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Phoneme Selective Speech Enhancement Using
Parametric Estimators and the Mixture Maximum

Model: A Unifying Approach
Amit Das, Student Member, IEEE, and John H. L. Hansen, Fellow, IEEE

Abstract—This study presents a ROVER speech enhancement
algorithm that employs a series of prior enhanced utterances, each
customized for a specific broad level phoneme class, to generate
a single composite utterance which provides overall improved
objective quality across all classes. The noisy utterance is first par-
titioned into speech and non-speech regions using a voice activity
detector, followed by a mixture maximum (MIXMAX) model
which is used to make probabilistic decisions in the speech regions
to determine phoneme class weights. The prior enhanced utter-
ances are weighted by these decisions and combined to form the
final composite utterance. The enhancement system that generates
the prior enhanced utterances comprises of a family of parametric
gain functions whose parameters are flexible and can be varied to
achieve high enhancement levels per phoneme class. These para-
metric gain functions are derived using 1) a weighted Euclidean
distortion cost function, and 2) by modeling clean speech spectral
magnitudes or discrete Fourier transform coefficients by Chi or
two-sided Gamma priors, respectively. The special case estimators
of these gain functions are the generalized spectral subtraction
(GSS), minimum mean square error (MMSE), two-sided Gamma
or joint maximum a posteriori (MAP) estimators. Performance
evaluations performed over two noise types and signal-to-noise
ratios (SNRs) ranging from 5 dB to 10 dB suggest that the
proposed ROVER algorithm not only outperforms the special case
estimators but also the family of parametric estimators when all
phoneme classes are jointly considered.

Index Terms—Generalized spectral subtraction, minimum
mean square error (MMSE) estimator, joint maximum a posteriori
(JMAP) estimator, mixture maximum (MIXMAX) model, speech
enhancement.

I. INTRODUCTION

N OISE is present in almost all environments where speech
systems are used and therefore the need arises for de-

signing effective speech enhancement algorithms. The objective
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of any speech enhancement algorithm is to suppress background
noise, improve perceived quality (subjective) and intelligibility
(objective), reduce listener fatigue, and improve performance
for automatic speech recognition or speaker identification sys-
tems. It is difficult to address all these objectives simultaneously
in a single enhancement algorithm, since this essentially means
that noise should be suppressed in a way which does not intro-
duce processing artifacts, musical noise, or speech distortions
that impact either human perception or speech language tech-
nology performance. Hence, enhancement algorithms can be
broadly classified as perceptual centric or speech systems cen-
tric. A myriad of algorithms have been developed over the last
three decades in both categories. The perceptual centric algo-
rithms [1]–[8] improve subjective quality of speech whereas the
speech systems centric algorithms [9]–[13] improve some math-
ematical scoring metric which could be an objective quality of
speech, or speech recognition or speaker identification accuracy
percentage.

This study focuses on a speech systems centric framework.
Early approaches in speech systems centric algorithms include
spectral subtraction (SS) [14] and its variations [15], [16]. The
SS method calculates the estimates of the noise spectrum from
preceding frames where speech is absent under the assumption
that statistics of the noise spectrum do not vary rapidly in time.
The clean speech spectral magnitudes are estimated by sub-
tracting the noise spectral magnitude from the spectral magni-
tude of the degraded speech. However, this scheme has the pri-
mary limitation that it is likely to produce musical noise due to
random residual noise spectral peaks that are annoying to the
listener.

Later, iterative Wiener filtering [17] and subsequent con-
strained estimation variations [9], [10] were adopted. This
filter minimized the estimation error between the clean and
estimated signal in the mean-square sense. However, the main
drawback of the traditional Wiener filter is that it is assumed
to be linear, and its frequency response is a function of the a
priori signal-to-noise ratio (SNR) only but does not directly
take into account the a posteriori SNR which is important for
reducing musical noise. The Ephraim–Malah minimum mean
square error (MMSE) estimator [11] has gained acceptance
in the contemporary literature. The MMSE estimator is a non
linear Bayesian estimator which minimizes the mean square
error (MSE) between the clean and estimated speech spectral
magnitudes. In addition, the gain function incorporates both
a priori and a posteriori SNRs. In all these approaches, noise
suppression is performed on the degraded or noisy speech only
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in the holistic sense (i.e., a configuration that gives reasonably
good objective quality score for the overall utterance). Such
schemes do not adopt any phoneme class selective enhancement
approach which is likely due to the inherent assumption that
the a priori or a posteriori SNRs are functions of the amount
of degradation in each phoneme class.

Earlier studies [9] have shown that degradation due to en-
vironmental background noise is nonuniform across various
phoneme classes of speech. This can be attributed to two
reasons: 1) each phoneme class (and even individual phonemes
within the class) has distinct acoustical properties characterized
by its time waveform, frequency content, manner of articula-
tion, place of articulation, type of excitation, and stationarity or
nonstationarity of the vocal tract configuration [18, Ch. 2]; 2)
the structure of different noise types can be classified based on
their degree of stationarity and their bandwidths.

Several research efforts have been devoted on developing
phoneme class-based enhancement algorithms. In one study,
Hansen and Arslan [19] used hidden Markov models (HMMs)
to create 13 phoneme class models. Using the forward algo-
rithm scoring procedure, conditional probabilities

, were obtained where represents the ob-
servation vector from noisy speech, and is the noisy speech
HMM model for phoneme class . The difference of the top
two scores was weighted by the inverse of a cost function to
evaluate a confidence measure. Enhancement, based on the
Auto-LSP [9] algorithm, was performed selectively using this
measure.

In this contribution, we present a class selective enhancement
approach based on the generalized spectral subtraction (GSS)
derived by Sim et al. [20], Ephraim–Malah MMSE estimator
[11], Martin’s discrete Fourier transform (DFT)-based MMSE
estimator [21], and Wolfe–Godsill joint maximum a posteriori
(JMAP) estimator [22] and demonstrate overall improvement
in objective quality metrics for each broad level phoneme
class. We have presented a preliminary portion of this study
in [23] and [24]. For this purpose, we split phonemes into
three broad classes—sonorants, obstruents, and silence. In
GSS/MMSE/JMAP algorithms, the parameters of the gain
functions influencing the enhancement performance are fixed
over the entire utterance. In this paper, we develop parametric
gain functions for each of these algorithms using flexible cost
functions and generalized priors of the clean speech spectral
magnitudes and/or phases and show that the parameters in
these gain functions can be varied to obtain better enhancement
levels per phoneme class than their corresponding baselines.
However, no single set of parameters exist that attain equivalent
enhancement potential across all classes. Although versatile,
this drawback makes the parametric gain functions less attrac-
tive for real-world implementation.

1The term ROVER is a connotation to the National Institute of Standards and
Technology (NIST) automatic speech recognition (ASR) system [25] which
produces a composite ASR output when outputs from multiple ASR systems
are available. In the context of NIST ASR, ROVER stands for Recognizer
Output Voting Error Reduction. Since the enhancement system addressed
in this study combines outputs from multiple estimators, it is appropriate to
address this system using the term ROVER.

To overcome this limitation, we propose a novel ROVER1

based solution. In the proposed scheme, for a given noisy ut-
terance, three different prior enhanced utterances are generated
from the parametric estimators—each customized for a specific
phoneme class. The noisy utterance is partitioned into speech
and non-speech regions using a voice activity detector (VAD).
For a given short time frame, the ROVER solution applies soft
decisions using a mixture maximum (MIXMAX) model [26] to
weigh and combine the phoneme segments obtained from the
prior enhanced utterances. This results in a single composite
enhanced utterance that provides better levels of enhancement
than the parametric estimators, and also reinforces the appli-
cability of the ROVER solution across different enhancement
algorithms.

The remainder of this paper is organized as follows. In
Section II, derivations for the parametric estimators of GSS,
MMSE, and JMAP algorithms are outlined. In Section III,
the application of the MIXMAX model in making enhance-
ment-based soft decisions is presented. A comprehensive
objective quality evaluation is performed using the segmental
SNR, the Itakura–Saito, and the DFT distortion for every
broad level phoneme class at different global SNR levels in
Section IV. Finally, conclusions are summarized in Section V.

II. ENHANCEMENT MODELS

A. Generalized Spectral Subtraction

Assuming noise is additive and statistically independent of
the speech signal, the representation of noisy speech in the fre-
quency domain can be given as follows:

(1)

Here, represent the spectral magnitudes and
represent the phases of the discrete Fourier trans-

forms (DFT) of noisy speech , clean speech
and noise , respectively, at frequency bin . If is the
spectral magnitude estimate of clean speech obtained from the
GSS [20] algorithm, then this can be represented as

(2)

where the term is an exponent term with , and
are weighting parameters for frequency bin . Although these
weighting parameters are functions of , we will drop from
their subscripts for notational simplicity. In [20], the estimator
in (2) is optimized by minimizing the MSE between
and . In this paper, we define the generalized weighted
Euclidean distortion (WED) between the clean speech and
estimate of clean speech spectral magnitude in (3) and seek
to minimize this error. If the clean speech spectral magnitude
vector is in a short-time analysis
frame of speech, then the WED error between clean speech and
estimate of clean speech spectral magnitude vector is

(3)

where is the length of the
DFT of the analysis frame, and are constant exponent
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terms. It should be noted that when , the error function
penalizes the errors in the spectral peaks more heavily than
spectral valleys. When , the errors in the spectral valleys
are penalized more than those in spectral peaks. Since MSE
weighs the errors equally in all regions of the spectrum, the
value of in WED error offers flexibility in modifying the
error function. The musical noise present in spectral subtraction
approaches can be attributed to the random occurrence of
sinusoidal peaks along the spectrum. In an additive white noise
scenario, musical noise can be considered predominant in the
region of spectral valleys since these are regions of low SNR.
Therefore, we focus on values where .

Taking the expectation of the square of the magnitudes on
both sides of (1) results in since the
expectation of the cross-term is 0. Using the assumption that this
can be replaced by the sample estimate of the ensemble average,
we get . Further, in [20], the power term of 2 was
replaced by to form the ideal generalized model. With this the
clean speech spectral magnitude can be written as

(4)

Substituting (4) and (2) into (3), and finding the expectation
of the WED estimation error at frequency bin results in the
following:

(5)

Assuming mutual independence between frequency compo-
nents, we attempt to minimize the WED error at each frequency
bin independently to minimize the WED error of a frame in
(3). The optimum values of that minimize the error in
(5) can be obtained by differentiating (5) with respect to
separately and setting them to zero as

(6)

Solving for , and letting , the
optimum values are given by

(7)

(8)

Assuming the case where real and imaginary parts of the clean
speech and noise DFTs in the analysis frame are independent

and Gaussian distributed with zero means, their spectral mag-
nitudes will be Rayleigh distributed. The th moment of a
Rayleigh distributed probability density function (pdf)
can be simplified as

(9)

For (9) to exist, the exponent of in (9) must be greater than
. Hence, the constraint is that . Substituting (9) into

(7) and (8) further simplifies the optimal value of parameters to

(10)

(11)

where represents the complete Gamma function and is
the a priori SNR at the th frequency component given by

(12)

Here, and are the variances
of the clean speech and noise respectively. It is assumed that
the real and imaginary parts of the the DFT coefficients of the
clean speech have equal variances (i.e.,

). The same is assumed for the noise as well. The con-
stants are given by

(13)

which are functions of and . Substituting (10), (11), (12),
(13) into (2), the gain function can be written as

(14)
where is the a posteriori SNR at the th fre-
quency component. The gain equation of (14) may be consid-
ered as the GSS -unconstrained parametric estimator. To arrive
at the constrained estimator, the constraint is applied in
(2). With this constraint, the expectation of the WED estimation
error at frequency bin is given by

(15)

The constrained optimum value of that minimizes the error
in (15) is

(16)
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This differs from (7) by the term . This can be further simpli-
fied to give

(17)

where

(18)

Using (17), (18), the GSS -constrained gain function can be
represented as

(19)

It is easy to see that if we set in (14) or (19), then the
gain functions of the GSS -unconstrained and -constrained
estimators simplify to the gain functions of the GSS estimators
derived by Sim et al. [[20], (32), (33)].

B. Weighted Euclidean Distortion Bayesian Estimator Based
on Chi and Two-Sided Gamma Priors

In this section, we present the formulations of the general-
ized WED estimators for the cases of Ephraim-Malah MMSE
spectral magnitude estimator [11] and Martin’s DFT MMSE es-
timator [21]. Since is the complex spectrum
of noisy speech, the Bayesian estimator of the spectral magni-
tude that minimizes the WED error in (3) is given by

(20a)

(20b)

after canceling out the common term . The resulting
estimator in (20) depends on the choice of the distribution of the
prior . Here, we first investigate the performance using the
Chi prior to model the spectral magnitudes of the clean speech.
The Chi probability density function is represented by [27]

(21)

where the term indicates the number of degrees of freedom.
Furthermore, the phase can be assumed to be independent of

the spectral magnitude and uniformly distributed in ,
which results in

(22)

Since it was assumed that the real and imaginary parts of the
DFT of noise, and , would be Gaussian random vari-
ables with distribution , the complex
distribution of will be centered around the
means and with the same variance . Letting

, this can be written as

(23)

Inserting (21), (22), (23) into (20b) and using the simplification
from [[28], (6.631.1), (8.406.3)], and the fact that ,
we obtain

(24)

where

� ���������� (25)

and denotes the confluent hypergeometric function.
The conditions for which (24) is valid is given by

(26)

This implies that for a given value of , both the parameters
can take on negative values which will be useful for achieving
greater degrees of noise suppression. It may be noted that for

and , the WED Chi estimator in (24) becomes
the estimator derived by Loizou in [[12], (18)]. In [12], the con-
straint was . This constraint is relaxed in (24) since
if , then can take on values smaller than which
helps in penalizing any low SNR region spectral valleys. Also,
if , and is replaced by in (24), the so-
lution becomes the power spectrum based generalized MMSE
(GMMSE) estimator derived by Hansen et al. in [[8], (19)]. Fur-
thermore, the Ephraim-Malah MMSE estimator [11] is a special
case of the WED Chi estimator when .

Next, we turn our attention to finding the WED optimized
solution of the DFT MMSE estimator. In [21], Martin modeled
the clean speech DFT coefficients using the two-sided Gamma
prior at frequency bin as

(27)
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where and denotes the real part of the DFT co-
efficient at frequency . The probability density function of the
imaginary part, , can be obtained by replacing with

in (27). The WED Gamma estimator can be obtained by re-
placing and with and , respectively, and drop-
ping the phase term in (20b) since there is no phase component
for . We continue with the same assumption made earlier that
the noise DFT coefficients are Gaussian distributed. In general,
it can be shown that for some power

(28)

where

(29)

(30)

and

(31)

(32)

(33)

and is the parabolic cylindrical function [[28], (9.241.2)]
where and are its order and argument, respectively. Sub-
stituting (28)–(33) into (20a) with appropriate power terms, we
arrive at the DFT WED Gamma estimator

(34)

where is the a posteriori SNR of the
real or imaginary part of the DFT coefficient. Unlike the pre-
vious a posteriori SNR defined in (25), has an extra 1/2 term
in the denominator. This is because here, takes into account
the variances of the real and imaginary part of the noisy speech
DFT coefficients separately, whereas the a posteriori SNR of the
spectral magnitude, , in (25) considers the sum of the vari-
ances of the real and imaginary part of the noisy speech DFT
coefficients. The constraints in (34) are given by

(35)

The integer constraint for and comes from the fact that for
(and hence (34)) to be real, the term

in must be real which happens for all integral values

of the sum . Since is also a term in (34), must
be an integer. Therefore, combining the two constraints (i.e.,

and ), implies that must also be an
integer. Along with the fact that , restricts to the set

. Moreover, the constraint and
implies that . Therefore, the possible values are

. Therefore, the minimum integer value of satisfying
is . Unfortunately, cannot take on

negative values here unlike (24). The DFT MMSE estimator in
[[21], (13)] is therefore a special case of the DFT WED Gamma
estimator (34) when .

C. Joint Maximum A Posteriori Estimator Based on Chi Prior

Here, we discuss the joint MAP estimate of speech spectral
magnitude and phase for the case of Chi prior in (21).
This is given as

(36)

The denominator can be ignored since it is only a
normalization term. For a rotational invariant pdf, and assuming
a uniform distribution of phase in , the relationship
between the spectral magnitude and phase is given in (22).
Since the natural logarithm function is monotonic increasing,
the of (36) could be maximized in order to maximize (36)
(note, this may be represented by ). Substituting (21), (22),
and (23) into the function of (36) and ignoring ,
we obtain

(37)

where is a term-independent of
and . After partially differentiating with respect to

and setting the derivative to zero, we obtain the optimal
phase estimate to be the same as the noisy phase (i.e.,

). Similarly, partially differentiating with respect to
and setting the derivative to zero yields the quadratic

(38)

The root of the quadratic is that value of which maximizes
(36), and hence this root must be . Therefore, setting

we obtain

(39)

The constraints of (39) are given by

(40)
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Fig. 1. ROVER enhancement framework using the MIXMAX model.

where is defined as in (25). The second constraint should be
satisfied in order to obtain real values from the square root term
in (39). It may be noted that the joint MAP estimate of the Chi
prior magnitude in (39) differs from the joint MAP estimate of
Wolfe and Godsil [[22], (29)] by the term inside the
square root instead of 2. Therefore, this represents a unifying
solution. By setting in (39), results in the special case
gain function of [22].

III. ROVER ENHANCEMENT USING MIXMAX MODEL

The drawback with the parametric estimators is that a single
set of parameters does not exist that can generate reasonably
good enhancement levels across all phoneme classes. This will
be evident in Section IV. Therefore, the need arises to create
different enhanced utterances for each class.

In Section II, we developed parametric estimators whose
parameters can be modified to achieve enhancement on a per
phoneme class level. We assume that phonemes may be classi-
fied into three groups of broad phone classes (BPC)—sonorants,
obstruents, and silence. Therefore, as illustrated in Fig. 1, for
a given noisy utterance , three utterances may be
generated from the three parametric estimators ,
respectively, with each estimator having its parameters set to
generate improved enhancement levels for a specific BPC.
Hence, is expected to possess improved enhancement
levels for regions dominated by sonorants only disregarding
the enhancement levels in regions of obstruents and silence.
Similarly, is expected to possess better enhancement levels
for regions of obstruents only disregarding the enhancement
levels in the regions of sonorants and silence. The superscript

in indicates that the utterances are the outputs of the para-
metric estimators. For this reason, may also be referred
to as the prior enhanced utterances. It is to be noted that the
three estimators are homogeneous, i.e., they have
the same gain function with different values of parameters.
Therefore, as an example, a homogeneous system using the
GSS -unconstrained estimator will use the same gain function
(14) in for the three BPCs but with three different
values of the parameter set . Furthermore, a voice ac-
tivity detector (VAD) was employed to detect the speech active
and inactive regions. During speech active regions, the top two
switches connecting in Fig. 1 were enabled whereas
the bottom switch connecting was disabled. During speech
inactive regions, the bottom switch connecting was enabled
to update the noise GMM whereas the top two switches were
disabled.

At this point, we have a homogeneous system generating
three prior enhanced utterances for the three BPCs. However,
we still need to present the end user with a single composite
enhanced utterance constructed from the three prior enhanced
utterances. To achieve this, a phoneme class labeler is required.
The three prior enhanced utterances represent a preliminary
level of the enhancement framework whereas the single com-
posite utterance represent the final level of enhancement
framework.

In this section, we present the final level of enhancement
framework using the MIXMAX model to combine the out-
puts of the parametric estimators. The MIXMAX model is a
phoneme class labeler using a probabilistic rule that associates
a frame belonging to a specific BPC. It was first introduced by
Nádas et al. [26] especially for noisy speech recognition and
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later used for class independent MMSE speech enhancement
by Burshtein and Gannot [29]. Our motivation for use of the
MIXMAX model is that, for a given segment with a fixed time
duration, we can apply the probabilistic rule on each of the
three BPC specific utterances to evaluate the possibility of it
belonging to a specific BPC. Using this, we can combine the
segments from the three utterances to generate a composite
utterance. Further, since the three utterances have improved
enhancement levels per BPC they are expected to give higher
recognition accuracies than the noisy utterance . This justi-
fies the application of the MIXMAX model on the three prior
enhanced utterances instead of the noisy utterance .

Here, we modify the notation slightly from the previous sec-
tions. Let denote the random vector
representing the Mel frequency cepstral coefficients (MFCC) of
the clean speech sonorants with the th component being ,
where with being the size of the MFCC vector.
The pdf of can be modeled with a Gaussian mixture model
(GMM) with each mixture consisting of components and a
diagonal covariance matrix as follows:

(41)

where

(42)

and is the weight of the th mixture. Similarly, let the
MFCC vectors for 1) obstruents in clean speech be represented
by , 2) noisy speech be , and 3) noise be . As in (42), the

th component of the th GMM mixture representing can be
given by the pdf with mixture weight

. Similar to [29], we assume the modeling of noise can be
achieved using a single mixture dimensional Gaussian repre-
sented by

(43)

where

(44)

The GMMs were trained using clean speech and the details of
the training parameters are outlined in Section IV. Assuming
zero means and statistical independence between the MFCC
components of clean speech and noise, we find the pdf of the
noisy speech model using the MIXMAX model

(45)

The max-operation is performed separately in each component
of the three vectors , and . Nádas et al. [26] assumed that
the log-spectral components of the noisy speech can be mod-
eled by the MIXMAX model since the log-energies of the noisy
speech computed over the different frequency bands of speech

spectrum could be represented by the maximum of the speech
signal and noise. In our study, we replaced the log-spectral com-
ponents by MFCCs. Our motivation for using MFCCs instead of
log-spectral components stems from the weak assumption that
the log-spectral components are independent of each other and
that diagonal covariance matrices can be used to model GMM
mixtures. However, with MFCCs, the DCT transform decorre-
lates the MFCC components justifying the use of diagonal ma-
trices. Also, MFCCs provide a more compact representation of
the signal than log-spectral components thereby reducing the
number of modeling parameters.

To find the pdf of in (45), we determine the cumulative
distribution function (cdf) of given by

since mutual independence of (46)

where represent the cdf’s of
respectively. The pdf of mod-

eled using (45) is obtained by differentiating (46) with respect
to as follows:

(47)

During testing, for a noisy utterance input, a voice activity de-
tector (VAD) was used to classify regions of voice inactivity.
The statistics of the noise probability density function of (43)
were updated during regions of voice inactivity [29]. For the
voice active regions, the noisy speech component was substi-
tuted in (47) to evaluate the probability of belonging to sono-
rant, obstruent, and noise. Examining this further, the first term
in (47) can be expanded as

(48)

This means that for a given combination of th and th mix-
ture, , and . Hence,
is the maximum and likely belongs to a sonorant. Similarly,
the term indicates is the maximum, and

indicates is the maximum. The proba-
bility that is the maximum value over all possible combina-
tions of th and th mixtures can be represented by

(49)
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The numerator term in indicates the
joint probability of and given the th and th
mixture (and hence being the maximum) is the same as (48).
The term is a normalization factor and is the
weight for each combination of mixture considered in .
In a similar fashion, the probability that is the maximum may
be represented by

(50)

Furthermore, may be considered a weighting term that
is related to the a posteriori probability

(51)

As noted earlier, outputs of the parametric estimators
are present prior to the MIXMAX evaluation. For a given time
period spanning the duration of a frame, let and be the
MFCC vectors from and , respectively, as illustrated in
Fig. 1. In (49), the probability of the observed noisy feature
belonging to sonorant is evaluated for every dimension. In (52)
below, the probability that the observed noisy feature vector
belonging to a sonorant is given as the products of the individual
dimensions as

(52)

Similarly, the probability that the observed noisy feature vector
belonging to an obstruent is the products of the individual

dimensions in (50) and is given as

(53)

At this point, we have two MFCC vectors and of a frame
and the probabilities in (52) and (53) represent the scores of
these vectors belonging to sonorants or obstruents respectively.
Since we do not know the BPC of the frame and that we need
to construct a single composite MFCC vector from both
we assign weights to the vectors by normalizing the in-
dividual scores. We do this by taking the logarithm of (52) and
(53) and denoting their log probabilities as and , respec-
tively. Therefore, the resulting MFCC vector is given by

(54)

Fig. 2. Time and frequency characteristics of (a) flat communications channel
noise (FLN) and (b) large crowd noise (LCR).

The MFCC estimate ( or ) is converted back into the mag-
nitude spectrum [30]. Using the magnitude spectrum and noisy
phase, the composite speech signal is reconstructed by the stan-
dard overlap-add method.

IV. EXPERIMENTAL RESULTS

A set of 32 (16 females, 16 males) phonetically balanced
utterances from the TIMIT test corpus, downsampled from
16 kHz to 8 kHz, were used for objective quality evaluations.
Test utterances were degraded with two noise types—flat
communications channel noise (FLN, mostly stationary), and
large crowd noise (LCR, mostly nonstationary). Test utterances
were degraded at global SNRs of 5, 0, 5, and 10 dB. The
time versus frequency responses of FLN and LCR noises
are illustrated in Fig. 2. The quality of enhanced speech was
assessed using objective speech quality measures such as the
segmental SNR (SegSNR), Itakura–Saito distortion (IS), and
DFT distortion. Higher values of SegSNR and lower values of
IS or DFT distortion represent better speech quality. Segmental
SNR evaluations were limited to the range of 10 dB to 35 dB.

The clean speech GMMs for BPCs used in the MIXMAX
model were trained using 39-dimensional MFCC vectors ex-
tracted from 300 separate utterances taken from the TIMIT
training corpus. GMMs for sonorants and obstruents were
modeled using 16 mixtures, whereas for noise only 1 mixture
was used. We found that generating these MFCC vectors from
a small frame size of 10 ms and skip rate of 5 ms resulted
in the best performance. This is because with a small frame
size and skip rate, the likelihood of missing phone-to-phone
boundaries is lower than with a larger frame size. Hence, the
same frame size and skip rate was maintained during the testing
phase. Furthermore, for MFCC extraction, each frame was
windowed using a Hamming window and speech spectrum split
into 24 triangular filters over the Mel scale. During testing, a
statistical model-based VAD [[31], (11.1)] was used to classify
regions of voice inactivity. Based on these VAD decisions, the
statistics of the noise probability density function of (43) were
continuously updated. During construction of the voice inactive
regions in the final composite utterance, frames obtained from
the prior enhanced utterance customized for silence (i.e., )
were used. For the remaining regions comprising of sonorants
and obstruents, the MIXMAX weighting of (54) was used. The
gain functions derived in Section II are functions of a priori
SNR (12) and a posteriori SNR (25). In (12), since clean
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TABLE I
SEGMENTAL SNR AND ITAKURA–SAITO DISTORTION FOR SPEECH

DEGRADED BY FLN/LCR NOISE AT GLOBAL SNRS OF

�5, 0, 5, 10 dB. (a) FLN NOISE, (b) LCR NOISE

speech is unknown cannot be determined. Hence, we
adopt the “decision-directed” approach of [[11], (51)] to predict
the a priori SNR. Calculation of a posteriori SNR is straight
forward since it involves taking square of the magnitude of the
noisy speech in (25).

From this point onward, the following naming conventions
are used to identify the parametric estimators—GSS -uncon-
strained (GBU) (14), GSS -constrained (GBC) (19), WED
Chi (WC) (24), and JMAP Chi (JC) (39). Their corresponding
ROVER implementations are denoted by—ROVER GSS -un-
constrained (RGBU), ROVER GSS -constrained (RGBC),
ROVER WED Chi (RWC), and ROVER JMAP Chi (RJC).
Similarly, the baseline estimators are denoted by—GSS uncon-
strained (GU), GSS constrained (GC), MMSE, and JMAP. The
MATLAB programs in [31] were used to execute the MMSE
and JMAP algorithms.

The improvement in segmental SNR is a measure of increase
in SNR over noisy speech, whereas the IS improvement indicates
a decrease in IS distortion from noisy speech. These metrics can
be represented by

SegSNR Improve

SegSNR Enhanced SegSNR Noisy

IS Improve

IS Distortion Noisy IS Distortion Enhanced

(55)

Hence, in both metrics, the greater the improvement, the larger
the objective quality of speech. The segmental SNR and IS
distortion values of noisy speech in FLN and LCR noises at
global SNRs of 5, 0, 5, 10 dB are given in Table I(a) and (b),
respectively.

A. Performance Across Phoneme Classes: ROVER Versus
Parametric Estimators Using Best Configurable Parameters

A comparison of the improvement metrics defined in (55)
for ROVER enhancement versus its corresponding parametric
and baseline estimators across different BPCs is tabulated in
Table II(a)–(d) for the case of speech degraded by FLN noise at
a global SNR of 0 dB. In addition, these tables include the values

of the tunable parameters used in the parametric estimators of
GBU, GBC, WC, JC to generate the best objective quality for a
particular BPC. The tunable parameters used in the algorithms
are indicated as . A “-” in place of a tunable parameter
indicates that the corresponding parameter is not applicable for
that estimator. The subscripts—S(sonorants), O(obstruents),
N(silence), Ovl(overall)—denote that the parameters
were tuned to generate the best enhancement quality for a
single BPC while overlooking the quality of all other BPCs.
For example, in Table II(a), the improvement in segmental SNR
of sonorants for (4.58) is better than

(2.61), (2.39),
or (2.61). However, the quality of
other BPCs in (i.e., obstruents and
silence) is compromised at the expense of generating the best
quality of sonorants. It can be inferred that the segmental SNR
of sonorants enhanced by is 4.73 since
segmental SNR of sonorants degraded in FLN noise at 0-dB
SNR is 0.15 [from Table I(a)] and segmental SNR improvement
is 4.58 [from Table II(a)]. The three prior enhanced utterances
used in ROVER enhancement algorithms do not use the same
parameters as those in the best BPC specific configurations. The
enhancement parameters used for RGBC, RGBU, RWC, and
RJC are shown in Table III. These parameters are used for the
remaining experiments discussed in the paper. The parameters
used for the DFT WED Gamma estimator are given separately
in Section IV-C.

In Table II(a), the segmental SNR improvement for sono-
rants in , obstruents in , silence regions in ,
and overall in are greater than those for baseline

. However, none of the ,
or configurations provide improved levels of enhance-
ment across all BPCs. and perform well in
obstruents and silence regions, but the segmental SNR of their
sonorants is lower by approximately 2 dB versus the baseline
MMSE estimator. Similarly, obstruents and silence regions
in are lower than those in by about 4 dB and
9 dB, respectively. This is most likely the cause for a lower im-
provement in segmental SNR in the overall utterance of
(4.55) compared to (5.35), (5.27), or
(5.35). However, in RWC, all BPCs are jointly enhanced versus
MMSE, or any BPC specific enhancement configuration (i.e.,

), or even . It is noted that the
score for sonorants in RWC (4.51) is marginally greater than

(4.47) and marginally lower than
(4.58). Similarly, the score of obstruents in RWC (8.52)

is smaller than obstruents in (9.16) by 0.64 dB, and the
score of silence regions in RWC (6.79) is smaller than silence
regions in (9.89) by 3.1 dB. In general, the objective
quality of a BPC in ROVER enhancement may undergo some
distortion when compared to the same BPC in its BPC specific
best enhancement configuration. However, when all BPCs are
jointly considered, ROVER is expected to achieve the best
overall score for the utterance. A similar effect can be observed
in the IS distortions in Table II(a). The IS improvement for
the overall utterance in RWC (4.62) is marginally greater than

(4.57), and (4.59), and marginally lower than
(4.70). Similarly, overall IS improvements for RJC
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TABLE II
SEGMENTAL SNR AND ITAKURA–SAITO IMPROVEMENT ACROSS BPCS CORRUPTED BY FLN NOISE AT SNR OF 0 dB FOR BASELINE VERSUS

PARAMETRIC (USING BEST CONFIGURABLE PARAMETERS PER BPC) VERSUS ROVER ALGORITHMS. (a) MMSE VERSUS WC VERSUS RWC,
(b) JMAP VERSUS JC VERSUS RJC, (c) GU VERSUS GBU VERSUS RGBU, (d) GC VERSUS GBC VERSUS RGBC

TABLE III
ENHANCEMENT PARAMETERS USED IN DIFFERENT ROVER ALGORITHMS

(4.46) in Table II(b) and RGBC (4.12) in Table II(d) undergo a
marginal degradation in the range 0.06–0.08 compared to
(4.54) and (4.18) respectively. This might prompt us
to choose the Ovl configuration over ROVER. However, there
are two drawbacks to note. First, the tunable parameters for

vary across a wide range of SNRs and
noise types. This requires an exhaustive search over to
find the Ovl parameters which makes it practically infeasible to
implement in real-time scenarios (it is noted that this would be

acceptable for offline enhancement processing). Second, it is
not warranted that the parameters used in the Ovl configuration
will always increase objective quality over all BPCs up to the
levels achieved in ROVER. From our experiments, we found
this to be true during segmental SNR evaluations of the overall
utterance in Table II(a)–(d) where RWC/RJC/RGBU/RGBC
always outperformed ,
respectively.

B. Performance Across Phoneme Classes: Rover Versus
Baseline Estimators

Segmental SNR and IS distortion performance at global
SNRs of 5, 0, 5, and 10 dB are plotted across all baseline
algorithms and their corresponding ROVER based versions in
Figs. 3–6. In Fig. 3(a) and (b), segmental SNR improvement
is evaluated for speech degraded by FLN noise. To gauge
which ROVER algorithm had the greatest improvement over
its corresponding baseline, we calculated the difference in
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Fig. 3. Segmental SNR improvement of various BPCs in FLN noise for
ROVER versus baseline enhancement algorithms.

segmental SNR improvements of ROVER versions over their
matching baselines. In the subplot for sonorants, all ROVER
based algorithms perform better than their corresponding base-
line algorithms at global SNRs of 5, 0, and 5 dB with the
largest improvements observed for RGBU over GU. However,
at global SNR of 10 dB, the baselines performed better than
the corresponding ROVERs. The minimum loss in segmental
SNR of the ROVER algorithm over its corresponding baseline
was 0.21 dB for RGBU and the maximum was 0.64 dB for
RWC. Comparing across all the ROVER algorithms at an SNR
of 10 dB, RGBC had the greatest improvement in segmental
SNR. In the subplots for obstruents and silence, the ROVER
algorithms consistently outperform their baseline counterparts
across all SNRs with RJC demonstrating the greatest increase
in segmental SNR. In the overall case, RJC at SNRs of 5,
0, and 5 dB and RGBU at an SNR of 10 dB are the best
performers. Comparing ROVER versions versus corresponding
baselines, it was observed that RGBU had the highest rise in
segmental SNR over GU, followed by RWC over MMSE, RJC
over JMAP, and RGBC over GC.

In Fig. 4(a) and (b), segmental SNR improvement is eval-
uated for speech degraded by LCR noise. For the case of

Fig. 4. Segmental SNR improvement of various BPCs in LCR noise for
ROVER versus baseline enhancement algorithms.

sonorants, at global SNR of 5 dB, RJC had the greatest seg-
mental SNR increase and marginally (approximately 0.1 dB)
higher than RGBC. At 0-dB SNR, RGBC had the highest
segmental SNR. At higher SNRs, GC and GU exhibited the
best performances. Therefore, similar to FLN for sonorants,
at higher SNRs, all baselines outperformed their ROVER
counterparts. The maximum degradation in segmental SNR in
ROVER algorithms was no more than 0.95 dB compared to
their baselines at high global SNRs of 5–10 dB. In the subplot
for obstruents and silence, all ROVER algorithms performed
significantly better than their baselines with RJC exhibiting
the greatest improvements. In the overall case, the behavior
was identical to those in the FLN case (i.e., RJC at SNRs of

5 dB to 5 dB, and RGBU at SNR of 10 dB were the best
performers). Also, comparing the ROVERs over their baselines
for the overall utterance, RJC had the greatest improvement
in segmental SNR over its baseline JMAP followed by RWC,
RGBU, and RGBC.

In Fig. 5(a) and (b), the IS improvement is evaluated for
speech degraded by FLN noise. In the subplot for sonorants,
RGBU demonstrated the highest reduction in IS distortion
across all global SNRs. In addition, all ROVER algorithms
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Fig. 5. Itakura–Saito improvement of various BPCs in FLN noise for ROVER
versus baseline enhancement algorithms.

outperformed their baselines. Similar to the results observed in
segmental SNR evaluations, RGBU/RGBC performed better
than RWC/RJC at higher global SNRs in sonorants. For ob-
struents, silence and overall cases, RGBU continued to have
the highest reduction in IS distortion. Again, comparing the
ROVERs over their baselines for the overall utterance, RGBU
demonstrated the highest improvement in IS scores over its
baseline GU followed by RWC, RJC, and RGBC.

In Fig. 6(a) and (b), IS improvement is evaluated for speech
degraded by LCR noise. In the subplot for sonorants, RGBC
demonstrated the highest reduction in IS distortion for all global
SNR whereas it was RGBU for obstruents and silence. In the
overall case, RGBU was the best performer. Comparing the
ROVERs over their baselines for the overall utterance, RGBU
demonstrated the highest improvement in IS scores over its
baseline GU, followed by RWC or RGBC, and finally RJC.
Ranks of RWC and RGBC were not consistent across SNRs.
The margin of improvement of RWC over MMSE was higher
at SNRs of 5 dB to 5 dB, whereas at 10 dB RGBC had a
higher margin.

Fig. 6. Itakura–Saito improvement of various BPCs in LCR noise for ROVER
versus baseline enhancement algorithms.

To summarize the results, the best and second best enhance-
ment algorithms for each BPC degraded by FLN and LCR
noises are outlined in Tables IV(a) and (b), respectively.

C. DFT Distortion Evaluation of the WED Gamma Estimator

The performance of the WED solution (34) of the two-sided
Gamma prior is explored in this section. Since (34) is opti-
mized based on the DFT coefficients, we evaluate its perfor-
mance using as the root mean square of the DFT dis-
tortion [[32], (27)] normalized to 100. For a given frame, this
can be represented as

(56)

where represents the frequency bin and the length of the
DFT of the frame. A lower indicates better enhancement.
The plot in Fig. 7 depicts the DFT distortion performance of the
overall utterance using the four best values of in (34). In
both noise types, the estimator with was the best
performer. This holds true for sonorants, obstruents, and silence.
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TABLE IV
TOP TWO ALGORITHMS ACROSS BPCS CORRUPTED BY FLN/LCR NOISE AT GLOBAL SNRS OF�5, 0, 5, 10 dB. BEST INDICATED BY 1ST IN FIRST ROW, SECOND

BEST INDICATED BY 2ND IN SECOND ROW. (a) FLN NOISE, (b) LCR NOISE

Fig. 7. DFT distortion performance of the overall utterance enhanced by DFT
WED Gamma estimator in FLN and LCR noises for different values of ��� ��
in the �-axis.

With , the WED solution (34) collapses to the spe-
cial case DFT MMSE estimator [21]. Intuitively, we expected
that lowering or would achieve better performance than
the special case estimator. However, such an estimator could
not be identified from our experiments. We evaluated perfor-
mance from other combinations of , but their performance
was worse than those shown in the plot. Since
is the best estimator for all BPCs over all noise types consid-
ered, it removes the need to improve it further using the ROVER
algorithm.

D. Listener Evaluations

A perceptual evaluation of the proposed enhancement al-
gorithms was performed using listener tests. A group of ten
listeners with normal hearing capabilities were asked to indicate
their preference in the paired-comparison (AB preference type)
tests. For each listener, a set of four sessions were conducted
with a total of eight paired-comparison tests per session. For
example, session 1 comprised of eight paired-comparison tests
using RWC versus MMSE. Hence, in each paired-compar-
ison test, enhanced speech obtained from the proposed RWC
algorithm was compared with the enhanced speech obtained
from the baseline MMSE algorithm. Similarly, other sessions

were grouped according to the enhancement algorithms as RJC
versus JMAP, RGBU versus GU, and RGBC versus GC. The
utterances were degraded using the FLN and LCR noises. The
order of the algorithms presented in the paired-comparison tests
was randomized to eliminate any biasing towards a particular
algorithm. Overall, in 75% of the cases, the listeners pre-
ferred the proposed ROVER based algorithms. The individual
breakdown per algorithm was 78% (RWC), 74% (RJC), 73%
(RGBU), and 73% (RGBC). The breakdown based on noise
type was 71% (FLN) and 78% (LCR). These results indicate
that the listeners demonstrated a stronger preference for the
ROVER based algorithms over the baselines across both the
noise types.

V. CONCLUSION

A ROVER-based speech enhancement algorithm was pro-
posed in this study to achieve improved enhancement at the
phoneme class level. This was accomplished in two stages. In
stage one, short-time spectral magnitude generalized spectral
subtraction -unconstrained and -constrained parametric
estimators were derived using coefficients that minimize the
weighted Euclidean distortion between the clean and estimated
speech spectral magnitudes. This idea was extended to the
minimum mean square error and joint maximum a posteriori
algorithms. Using super-Gaussian priors (Chi and two-sided
Gamma) to model the clean speech spectral magnitudes or
discrete Fourier transform coefficients, a class of Bayesian
spectral magnitude estimators were derived using the weighted
Euclidean distortion as an overall cost function. Furthermore,
the joint maximum a posteriori estimator with Chi distributed
clean speech spectral magnitude and uniform phase was also
proposed. The behavior of all five estimators were investigated
using a wide range of constrained configurable parameters over
two noise types and four SNR levels.

In the second stage, three prior enhanced utterances from
these parametric estimators, each customized for a specific
phoneme class, were generated. Using the mixture maximum
model, phoneme classification was performed using proba-
bilistic decisions and these decisions were used as weights
to combine the phoneme segments from the prior enhanced
utterances. This resulted in a composite utterance that produces
better levels of speech quality in all adverse conditions. This
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also confirms the versatility of the ROVER paradigm across
different enhancement algorithms.
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