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Constrained Iterative Speech Enhancement
Using Phonetic Classes
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Abstract—The degree of influence of noise over phonemes is
not uniform since it is dependent on their distinct acoustic prop-
erties. In this study, the problem of selectively enhancing speech
based on broad phoneme classes is addressed using Auto-(LSP),
a constrained iterative speech enhancement algorithm. Multiple
enhanced utterances are generated for every noisy utterance by
varying the Auto-LSP parameters. The noisy utterance is then
partitioned into segments based on broad level phoneme classes,
and constraints are applied on each segment using a hard decision
solution. To alleviate the effect of hard decision errors, a Gaussian
mixture model (GMM)-based maximum-likelihood (ML) soft
decision solution is also presented. The resulting utterances are
evaluated over the TIMIT speech corpus using the Itakura–Saito,
segmental signal-to-noise ratio (SNR) and perceptual evaluation
of speech quality (PESQ) metrics over four noise types at three
SNR levels. Comparative assessment over baseline enhancement
algorithms like Auto-LSP, log-minimum mean squared error
(log-MMSE), and log-MMSE with speech presence uncertainty
(log-MMSE-SPU) demonstrate that the proposed solution ex-
hibits greater consistency in improving speech quality over most
phoneme classes and noise types considered in this study.

Index Terms—Auditory masked threshold, Auto-LSP, con-
strained iterative speech enhancement.

I. INTRODUCTION

N OISE is present in almost all environments where speech
systems are used, and therefore the need arises for de-

signing effective speech enhancement algorithms. The objective
of any speech enhancement algorithm is to suppress background
noise, improve perceived quality (subjective) and intelligibility
(objective), reduce listener fatigue, and improve performance
for automatic speech recognition or speaker identification sys-
tems. It is difficult to address all these objectives simultane-
ously in a single enhancement algorithm since this essentially
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means that noise should be suppressed in a way which does not
introduce processing artifacts, musical noise, or speech distor-
tions. Hence, enhancement algorithms can be broadly classified
as perceptual centric [3], [5]–[8], [15], [16], [17] or speech sys-
tems centric [1]–[3], [9].

Earlier studies [1] have shown that degradation due to en-
vironmental background noise is nonuniform across various
phoneme classes of speech. This can be attributed to two
reasons: 1) Each phoneme class (and even individual phonemes
within the class) has distinct acoustical properties characterized
by its time waveform, frequency content, manner of articula-
tion, place of articulation, type of excitation and stationarity or
nonstationarity of the vocal tract configuration [12, Ch. 2]. 2)
The structure of different noise types can be classified based on
their degree of stationarity and their bandwidths. For example,
in-vehicle wind noise is a slowly varying narrowband low pass
noise while white Gaussian is a stationary broadband noise.
For these two reasons, the impact of noise on a phoneme class
is determined by the characteristics of both the phoneme class
and noise type.

Several research efforts have been devoted on developing
phoneme class-based enhancement algorithms. McAulay and
Malpass [11] adopted a two-state soft-decision maximum-like-
lihood algorithm in which speech was classified into equally
likely binary—silence and non-silence—states. The resultant
clean speech maximum-likelihood spectral envelope estimator
was a sum of the products of individual envelope estimators,
given the noisy signal and knowledge of the state, and cor-
responding a posteriori probabilities of the states given the
noisy signal. The individual spectral envelope estimators, given
the noisy signal and knowledge of the state, were optimized
in a minimum mean square error (MMSE) sense. In another
study, Hansen and Arslan [4] used hidden Markov models
(HMMs) to create 13 phoneme class models. Using the for-
ward algorithm scoring procedure, conditional probabilities

, , were obtained where represents
the observation vector from noisy speech, and is the noisy
speech HMM model for phoneme class . The difference of the
top two scores was weighted by the inverse of a cost function
to evaluate a confidence measure. Enhancement was done
selectively based on this measure.

Later, Wang and Brown developed the computational audi-
tory scene analysis (CASA) model where the objective is to
segregate target speech from interfering acoustic mixtures (for
example, speech and noise). In one of their studies [28], the
input signal was decomposed by passing it through a gamma-
tone filterbank to mimic the response of the auditory filterbank.
A time–frequency based analysis was done by using the correl-
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ogram which finds the autocorrelation at the output of each au-
ditory filter. The correlogram is effective in separating the fun-
damental frequency (F0) of each acoustic mixture. Next, based
on the assumption that different sources are represented by a
block of desynchronized oscillators, a two-layer oscillator net-
work was employed in which acoustic mixtures were tracked
based on their F0s. Finally, acoustic waveforms for the mixtures
were derived from the composite time–frequency regions.

A constrained iterative speech enhancement model
(Auto-LSP1 [1], [4]) is followed in this study. Although
Auto-LSP has been successful in improving context-indepen-
dent monophone recognition performance [2], there are certain
inherent drawbacks present in the formulation.

While noise suppression for high-energy sections (vowels) of
speech is significant, it is sometimes overly suppressed for low
energy sections (fricatives, stops) at the selected terminating
iteration resulting in the introduction of processing artifacts.
These artifacts have a pronounced effect on the perceived
quality for the entire utterance. Although the number of itera-
tions can be reduced to minimize these artifacts, it will leave
noise under suppressed for most high energy sections which
does not alleviate the problem. Moreover, degradation due to
noise is higher for phoneme sections that lie within the noise
bandwidth than for those that lie outside this bandwidth. For
example, highway noise in the 0–800 Hz frequency range de-
grades vowels (first formant, 300–800 Hz) more than unvoiced
fricatives ( 1500 Hz). Also, there is usually some level of
audible residual noise in the enhanced speech due to errors
caused during estimation of the model parameters and noise
spectrum.

This study addresses these issues by introducing broad
phoneme class-based hard and soft decision ROVER2 so-
lutions. In this approach, multiple enhanced utterances are
generated at different enhancement levels for a given noisy ut-
terance. The noisy utterance is partitioned into segments based
on the phoneme class, and class specific constraints are applied
on each segment. Hard or soft decisions are used to select the
best enhanced segment from the set of enhanced utterances.
The selected segment is used for reconstruction of the enhanced
speech. Also, audible residual noise can be measurably reduced
by integrating with the auditory masking threshold framework
developed originally by Tsoukalas et al. [6].

The remainder of the paper is organized as follows. In
Section II, a brief overview of the baseline Auto-LSP system is
explained. The algorithm formulation of the ROVER approach
with its hard-decision and soft-decision solutions are presented
in Section III. Detailed experimental evaluations based on
Itakura–Saito, segmental SNR, and perceptual evaluation of

1There are several flavors of Auto-LSP as reported by Hansen and Clements
[1]. The one which is used here is known as “Auto:I,FF-LSP:T”. The “Auto-I”
refers to the intra-frame constraints on autocorrelation lags across iterations (I)
and “FF-LSP:T” refers to the fixed frame (FF) line spectral pairs (LSP) con-
straints across time (T).

2The term ROVER (Recognizer Output Voting Error Reduction) is a conno-
tation to the NIST automatic speech recognition (ASR) system [23] which pro-
duces a composite ASR output when outputs from multiple ASR systems are
available. Since the enhancement system addressed in this study uses outputs
from multiple Auto-LSP systems, it is appropriate to address this system as a
ROVER based enhancement system.

speech quality (PESQ) metrics and improvements over other
baseline algorithms are reported in Section IV. In Section V,
directions for future work along with the conclusions are
summarized.

II. ITERATIVE SPEECH ENHANCEMENT

Assuming that the noise is additive and statistically indepen-
dent of the speech signal, the additive noise model can be given
by

(1)

where , , and represent the realizations of zero
mean random processes of noisy speech, clean speech, and
noise, respectively at discrete time instant .

If samples are observed from (1) to constitute a frame
of noisy speech, then the noisy observations and the corre-
sponding clean speech representing the hidden observations
can be denoted by and , respectively. The power spectrum
of the noisy speech is assumed to follow an all-pole model
parameterized by autoregressive coefficients (ARC) , where

, and gain . This model is given as

(2)

where is the order of the all-pole model, is the size of the
discrete Fourier transform (DFT), and is the frequency index
such that . Values of and considered for this
study are 10 and 256, respectively, and the sampling frequency
was set to 8 kHz.

The objective is to maximize the joint probability density
function assuming Gaussian priors for the un-
knowns , , . Here, denotes the initial speech condition.
This results in a set of nonlinear equations involving partial
derivatives with respect to . To remove this nonlinearity, a
linear suboptimal iterative sequential maximum a posteriori
(MAP) estimation technique was proposed by Lim and Oppen-
heim [10] where instead of jointly estimating and , they were
determined in a two step approach. The problem simplifies to
finding an estimate of clean speech at iteration given the
noisy speech and a previous estimate of ARC . This
is followed by estimating given which was obtained
from the previous MAP step. The sequential MAP estimation
procedure is summarized by

Step 1 to give (3)

Step 2 to give (4)

where gain and the initial speech condition are assumed to
be known [10]. These two steps are carried out iteratively until
a convergence criterion is met.

Since is Gaussian distributed, then it
can be shown that the MAP solution to (3) is equivalent to the
MMSE estimate given by

(5)
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Fig. 1. Auto (I)-LSP(T) framework as a front-end application for feature recognition.

which can be obtained by Wiener filtering the noisy speech.
In the sequential MAP estimation method 1) formant band-

widths decreased and formant locations randomly shifted as the
number of iterations increased, and 2) frame-to-frame pole jitter
was observed resulting in ragged movement of poles (formants)
across frames causing unnatural or metallic sounding speech as
reported by Hansen and Clements [1].

To overcome these limitations, Sreenivas and Kirnapure [26]
proposed a codebook based scheme to achieve faster conver-
gence. In this scheme, a codebook was constructed from linear
predictor coefficients (LPC) vectors derived from clean speech.
At each iteration of the MAP steps, a clean speech LPC vector
from the codebook was selected that was closest to the LPC
vector of the clean speech estimate. The LPC vector of the clean
speech estimate was replaced by the codebook entry closest to
the clean speech LPC vector and used to construct the a priori
power spectrum in (3). While such a procedure is expected to
yield improvements in segmental SNR, no other perceptual
quality metric was reported in [26]. SNR is a good indicator of

noise suppression and a high SNR does not necessarily improve
perceptual quality.

In the Auto-LSP approach (see implementation blocks in
Fig. 1) proposed by Hansen and Clements [1], intra-frame and
inter-frame constraints are dynamically applied to the autocor-
relation lags and the position parameters of the line spectral pair
(LSP) frequencies, respectively. The algorithm first extracts
the autocorrelation lags from an input frame of noisy speech.
Intra-frame constraints are applied over identical frame indices
across iterations by applying weights to the present and past
autocorrelation lags and updating the present autocorrelation
lag with the weighted lag. This is represented as

(6)

where is the th autocorrelation lag at the th iteration
for a given frame index and is the weighting
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constraint over the previous iterations. Here, is con-
sidered to weight the autocorrelation lags for the current and
previous iteration. The weights considered are .
This constraint ensures that the rate of convergence is more
even across phoneme classes so that the all-pole model remains
stable with restricted movement over iterations and possesses
speech-like characteristics (i.e., poles do not migrate too close
to the unit circle causing narrow bandwidths).

Next, LSPs and LPCs are derived from the autocorrelation
lags. Based on the frame energies, each frame is classified as one
of voiced, unvoiced, or noise-only frame. Constraints are ap-
plied to the position parameters of the LSPs using a weighted tri-
angular window across frames. The weighted triangular window
is evaluated based on the frame energy classification. No con-
straints are applied on difference parameters. With the applica-
tion of inter-frame constraints, (3) becomes

(7)

where is the ARC estimate at iteration and frame
index , and denotes the constraint function that de-
pends on frequency . With this, the new LPCs are obtained
from the constrained LSPs which are used to construct an im-
proved all-pole speech spectrum estimate. After the application
of Wiener filter (8), an enhanced speech spectrum estimate is
obtained which is input for the next iteration. The algorithm is
terminated after some stopping criterion which normally entails
several iterations. For a detailed discussion on the implementa-
tion of Auto-LSP, we encourage the readers to follow the work
of Hansen and Clements [1].

III. ALGORITHM FORMULATION

The main components of the ROVER framework are the
creation of an archive of enhanced utterances, classification of
broad phoneme classes (BPC), and hard or soft decision based
synthesis. In this study, the 61 individual phonemes according
to the NIST phonetic labels are grouped into one of the eight
BPCs namely vowels, semivowels, nasals, affricates, fricatives,
stops, closures, and silence.

A. Archive

An archive of enhanced frames is created using the Auto-LSP
algorithm as presented in Section II. The Wiener filter, used in
Auto-LSP, at each frequency component is given by

(8)

where is the LP based a priori power spectrum esti-
mate of the clean speech at the th iteration obtained using (2)
after the application of inter-frame and intra-frame constraints.

is the noise power spectrum estimate. With reference
to the Wiener filter in Fig. 1, it is the same filter used in (8)
where we have dropped the subscripts in for
ease of representation. Since this filter is parameterized by the
noise over-suppression factor , the exponent term and

TABLE I
CODEBOOK SIZES OF VQ BROAD PHONEME CLASSIFIER

the iteration , it can be represented as , where the
frequency term is also dropped for ease of representation.
In Auto-LSP, up to four sets of filters , ,

, and are used which limits the amount
of enhancement that can be achieved. In the ROVER frame-
work, a larger set of filters are used which sufficiently spans
the entire enhancement space to obtain a broader range of en-
hancement levels. This range was chosen heuristically since it
achieves minimal to maximal noise suppression for a wide range
of noise types and levels. However, inter-frame and intra-frame
constraint parameters remain constant although they can also be
varied to achieve greater adaptation levels. The filter parameter
set is comprised of

(9)

The total number of values taken by , , and are 13, 5, and 4,
respectively. Hence, the parametric space spanned by
can be viewed as a three dimensional Auto-LSP system. The
minimum step size for and was determined from offline
experiments. Hard and soft decisions, as explained later in
Section III-C2 and Section III-C1, respectively, are made in this
space to select the best sequence of enhanced segments based
on their BPC knowledge.

B. Phoneme Classifier

A set of LBG-based vector quantized (VQ) codebooks [13]
are used to classify each short-time frame belonging to one of
eight BPCs. Phoneme classification is critical in the ROVER
framework because of its influence on the class dependent
search constraints used in the decision making step discussed
in the next section. Instead of using degraded speech as the
test utterance for classification, enhanced speech obtained
from was used since it ensures the improvement in
recognition rate for all phoneme classes. In the training phase, a
total of 600 TIMIT tokens from the training set (approximately
30 minutes of data) degraded by flat communications channel
noise at an SNR of 5 dB were enhanced using to
generate class based codebooks. The same classifier was used
across different noise types for the test tokens considered in
this study. Frames belonging to the same BPC are used for
constructing class based codebooks and the codebook sizes are
determined from the number of individual phonemes belonging
to a BPC group. The BPCs with their codebook sizes are
summarized in Table I. Using a 30-ms frame size with a 75%
overlap rate, each short-time frame was parameterized using
12-dimensional linear predictor cepstral coefficients (LPCC)
derived from the AR model parameters [12, pp. 376, Eq.(6.44)].
The utterances were pre-emphasized using the first-order FIR
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TABLE II
VQ BROAD PHONEME CLASS RECOGNITION PERFORMANCE FOR TOKENS DEGRADED AT SNR OF 5 dB AND ENHANCED BY ���� �� ��.
PERCENTAGE CORRECTLY RECOGNIZED ALONG THE MAIN DIAGONAL (PHONEME CLASS KEY: VOW�VOWELS, SEMI�SEMI-VOWELS,

NAS�NASALS, AFF�AFFRICATES, FRIC�FRICATIVES, STOP� STOPS, CLOS�CLOSURES, SIL�SILENCE SEGMENTS)

filter . The codebooks were optimized in a min-
imum mean square error (MMSE) sense. The distance between
the test vectors and codebook entries was defined
using a cepstral projection measure [14]. This distance metric
uses the property that noise corrupted cepstral vectors are less
sensitive to angle perturbation and is given by

(10)

The confusion matrix in Table II summarizes the recogni-
tion performance of the VQ classifier for 128 test tokens of
16 speakers. The tokens were degraded with flat frequency
response communications channel noise at an SNR of 5 dB
and enhanced by before performing phoneme
classification.

For any given row in Table II, the percentage of correct
classification is given by the main diagonal element and the
percentages of misclassifications are given by the remaining
elements of that row. Phoneme classification errors occurred
mostly due to inter-class confusions arising between low-en-
ergy classes like fricatives, stops, closures, and silence. These
errors were corrected using a simple forced classification
technique in which any intermediate frame that had a different
phoneme class from its neighboring (leading and trailing)
frames was forced to match the phoneme class of its neighbors.
This is a reasonably valid assumption since it is unlikely that
two phoneme class transitions occur within three overlapping
frames spanning a duration of only 45 ms.

C. Hard and Soft Decision Synthesis

An effective decision strategy is required for the reconstruc-
tion of the enhanced speech. Fig. 2 illustrates an overview of the
ROVER enhancement framework. The objective is to choose
the best set of enhanced frames from the archive of enhanced
frames, discussed in Section III-A, using a search space con-
structed from Itakura–Saito (IS) distortion [18]. The IS distor-
tion between clean and enhanced speech spectra is given by

where (11)

and and are obtained using the AR model
power spectra of clean and enhanced speech, respectively, at
frame , and represents a filter configuration in (9) such that

. Therefore, only the enhanced speech spectrum is
a function of whereas the clean speech spectrum is not a func-
tion of . The IS distortion measure is used for constructing the
search space because it bears a high correlation with the subjec-
tive quality of speech [19]. Using 600 TIMIT sentences from
the training set and degraded by flat communications channel
noise at 5-dB SNR, a training archive is generated using (8)
and an enhancement space using ,

, . From this archive,
the segment wise IS distortions between clean and enhanced
speech, and degraded and enhanced speech, , across all
possible filter configurations of are calculated. Since the
knowledge of phoneme class segment locations are known
apriori from the phoneme level transcriptions provided in
the training set, the segment wise IS distortions are grouped
together based on the phoneme class. From this, the median

and standard deviation per phoneme class are easily
determined and stored. These parameters are used in generating
the upper and lower bounds of a search space.

If the enhancement space in (9) is denoted by and if
represent the total number of values used by the

parameters , , and , respectively, then .
Since represents any filter configuration in , then

. Furthermore, let a block or seg-
ment comprising of any set of contiguous frames belonging to
a single BPC and enhanced from the filter ) be given by

(12)

Here, the individual frames are denoted by where denotes
the index of the frame and given by . There-
fore, the segment is comprised of contiguous frames.
A contiguous sequence of frames (or a segment) belonging to
a single BPC are selected for processing instead of individual
frames in order to impose a level of naturalness to allow a rea-
sonable rate for the speech spectrum to be allowed to change.
However, selection of noise-only regions can be broken into in-
dividual frames because they do not contain any useful speech
information. Hence, each noise-only segment is limited to no
more than three contiguous frames.

With these considerations, the goal is to find the segment
generated from the filter ) such that the average
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Fig. 2. ROVER enhancement framework.

IS distortion between clean and enhanced speech for a specific
block of segment is minimized over enhanced utterances gener-
ated from all possible filter configurations. In other words, the
goal is to find from .

1) Soft Decision: Based on the foregoing foundation, the fol-
lowing steps outline the soft decision solution:

1) Using the VQ phoneme classifier approach, a con-
tiguous sequence of frames belonging to the same
phoneme class is determined to select the segment

.
2) For each where , the IS

distortions are evaluated from degraded speech using

(13)

We introduce the term search step, denoted by , and
initialize this to 1. The search step is as an index to the
array of search bins. The search bins are explained in the
next step.

3) For a given BPC , a bounded search bin at the
th search step is constructed using

(14)

The search bin is a bounded region of IS distortions.
As was explained earlier, the IS distortions between
clean and enhanced speech, and degraded and enhanced
speech from the training corpus were calculated
for every BPC and the median and standard

deviation parameters were determined. Those IS
distortions that fall within these bounds are used to fill
the search bin . Here, and are set to 0.1 and
represent the backward and forward weights, respec-
tively, on . As an example, the first search bins for
vowels and stops degraded by
flat communications channel noise at 5 dB is shown in
Fig. 3. Since the correlation between the IS distortions
is higher in vowels than for stops, the initial search bin
is narrower for vowels. This accounts for the reason
why search bin parameters in (14) are class
dependent. Also, since the distribution of is skewed,
it is more meaningful to use the median instead of the
mean to determine the bounds. It is to be noted that the
size of the search bin, denoted by vertical lines in Fig. 3,
increases with increase in .
Another point to be noted is that certain BPCs can be
grouped together to form bigger groups. For example,
vowels and semivowels or fricatives and closures
may be grouped together depending on the energy
levels. Intra-class acoustical characteristics within
these bigger groups are similar (for example, vowels
versus semivowels) but differ significantly when com-
pared across inter-class (for example, vowels versus
fricatives). From Table II, it is clear that most misclas-
sifications occur due to class confusions among similar
groups (e.g., vowels and semivowels) resulting in wrong
selection of search bins. However, distributions of
do not vary widely among similar groups like vowels
and semivowels. This, to some extent, alleviates the
misclassification errors caused by the VQ classifier.
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Fig. 3. Initial �� � �� search space (within the vertical lines) for (a) vowels
and (b) stops. X-axis: IS (degraded, enhanced), Y-axis: IS (clean, enhanced).

However, for misclassifications occurring across dis-
tinctly different groups (e.g., vowels and fricatives)
reconstruction becomes more difficult.
In the next two steps 4) and 5), the objective is to find
N-best segments for re-
construction. Since is dependent on BPC of the seg-
ment, can be referred to as . Different values used
for are given in the last column of Table III. There-
fore, the higher the number of individual phonemes per
BPC , the larger is the acoustic space spanned by ,
and hence, more number of segments are required
to capture the characteristics of the phoneme. As will be
mentioned subsequently in Section III-C1(6), the N-best
segments are weighted by normalized maximum-likeli-
hood scores to determine the relevance of each segment
for the reconstruction of BPC in consideration. It may
be noted that although all segments may be selected
instead of , and subsequently weighted by their max-
imum-likelihood scores, such a step would add unnec-
essary computational burden to the algorithm consid-
ering . This is because for a given BPC not
all configurations in will aid during the reconstruc-
tion of the BPC. For example, segments generated using
high values of in (8) are ideal for the reconstruc-
tion of silence segments. However, these segments lack
any useful information that might aid in the reconstruc-
tion of higher energy BPCs like vowels, semivowels, or
nasals. Using the method of choosing N-best segments,
it is expected that segments that lack useful information
are excluded from maximum likelihood evaluations.

4) Selection of all N-best segments are not limited to the
same search step but spread out over different search
steps. A constraint is applied on the number of segments
that will be selected out of N-best segments at each
search step. This is performed in order to select a diverse
range of segments. Segments selected at lower search
steps are expected to retain more noise and less artifacts
while those selected at higher search steps are expected
to be more noise-free and/or possess more artifacts.

TABLE III
NUMBER OF INDIVIDUAL PHONEMES, NUMBER OF MIXTURES, AND NUMBER

OF SEGMENTS USED PER BROAD PHONEME CLASS

If represents the total number of segments out of
N-best to be found at the th search step for BPC , and
if it is assumed that the initial condition is
(i.e., no segment has been found prior to the first search
step), then the required number of segments to be found
at the th search step is given by

(15)

where the second argument of operator indicates
that the number of segments is restricted to 4 in the th
search step even if there are more than 4 present. On the
other hand, if there are less than the required
segments, then is set to the number of segments
that are actually present.

5) This is the decision step for the selection of seg-
ments at the th search step. Assuming each segment

in search bin is an equally likely candi-
date for selection, then segments are selected as

(16)
where . It is to be noted
that a particular selection of in search bin pre-
cludes its reselection at a larger search bin (where

) even though (16) might be satisfied in .
For any search bin , segments near the lower
bound (lower IS distortion) are noisy but better at
retaining the overall spectral structure. However, seg-
ments near the upper bound (higher IS distortion) are
expected to have more noise suppression but overall
spectral structure may be distorted. Therefore, for

, the search bin given by (14) is narrow and
retains more noisy segments near the lower bound of

than noise suppressed segments near the upper
bound. Hence, selection during the first three searches
are biased towards choosing frames near the upper
bound of . At subsequent iterations when ,
the upper bound of search bin is increased to accom-
modate more noise suppressed segments across a wider
range having more distortions in spectral structure.
Then, the selection procedure is not ideal for choosing
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segments near the upper bound. Hence, it is reversed.
Noisy frames near the lower bound are chosen over
noise suppressed frames near the upper bound. The core
idea behind reversing has been in finding a tradeoff
between suppressing noise and introducing processing
artifacts so that segments with acceptable speech quality
are used for reconstruction while others are rejected.

6) Next, it is determined whether to continue with the
search process or proceed for reconstruction.

(6.i.) At the end of search step if
, then it means all N-best

segments have been found. Hence, the segments
are selected (and

others rejected) and used for reconstruction of the
enhanced speech using the following formulation. A
Gaussian mixture model (GMM) based constrained
soft decision solution is proposed here. Using clean
speech from the training set, GMMs were con-
structed for each BPC from 12 dimensional LPCC
vectors. The number of mixtures for the GMMs
were determined from the number of individual
phonemes present in the BPCs as given in Table III.
Using GMMs, weights , , are
assigned to the LPCC vectors obtained from the
selected segments . If

represents the corresponding LPCC vector
generated from the segment , then the soft
decision method finds the resultant feature vector

given by

(17)

where the term is defined by

(18)

where is the clean speech GMM model for BPC
and is the maximum-likelihood score
of the model for the feature vector . As-
suming independence between frames in each seg-
ment, the term can be further written
as

(19)

where is the set of LPCC vectors
for

the sequence of frames with frame indices
of the segment

and is the total number of components in the

GMM. The individual component density for the
th mixture is given as

(20)

where , and
. Here, the individual compo-

nent densities for the th mixture is parameterized
by mean vector and diagonal covariance matrix

and weighted by the term .
Once reconstruction of enhanced speech for the cur-
rent segment is complete, the algorithm returns to
Step 1) for the next segment. However, if all seg-
ments have been enhanced then the algorithm can
terminate at this point.
(6.ii.) At the end of search step if

, then all of N-best segments have not been found
yet. Hence, the search process is continued by in-
creasing the search step size by 1, i.e., by setting

, and returning to Step 3).
2) Hard Decision: Hard decision-based selection is a spe-

cial case of soft decision selection where only a single segment
is selected from the search space instead of N-best seg-

ments. Hence, . The search step is increased until
the desired segment is found. Therefore, in (15), the second
argument of operator is 1 instead of 4. Equation (16)
in step 5) can be replaced for scalar parameter instead of
vector parameter . Finally, in Equation (17) in step 6),
the weight of the selected segmented is assigned a value of 1.0
(i.e., ) while all the remaining weights are assigned
a value of 0 (i.e., ).

An additional level of audible noise suppression can be
achieved using estimates of auditory masking threshold (AMT)
from hard decision and soft decision-based enhanced speech.
The primary reason for incorporating AMT is to improve
perceptual quality since some amount of audible residual noise
may persist after grouping individual segments of enhanced
speech. Since spectral components of noise are masked by
speech, they can be minimized to an audible masking level
(or AMT) instead of completely suppressing them. As a re-
sult, the spectral components of speech are better preserved
and less perceptual distortion is introduced. Originally for-
mulated by Tsoukalas, Mourjopoulos, and Kokkinakis [6], a
codebook-based method was later proposed by Sarikaya and
Hansen [22]. In the current framework, AMT is calculated from
ROVER enhanced speech using the equivalent rectangular
bandwidth (ERB) auditory filterbank model. For a detailed
discussion on AMT using ERB, readers are advised to follow
[15].

IV. RESULTS AND EVALUATIONS

In this section, the results of detailed performance evalua-
tions of the ROVER-based hard and soft decision enhancement
solutions are summarized. The hard decision and soft decision
ROVER solutions in this section will be referred to as HROV
and SROV, respectively.
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Fig. 4. Time versus frequency spectrograms for different noise types: (top
left) Flat communications channel (FLN); (top right) Sun cooling fan (SUN);
(bottom left) Large crowd (LCR); (bottom right) in-vehicle wind (BL4).

A. Experimental Setup

The core set of 192 phonetically balanced test utterances from
the TIMIT corpus was used for objective quality evaluations.
The corpus consisted of speakers from eight dialect regions in
the US with two male and one female speakers per region with
eight utterances per speaker. The corpus was sampled at 8 kHz
and comprised of roughly 69 000 frames (240 samples per frame
spanning 30 ms, 75% overlap). Each utterance was corrupted
with the following noise types at global SNRs of 0 dB, 5 dB, and
10 dB: flat communications channel noise (FLN), Sun cooling
fan noise (SUN), large crowd noise (LCR), and in-vehicle wind
noise (BL4). FLN is a wideband stationary noise with a flat re-
sponse like additive white Gaussian noise and extracted from
AT&T voice communication channel. SUN is a stationary noise
recorded from the cooling fan of a Sun 4/330 workstation. LCR
is primarily a low-frequency slowly varying noise, recorded in
a large crowded room with many ongoing conversations. The
levels of any one conversation is not sufficient to identify indi-
vidual speakers or words (i.e., LCR is not babble noise or com-
peting speaker noise). Finally, BL4 is a narrowband (0–800 Hz)
slowly varying noise recorded in an automobile (Ford Taurus)
traveling at 60 mph on a freeway with windows partially open.
The noise estimation was performed after averaging the power
spectrum of the first 100-ms noise-only samples present in all
TIMIT test utterances. The time versus frequency characteris-
tics of the four noise types are shown in Fig. 4 to illustrate the
nature of each noise type.

B. Objective Quality Measures

The quality of enhanced speech is assessed using objective
speech quality measures such as the IS [18] (as given in (11)),
segmental SNR (SegSNR), PESQ [21], and PESQ-LQ [24].

The IS distortion measure uses the dissimilarity between the
all-pole spectra of the clean and enhanced speech and a lower
value of IS measure implies better enhanced speech quality.
SegSNR is a general measure of the degree of noise suppression
and is calculated by taking the average of frame-wise SNRs.
Higher values of SegSNR reflect more noise suppression and
better signal-to-noise ratio (SNR) although they may not always

TABLE IV
PERCENTAGE IMPROVEMENT OF ITAKURA–SAIRO DISTORTION MEASURED AS

���� ��� � �� ���� ACROSS PHONEME CLASSES DEGRADED BY

FLAT COMMUNICATIONS CHANNEL NOISE AT 0-dB SNR

reflect better speech quality. However, if AMT is engaged, it
is normal to expect that SegSNR values will fall. PESQ is an
ITU recommendation with a range from 0–4.5. Higher value in-
dicates better speech quality. PESQ assessment is more useful
than IS or SegSNR when AMT is engaged since it is a measure
of perceived speech quality. Finally, PESQ-LQ is a modified
score obtained by mapping PESQ score to an average five-point
absolute category rating (ACR) listening quality (LQ) scale de-
fined by ITU-T P.800. The five-point ACR LQ scale comprises
of excellent, good, fair, poor, bad ratings. PESQ-LQ was pro-
posed to predict MOS scores better than PESQ. MOS scores
can be affected by cultural and individual variations [25]. Also,
some subjects are likely to get biased to test conditions, (i.e.,
the subject is likely to rate a poor condition token as excel-
lent if the corpus has a large number of bad condition tokens
[25]). PESQ-LQ is likely to give scores that will hold good on
an average for a large corpus of subjective tests across different
languages and regions. In the following sections, a summary of
the results of the proposed enhancement solutions are compared
with Auto-LSP, log-MMSE [20], and log-MMSE with speech
presence uncertainty (log-MMSE-SPU) [29]. The performance
is initially compared without AMT engaged and later with AMT
engaged.

C. Performance Across Phoneme Classes

A summary of the IS distortion percentage improve-
ment of enhanced speech over noisy speech calculated as

is shown in Table IV with
the highest improvements in each row highlighted in bold.
From Table IV, with the exception of closures and fricatives,
HROV and SROV outperform Auto-LSP, log-MMSE, and
log-MMSE-SPU over all other phoneme classes. It is to be
noted that none of the enhancement algorithms could improve
the affricates effectively as indicated by the negative values
throughout the row. The negative percentage improvement
indicates that the IS distortion after enhancement was higher
than noisy speech suggesting that the enhancement algorithm
caused a further degradation in speech quality. However, the
degradation in the quality of affricates enhanced using HROV
and SROV algorithms compared to noisy speech is less than just
1% and are difficult to perceive. Further, HROV/SROV experi-
enced least degradation in affricates over the other competing
algorithms. Log-MMSE exhibited the best performance for
fricatives. However, it suffered higher degradation than noisy
speech for affricates and vowels by about 45.70% and 12.43%,
respectively. As for closures, the performance improvement
of log-MMSE is marginal compared to HROV and SROV
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TABLE V
MEAN AND VARIANCE OF ITAKURA–SAITO DISTORTION ACROSS PHONEME CLASSES FOR SPEECH

DEGRADED BY FLAT COMMUNICATIONS CHANNEL NOISE AT 0-dB SNR

TABLE VI
BEST ALGORITHMS ACROSS PHONEME CLASSES DEGRADED BY

FLAT COMMUNICATIONS CHANNEL NOISE AT 0-dB SNR

since IS improvement is higher by approximately only 1.56%
(42.739–41.184) and 0.33% (42.739–42.409) than HROV and
SROV, respectively. This improvement is not significant to
impact the perception of the average human listener. All classes
except closures and silence in log-MMSE-SPU enhanced
speech suffered further degradation compared to noisy speech.

The mean and variance of each phoneme class is tabulated
across noisy, Auto-LSP, HROV and SROV speech in Table V
for the same noise condition. Log-MMSE and log-MMSE-SPU
has not been included in the table since it exhibited the least
overall improvement from Table IV. The mean and variance data
is indicative of the degree and consistency of lowering the IS
distortion, respectively. Across all phoneme classes in Table V,
SROV reported the least variance and hence the most consis-
tent. It may be noted that across low energy phoneme classes
(i.e., affricates, fricatives, stops, and closures) the variance of
distortion is higher in HROV than noisy speech while it is lower
for the remaining high energy classes. The increase in variance
for low energy classes suggests the presence of misclassifica-
tion errors or improper selections of filter parameter during
the hard decision step. Since SROV has lower variance, speech
quality is expected to be more uniform in SROV than HROV.

The phoneme class results have been summarized in Table VI.
Auto-LSP can be considered as the best algorithm for closures
since it reported the least mean and variance. For fricatives, the
winner is log-MMSE (mean , variance not
shown in table). Although no algorithm could enhance the af-
fricates, SROV had the least degradation. For all other classes,
SROV outperformed all other algorithms. The important point
to consider here is that the ROVER solutions demonstrated a
higher degree and consistency in improving the overall speech
quality for most phoneme classes compared to other competing
algorithms.

D. Performance Across Objective Measures

In Table VII, the results from the three objective mea-
sures—Itakura–Saito, SegSNR, and PESQ—are summarized
for the case of flat communications channel noise at 0-dB,

5-dB, and 10-dB SNR levels and compared with those of
log-MMSE, log-MMSE-SPU, and Auto-LSP algorithms. Un-
like Section IV-C where results were analyzed over individual
phoneme classes, the results presented here are averaged over
the entire utterance. The numbers highlighted in bold indicate
the best performance along the column. SROV reported the
least IS distortion compared to all the other algorithms across
all SNRs under consideration. The percentage improvement of
IS over noisy speech is roughly 37%–38% at 0-dB and 5-dB
SNR and about 51% at 10-dB SNR. Also, SROV outperformed
HROV by about 2%–3% at lower SNRs and about 6% at 10-dB
SNR.

Increase in SegSNR for the ROVER solutions over noisy
speech achieved are about 9.1 dB at 0-dB SNR, 7.6 dB at 5-dB
SNR, and 6.3 dB at 10-dB SNR. HROV reported the highest
improvement over all the other competing algorithms. SegSNR
values for SROV are about 0.2 dB lower than HROV. The
contrasting performances in IS and SegSNR results for HROV
and SROV is mostly due to the ability of SROV to retain better
spectral structure due to the selection of diverse segments
during the decision phase. This is more likely to happen at
low energy phoneme classes like stops, closures, or fricatives.
While it is difficult to recover the spectrum in these regions,
improvement is observed in the form of noise suppression in
HROV. Therefore, there is a system tradeoff between HROV
and SROV methods. HROV performs better in suppressing
noise and SROV is superior in retaining the spectral structure
of the speech.

Finally, the improvement in the performance of the ROVER
schemes is further emphasized by the PESQ results which are
higher than Auto-LSP, log-MMSE, and log-MMSE-SPU. It is to
be noted that all scores reported in Table VII do not take AMT
enhancement into account.

In Fig. 5, a plot of frame-to-frame IS distortion is illustrated
for the sentence “Should she wake him?”. It is to be noted that in
the segment encompassing the closure /dcl/ frames, HROV has
higher distortion than noisy speech due to phoneme misclassifi-
cation. While it is difficult for HROV to recover from this error,
it has been mitigated to some extent in SROV due to soft deci-
sion. In the transition region from /iy/ to /w/ (frames 153–158),
there is a rise in the distortion level in both HROV/SROV. This
is again due to a semivowel (/w/) being misclassified as a vowel
which accounts for the highest number of misclassification er-
rors (i.e., 17.84% from Table II). Since both these classes have
high energy and similar spectral structures, their filter estimates
are not expected to have large variations. As a result, most of
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TABLE VII
ITAKURA–SAITO, SegSNR, AND PESQ RESULTS FOR 192 TIMIT SENTENCES DEGRADED BY FLAT COMMUNICATIONS CHANNEL NOISE AT 0-dB, 5-dB, 10-dB SNRs

Fig. 5. Frame-to-frame Itakura–Saito distortion at 0-dB SNR. (a) Clean speech degraded by flat communications channel noise (Mean � �����, Var � �����).
(b) Auto-LSP enhanced speech (Mean � �����, Var � 	�		�). (c) HROV enhanced speech (Mean � �����, Var � ��
��). (d) SROV enhanced speech
(Mean � ��
��, Var � ����	).

the spectral shape is retained unlike /dcl/. The distortion levels
in this region for HROV and SROV are still lower than noisy
speech. However, in frames 159–163, /w/ was correctly classi-
fied resulting in a drop of IS distortion. During the transition
from /ey/ to /kcl/, frames 178–183 were misclassified as /k/(un-
voiced stop) which is similar to /kcl/ (closure). This did not
severely affect the spectral shape and the reduction in distor-
tion level is due to noise attenuation. In the noise only regions,
HROV achieves lesser IS distortion levels intermittently while
levels in SROV are more consistent.

E. Performance Across Noise Types

To study the performance of the HROV and SROV over all
noise types at 0-dB, 5-dB, and 10-dB SNRs, the average IS dis-
tortion is compared against the other competing algorithms and
is shown in Fig. 6. Log-MMSE-SPU has been excluded since it
exhibited higher IS distortions than log-MMSE for FLN/LCR
noises and marginally lower IS distortions than log-MMSE for

SUN/BL4 noises. In general, log-MMSE-SPU performed better
than log-MMSE with respect to SegSNR scores but performed
worse with respect to IS or PESQ scores. Across noise types, the
highest percentage improvement in IS measure was observed
for FLN noise: 42.28% averaged over all SNRs. The least per-
centage improvement was observed for BL4 noise: 7.39% av-
eraged over all SNRs. This is not an anomaly since at a given
SNR the levels of degradation is already low for BL4 noise (de-
graded at 5-dB SNR) and high for FLN noise (de-
graded at 5-dB SNR). The low levels of degrada-
tion in BL4 noise limits the efficacy of enhancement algorithms.
The results also indicate that the HROV solution caused an ad-
ditional but marginal level of degradation to the noisy speech
in the case of BL4 noise at 0-dB and 5-dB SNRs, whereas this
degradation is mitigated in the SROV solution. At 10-dB SNR
for BL4, the IS distortion of noisy speech is very low at 0.7
and this does not require any further enhancement. As a result,
all enhancement algorithms fail for this particular case. For BL4
noise, Auto-LSP exhibited the best overall performance whereas
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Fig. 6. Average Itakura–Saito distortion for different enhancement algorithms over 192 TIMIT sentences degraded with different noise types at SNRs of 0 dB,
5 dB, and 10 dB. Enhancement algorithms arranged left to right according to the order: Degraded, Log-MMSE, Auto-LSP, HROV, SROV. (a) Flat communications
channel noise. (b) Sun cooling fan noise. (c) Large crowd noise. (d) In-vehicle wind noise.

TABLE VIII
PESQ AND PESQ-LQ SCORES WITH AND WITHOUT AMT ACROSS 192 TIMIT SENTENCES DEGRADED WITH FLN, SUN, LCR, AND BL4 NOISES AT AN SNR OF

5 dB. “BL” INDICATES A BASELINE ALGORITHM AND “N/A” INDICATES THAT THE RESULTS CANNOT BE OBTAINED AND HENCE NOT APPLICABLE

for all other noise types SROV outperformed all other enhance-
ment algorithms. The results for BL4 noise confirm that the
ROVER algorithms do not significantly improve overall quality,
and therefore Auto-LSP is a better candidate for cellular tele-
phony applications in vehicles. However, for flat communica-
tions, sun cooling fan, and large crowd noise, improvement was
observed consistently.

F. Performance With AMT Integrated

In the next experiment, AMT is engaged as a postprocessor of
the enhancement algorithms discussed in this study, and PESQ
and PESQ-LQ results over all noise types at an SNR of 5 dB are
tabulated in Table VIII where each row represents one enhance-
ment scheme. In Table VIII, any entry in the “BL” or “Baseline”
column is a PESQ score of the enhancement scheme present
in the corresponding row when there is no AMT engaged. The

“BL + AMT” column has AMT engaged as a second level of en-
hancement. Since the AMT approach followed in this study re-
quires prior knowledge of the clean speech estimate that can be
obtained from any of the enhancement schemes, the results for
AMT enhancement using noisy speech is not possible. Although
noisy speech can be used to estimate the AMT, it is usually not
considered a preferred procedure. The PESQ and PESQ-LQ re-
sults indicate that SROV performs the best resulting in improved
levels of speech quality for all noise types. Improvement in BL4
was the least because of the reduced degradation caused by BL4
noise in comparison to FLN or SUN noises.

G. Performance Across NIST Phonemes

The IS performance summary for the NIST 61 individual
phonemes listed in TIMIT 192 sentences is reported in Table IX
for HROV and SROV solutions and compared with Auto-LSP
(indicated by AUT). The sentences were degraded with FLN
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TABLE IX
ITAKURA–SAITO DISTORTION FOR AUTO-LSP, HROV, AND SROV ENHANCED SPEECH ACROSS 61 NIST PHONEMES FROM THE 192 TIMIT

UTTERANCES DEGRADED BY FLAT COMMUNICATIONS CHANNEL NOISE AT AN SNR OF 5 dB

noise at an SNR of 5 dB. Although the two ROVER solutions
outperformed Auto-LSP in most of the phonemes, results con-
clude that the unvoiced stops (/p/,/t/,/k/), voiced whisper (/hv/),
and voiceless schwa (/ax-h/) are slightly distorted after enhance-
ment of any kind. The performance of Auto-LSP was better
than HROV for some of the unvoiced stops (/p/, /t/) and clo-
sures (/tcl/,/kcl/,/pcl/). However, SROV was able to outperform
Auto-LSP in all of these cases.

H. Complexity

In this section, we discuss the time complexity of imple-
menting the algorithm. Since Auto-LSP lies at the core of the
ROVER framework, we assume the complexity of running
Auto-LSP is A and that we generate a single frame of ROVER
enhanced speech. The complexity analysis can be split into dif-
ferent steps: power spectra generation, IS distortion evaluation,
feature extraction, VQ classification, and finally finding GMM
likelihoods.

To determine the power spectrum of single frame of enhanced
speech, there are distinct spectrum samples gener-
ated from applying DFT. K is the size of the DFT as was defined
in (2). The DFT transform uses multiplications and

additions. To generate the power spectrum, there are
more multiplications and additions. Hence, considering

the enhancement space originating from (9), there are a total of
multiplications and

additions. Further, the power spectrum of noisy speech requires
multiplications and additions.

At the feature extraction stage, an inverse DFT is performed
on the power spectrum to get the autocorrelation coefficients
from which LPCCs are extracted. The inverse DFT requires

multiplications and additions.
Out of , only autocorrelation values (2) are saved to create
a Toeplitz matrix. Inversion of the Toeplitz matrix and deter-
mining the LPCs require multiplications and
additions. Next, to determine the th LPCC, we require
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multiplications and additions. To determine the dimen-
sional LPCC vector, we require
multiplications and additions.
Evaluating (10) requires multiplications and

additions where is the number of codebook entries ob-
tained from Table I.

Since the power spectrum is already known, calculating IS
distortion requires multiplications and additions.
From this, finding the N-best segments satisfying maximum
and minimum criteria in (16), requires scanning through not
more than IS distortion values.

Finally, finding the GMM likelihoods for N-best segments is
dominated by multiplications and additions. Overall,
the most dominant complexity term is in the calculation
of (9) involving multiplications and

additions in addition to the complexity in-
volved in generating the Auto-LSP utterances, i.e., . Using
an Intel processor with 1.8-GHz clock rate and MATLAB
environment, the average time to enhance a single utterance
was approximately 9 s. We are investigating a smaller size of
the enhancement space by considering only the most relevant

parameters to reduce the computational burden of the
dominant complexity term. Since the enhancement framework
utilize outputs from multiple iterations, they can be used for
offline applications like spoken document retrieval, and news
broadcasting.

V. CONCLUSION

A ROVER-based enhancement algorithm was introduced to
enhance speech selectively based on phoneme classes degraded
by various noise types. Hard and soft decision ROVER solutions
were proposed. In both solutions, multiple enhanced utterances
are generated per noisy utterance. The noisy utterance is parti-
tioned into segments based on broad phoneme classes using a
vector quantization classifier. From this knowledge, class spe-
cific constraints are applied. In the hard decision approach, only
one segment from the multiple utterances set is selected for
every segment of the noisy speech. Selection errors in hard de-
cision were alleviated using a soft decision approach. In the soft
decision method, instead of one segment, several segments are
selected and weighted using GMMs. Finally, a second level of
enhancement using estimates of auditory masking threshold was
applied to the hard and soft decision solutions to remove audible
residual noise.

The proposed algorithms were shown to be effective in
various objective quality evaluations. Experiments were carried
over the TIMIT 192 core test utterances degraded by four noise
types and at three SNR levels: 0 dB, 5 dB, and 10 dB. The
performance was assessed and analyzed using three objective
quality metrics (Itakura–Saito, SegSNR, and PESQ). Across
eight broad phoneme classes, it was demonstrated that the
levels of perceived quality of speech improved across most of
the phoneme classes when compared with the performance of
Auto-LSP, log-MMSE, and log-MMSE-SPU. After engaging
AMT as an additional level of enhancement, perceptual eval-
uation using PESQ results confirmed the superiority of the
ROVER solutions.

Future studies could consider analysis in the evaluation
of the effect of smoothing during transitions between broad
phoneme class segments. The effect of using probabilistic
decisions, instead of binary decisions, during phoneme class
classification could be investigated. Instead of using a single set
of search space parameters [ in (14)] and number of
search steps in forward and backward direction, they could be
optimized for each phoneme class. Further, integration of the
proposed ROVER solutions with other enhancement algorithms
such as log-MMSE could also be investigated. In real world
environments, these methods could be easily integrated into
an overall solution for addressing additive noise suppression,
convolutional channel and microphone distortion, and/or room
noise acoustics. From a systems normalization perspective,
adaptation to different noise sources using limited noise tokens
could also be studied.
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