuss the determination of the perturbation
factor pS which is applied to the remaining variational com-
ponents {v2,v3, . . . ,vV}. Here, a is fixed as 0.06 and b for pS

is varied from 0 to 1.0 as shown in Fig. 7. The performance
dependency of b is clearly seen as a change in the number of
variational components V 2 (2, 3,4,5). The case where
b = 0 indicates the identical case of the VMC with V = 1
and a = 0.06. Also, the overall WER value in Fig. 7 reflects
the average of the cases of speech babble and background
music for all SNR cases, which shows how effective the
scheme is when employing the perturbation factor pS. It
can be seen that the plot for each V forms a roughly concave
shape, providing a local minimum WER at a certain point.
This indicates that the suitable determination of b for
higher order variational components (i.e., v2,v3, . . .) is effec-
tive at increasing performance compared to VMC alone
with V = 1. It also can be seen that the plot with the higher
value of V produces a lower WER response, which suggests
that larger number of variational components is useful for
increasing recognition performance when employing
VMC. We obtained a 0.34% improvement in WER for
V = 5 with b = 0.7 compared to the VMC with V = 1
(i.e., from 13.04% to 12.70%). From these results, it is
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Fig. 5. A sample of background music: (a) time domain, and (b) spectrogram.

Table 2
Recognition performance of baseline system and conventional methods in
speech babble and background music conditions (WER, %). Noise-free
performance is 1.18% WER.

0 dB 5 dB 10 dB 15 dB 20 dB Average

Speech babble

Baseline 88.88 71.13 44.38 21.13 7.47 46.60
SS + CMN 54.90 26.24 10.97 4.63 2.48 19.84
VTS 55.83 25.51 9.49 4.05 2.57 19.49
AFE 42.17 19.41 8.13 3.99 1.87 15.11

Background music

Baseline 74.27 51.34 28.11 12.19 4.84 34.15
SS + CMN 54.52 29.93 15.24 7.28 3.39 22.07
VTS 54.67 31.60 16.08 8.92 4.69 23.19
AFE 44.43 25.55 11.72 6.76 2.99 18.29

2 The test data for car and subway noise was obtained from Aurora2.0
(Hirsch and Pearce, 2000).
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suggested that a suitable value for b and increasing the
number of V are both effective at estimating a noise model
with a more precise variation of the spectral envelope that
reflects the background noise signal.

Next, the effectiveness of the proposed scheme for deter-
mining the variational components is presented in Fig. 8.
The plot with the solid circles is obtained with the proposed
method, where the variational components v2 to v6 are deter-
mined by the order of the variance size as shown in Eq. (4).
For the plot with the empty circles, the v2 to v6 were selected
randomly. We conducted 10 independent trials of the exper-
iments for random selection. Each circle indicates the aver-
age WER of the 10-time trials with the standard deviation
of the obtained WERs using the small bars. Both plots were
obtained with a = 0.06 and b = 0.4. It seems that there is no
significant difference in performance between the proposed
determination method for the variational components and
the random selections in the plots of Fig. 8. However, it
needs to be considered that the performance of the random
selection fluctuates as presented by the standard deviation
depending on selection of the perturbation factors. It should
be noted that the performance of the proposed method
always appears within a range of the standard deviations
from the averaged performance of the random selection
(except V = 2 for the speech babble case). These results sug-
gest that the proposed selection scheme for the perturbation
factor based on the size-ordered rank of the variance is an
effective way to provide effective performance as a change
of the number of variational components.

5.3. Performance evaluation of the PCGMM employing the

variational model composition

Table 3 shows performance of the PCGMM method
employing the proposed Variational Model Composition
(VMC) for speech babble and background music condi-

tions. Performance is compared to the basic PCGMM
method (i.e., a single noise model based approach) in terms
of relative improvement in WER. Here, we estimated the
noise model as a Gaussian pdf from the silence (i.e., non-
speech) duration at the beginning and end parts of each
utterance which consists of a total of 24 frames. The esti-
mated noise model is used as a target noise model for the
basic PCGMM, and as the basis noise model for the pro-
posed VMC–PCGMM method. Based on the performance
analysis from Section 5.2, a = 0.06 and b = 0.4 are used
for the perturbation factors pE and pS, respectively. By con-
sidering performance and computational expenses, the
number of variational components was set to 4 (i.e., V =
4), resulting in a collection of 81(=34) unique variational
noise models.
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From the results in Table 3, there are considerable rela-
tive improvements in WER by employing the proposed var-
iational model composition method. We obtained +31.31%
and +10.65% average relative improvements in WER com-
pared to the basic PCGMM method for babble and music
noise conditions. This suggests that the proposed VMC
method is significantly more effective in generating candi-
date noise models that reflect the actual background noise
signal, which represents the unseen noise within the speech
utterance that are not effectively estimated with the conven-
tional single noise model method. The performance com-
parison to the baseline and other conventional methods at
different SNR conditions is also included in Fig. 9. We
can see that the proposed VMC–PCGMM method consis-
tently outperforms all existing methods including the AFE
and VTS methods for all SNR conditions with speech bab-
ble and background music interfering signals.

To prove the effectiveness of the proposed method in rel-
atively slowly changing noise conditions (compared to
speech babble and music), we also evaluated the perfor-
mance on car and subway noise conditions, which were
obtained from Aurora 2.0 (Hirsch and Pearce, 2000). The

performance comparison is presented in Fig. 10. We can
see that the proposed VMC–PCGMM method again shows
significantly improved performance for both car and sub-
way conditions compared to the basic PCGMM and other
conventional methods. Our analysis of the results suggests
that the precise estimate of the energy level of the back-
ground noise (i.e., impact of the perturbation factor pE)
has a strong impact to the performance improvement for
car and subway background noise cases, where the spectral
patterns are not significantly different from the silence and
speech duration segments, compared with the time-varying
babble and music conditions. The performance evaluation
for the four background noise types is summarized in
Tables 4 and 5, and Fig. 11 with averaged WER across
all. It is noted that the proposed VMC–PCGMM method
outperforms all other conventional methods for all types
and all SNRs of background noise conditions. The pro-
posed VMC was particularly effective at increasing recogni-
tion performance in adverse SNR conditions as low as 0
and 5 dB, with a +24.60% and +20.40% relative improve-
ment respectively compared to the previous basic PCGMM
method.

Table 3
Recognition performance of the proposed VMC–PCGMM method in speech babble and background music conditions (WER, %).

0 dB 5 dB 10 dB 15 dB 20 dB Average

Speech babble

PCGMM 58.43 22.70 7.26 3.36 2.06 18.76
VMC–PCGMM 39.87 14.63 5.20 2.90 1.84 12.89

(Relative improvement) (+31.76) (+35.55) (+28.37) (+13.69) (+10.68) (+31.31)

Background music

PCGMM 37.03 19.96 8.67 4.01 1.94 14.32
VMC–PCGMM 32.27 18.17 7.84 3.76 1.94 12.80

(Relative improvement) (+12.85) (+8.97) (+9.57) (+6.23) (+0.00) (+10.65)

Fig. 9. Performance comparison at different SNR conditions: (a) speech babble and (b) background music conditions (WER, %).
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5.4. VMC–PCGMM method with the mixture sharing

technique

Table 6 presents performance of the VMC–PCGMM
method employing the mixture sharing technique previ-
ously described in Section 4. The number XX associated
with VMC–PCGMM–SXX indicates the number of shared
Gaussian components KS from Section 4. All WERs in
Table 6 are averaged values across the 4 types of back-
ground noise and across all 5 SNR cases (i.e., average
WER over 20 kinds of background noise conditions).

The results show that mixture sharing is useful for reducing
the computational complexity, while maintaining original
performance at reasonable levels. In order to investigate
the relationship between performance and computational

Fig. 10. Performance comparison at different SNR conditions: (a) car and (b) subway noise conditions (WER, %).

Table 4
Performance comparison in four types of background noise conditions as
average over all SNRs; 0, 5, 10, 15, and 20 dB (WER, %).

Car Subway Babble Music Average

Baseline 38.20 35.26 46.60 34.15 38.55
SS + CMN 17.41 25.93 19.84 22.07 21.31
VTS 14.71 23.89 19.49 23.19 20.32
AFE 6.59 14.68 15.11 18.29 13.67
PCGMM 8.04 14.73 18.76 14.32 13.96

VMC–PCGMM 6.09 12.23 12.89 12.80 11.00

(Relative

improvement)

(+24.27) (+17.00) (+31.31) (+10.65) (+21.23)

Table 5
Performance comparison in all SNRs conditions as average over four types of background noise conditions (WER, %).

0 dB 5 dB 10 dB 15 dB 20 dB Average

Baseline 83.49 61.16 31.30 12.16 4.65 38.55
SS + CMN 58.25 28.45 11.89 5.18 2.80 21.31
VTS 54.51 26.47 11.63 5.65 3.34 20.32
AFE 35.89 17.67 8.26 4.32 2.22 13.67
PCGMM 40.43 17.07 6.78 3.40 2.15 13.96

VMC–PCGMM 30.49 13.19 5.83 3.12 1.99 11.00

(Relative improvement) (+24.60) (+20.40) (+14.02) (+8.31) (+7.46) (+21.23)
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expense brought by mixture sharing, the relative WER ver-
sus the number of Gaussian components to be computed
are also presented in Table 6. The column “Differ.” under
“Recognition performance” indicates the performance dif-
ference in terms of relative WER compared to the non-
sharing case which is the original VMC–PCGMM. The
values in the column “# of Gaussians” are the number of
Gaussian components to be computed for VMC–PCGMM
processing. In the non-sharing case (VMC–PCGMM), the
calculation of the Gaussian probability terms requires
10,368 (=128 � 34) components which are obtained by
employing a 128-component GMM for the clean speech
model and V = 4 for the variational components. The val-
ues in the column “Reduct.” reflects the reduction percent
in the number of Gaussian components for computation
compared to the total number of components. In the case
of VMC–PCGMM-S16 and VMC–PCGMM-S32, a
12.35% and 24.69% reduction in the computation complex-
ity is obtained with only a 0.06% and 0.48% loss in relative
WER compared to the non-sharing case. When 64 compo-
nents were shared for VMC–PCGMM-S64, a 49.38% com-
putational reduction was achieved only with a 4.32%
decrease in relative improvement of WER. As discussed
in Section 4, performance should degrade when the number
of shared components increases. However, the experimen-
tal results here demonstrate that a reasonable selection of
the number of shared components will result in a signifi-
cant reduction in computational complexity with only a
slight change in overall WER. The mixture sharing tech-
nique will be useful in applying the proposed VMC–
PCGMM method to small footprint size mobile devices
with limited storage and computational resources.

5.5. Real-life condition: CU-Move corpus

The proposed VMC–PCGMM method was also evalu-
ated on a real-life in-vehicle speech condition obtained
from the CU-Move corpus (Hansen et al., 2004). The
CU-Move project was designed to develop reliable hands-
free car navigation systems employing a mixed-initiative
dialog. This requires robust speech recognition across
changing acoustic conditions. The CU-Move database con-
sists of five parts: (i) route navigation commands or
requests, (ii) digit strings of telephone and credit card num-

bers, (iii) street names and addresses including spelling, (iv)
phonetically-balanced sentences, and (v) Wizard of Oz
interactive navigation conversations. A total of 500 speak-
ers, balanced across gender and age, produced over 600 GB
of data during a 6-month collection effort across the United
States. The database and noise conditions are discussed in
detail in (Hansen et al., 2004). For the evaluation in this
study, we selected 949 utterances (length of 1 h and
40 min) spoken by 20 different speakers (9 males and 11
females), which were collected in Minneapolis, MN. The
test samples represent an average 8.48 dB3 SNR calculated
by the NIST STNR Speech Quality Assurance software
(http://www.nist.gov/speech).

Tables 7 and 8 show the performance evaluation of the
proposed VMC–PCGMM method on the CU-Move cor-
pus. Table 7 demonstrates the VMC–PCGMM method
has a significant improvement compared to the basic
PCGMM and other conventional methods for the real-life
in-vehicle condition as well. The results confirm that WER
improvement is also realized on real data as well as artifi-
cially generated background noise conditions discussed
previously. Table 8 shows the performance of VMC–
PCGMM employing the mixture sharing method for the
CU-Move corpus. The evaluation results are very similar
to the results shown in Table 6, showing a 49.38% compu-
tational reduction with only a 2.85% loss in relative
improvement for the case of the VMC–PCGMM-S64.
The results here prove that the proposed VMC–PCGMM

Table 6
Performance of the VMC–PCGMM employing mixture sharing method, with averaged performance over all noise conditions.

Recognition performance (%) Computational complexity

WER Relative improvement Differ. # of Gaussians Reduct. (%)

PCGMM 13.96 – – 128 –
VMC–PCGMM 11.00 +21.23 – 10,368 –

VMC–PCGMM-S16 11.01 +21.17 �0.06 9088 12.35
VMC–PCGMM-S32 11.07 +20.75 �0.48 7808 24.69
VMC–PCGMM-S64 11.60 +16.91 �4.32 5248 49.38
VMC–PCGMM-S96 12.25 +12.30 �8.93 2688 74.07
VMC–PCGMM-S128 13.62 +2.47 �18.75 128 98.77

Table 7
Recognition performance comparison for
the CU-Move corpus (WER, %).

Baseline 70.02
SS + CMN 39.90
VTS 48.31
AFE 31.45

PCGMM 30.53
VMC–PCGMM 24.26

(Relative improvement) (+20.54)

3 0 dB and 5 dB SNR test samples of the car noise condition of
Aurora2.0 show 7.15 dB and 11.66 dB average SNRs, respectively using
the NIST tool.
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method is highly applicable to real-life in-vehicle condi-
tions for increasing speech recognition performance.

6. Conclusion

In this study, a novel model composition method was
proposed to improve speech recognition performance in
time-varying background noise conditions. In the proposed
method, a basis noise model was estimated from silent
duration segments, followed by the creation of variational
noise models which were generated by selectively applying
perturbation factors to the mean parameters of the basis
model. The proposed VMC method was applied to the
multiple-model based PCGMM algorithm and a mixture
sharing technique was also integrated to reduce overall
computational expenses. Suitable values for the perturba-
tion factors were determined through a series of pilot
experiments to maximize performance of speech recogni-
tion in various types of changing background noise condi-
tions. The procedure for determining the variational
components was conducted in a size-ordered rank of the
variance values and shown to be effective versus a compar-
ison to a randomly selected set of trials.

The performance evaluation was demonstrated within
the Aurora 2.0 framework using four types of background
noise as well as the CU-Move in-vehicle corpus. Experi-
mental results demonstrated that the proposed method is
considerably effective at increasing speech recognition per-
formance in unknown time-varying background noise con-
ditions. By employing the mixture sharing method,
considerable computational reduction was also achieved
with only a slight loss in recognition performance. We
obtained +31.31%, +10.65% and +20.54% average relative
improvements in WER for speech babble, background
music, and real-life in-vehicle conditions respectively, com-
pared to the previous basic PCGMM method. This proves
that the variational noise model composition generates a
noise space that can effectively address the time-varying
nature of the background noise.

The proposed method can be employed for a range of
applications in the speech processing area, where reliable
noise estimation is required in time-varying background
noise environments. It is possible that the amount of noise
samples are not sufficient to obtain a multiple number of

model parameters through training over the samples. This
is expected to have a complex spectral configuration with
many variations in both time and frequency domains. It
is possible however, to obtain a simple noise model from
the available samples, and then a number of variational
noise models can be generated by the proposed algorithm
to produce candidates for the expected spectral patterns
of the noise signals.
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