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Abstract

Whispered speech is an alternative speech production mode from neutral speech, which is used by talkers intentionally in natural con-
versational scenarios to protect privacy and to avoid certain content from being overheard or made public. Due to the profound differ-
ences between whispered and neutral speech in vocal excitation and vocal tract function, the performance of automatic speaker
identification systems trained with neutral speech degrades significantly. In order to better understand these differences and to further
develop efficient model adaptation and feature compensation methods, this study first analyzes the speaker and phoneme dependency
of these differences by a maximum likelihood transformation estimation from neutral speech towards whispered speech. Based on anal-
ysis results, this study then considers a feature transformation method in the training phase that leads to a more robust speaker model for
speaker ID on whispered speech without using whispered adaptation data from test speakers. Three estimation methods that model the
transformation from neutral to whispered speech are applied, including convolutional transformation (ConvTran), constrained maxi-
mum likelihood linear regression (CMLLR), and factor analysis (FA). a speech mode independent (SMI) universal background model
(UBM) is trained using collected real neutral features and transformed pseudo-whisper features generated with the estimated transfor-
mation. Text-independent closed set speaker ID results using the UT-VocalEffort II corpus show performance improvement by using the
proposed training framework. The best performance of 88.87% is achieved by using the ConvTran model, which represents a relative
improvement of 46.26% compared to the 79.29% accuracy of the GMM-UBM baseline system. This result suggests that synthesizing
pseudo-whispered speaker and background training data with the ConvTran model results in improved speaker ID robustness to whis-
pered speech.
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1. Introduction

Whispered speech is a natural speech production mode,
employed in public situations in order to protect privacy
and to avoid certain content from being made public.
For example, a customer might whisper to provide infor-
mation regarding their date of birth, credit card informa-
tion, and billing address in order to make hotel, flight, or
car reservations through a machine interface over the tele-
phone, or a doctor might whisper when entering a voice
memo in order to discuss patient medical records in public.
Aphonic individuals, as well as those with low vocal
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capability, such as heavy smokers, also employ whisper as
a primary form of oral communication. In this study, the
term “neutral speech” refers to speech produced at rest in
a quiet sound-booth whose “voiced” phonemes, such as
sustained vowels, contain glottal based vocal fold move-
ment that represents periodic excitation.

There are significant differences between whisper and
neutral speech production mechanisms, which result in
the absence of voiced excitation, shifted formant locations
and change in formant band width (Ito et al., 2005; Zhang
and Hansen, 2007; Morris and Clements, 2002; Matsuda
and Kasuya, 1999; Jovicic, 1998). Zhang and Hansen
(2007) revealed that the change of vocal effort in test data
ranging from whisper through shouted has a significant
impact on automatic speaker identification (speaker ID)
performance, with whisper resulting in the most serious
loss in performance. Similar results were reported in other
studies on automatic speech recognition (Ito et al., 2005)
and speaker recognition (Jin et al., 2007) systems as well.

Past work on automatic speaker ID systems for whis-
pered speech can be grouped into two main categories:
front-end processing (Fan and Hansen, 2009; Fan and
Hansen, 2008) and back-end model adaptation (Jin et al.,
2007). Both methods have resulted in improvements in sys-
tem accuracy. However, new front-end processing methods
involve feature re-extraction and model re-training for neu-
tral speech, which increases computational requirements
and may hurt system performance on neutral test speech.
For back-end model adaptation, as in Jin et al. (2007), a
simple maximum a posteriori (MAP) adaptation of the ori-
ginal model trained with neutral speech can provide satis-
factory performance under the prerequisite of a fair
amount of speaker-dependent (SD) whispered adaptation
data. However, in real applications, whispered adaptation
data from test speakers is generally not available. Also,
while it is possible to collect additional whispered data
from other speakers, the fact that the total amount of real
whispered data is usually much smaller compared with the
available neutral data means that it is still very difficult to
train a speech mode independent (SMI) universal back-
ground model (UBM). Therefore, the focus of this study
is to explore efficient model training techniques that rely
solely on a limited set of whisper data from non-target

speakers for modeling whispered speech. In this study,
non-target speakers are those speakers whose speech is
not seen in the test set for closed-set speaker ID.

A similar strategy was first considered by Bou-Ghazale
and Hansen (1998), where HMMs were used to statistically
model characteristics needed for generating pitch contour
and spectral slope patterns in order to modify the speaking
style from neutral to stressed speech. In this study, the sta-
tistical information contained in a UBM trained with
whispered data set collected from non-target speakers is
employed for a transformation estimation to generate
whisper features from neutral data. The convectional
Mel-frequency cepstral coefficients (MFCCs) (Davis
and Mermelstein, 1980), which are employed for most
state-of-the-art speech systems, are used here as the
front-end features throughout this study and our compen-
sation is applied in the corresponding MFCC domain. The
generated whispered features will be referred as “pseudo-
whisper features” in the rest of this study.

Formulating a model training method for this task
requires understanding two critical facets of the problem.
One is the difference between whispered and neutral speech
in the resulting front-end feature domain. In particular, the
MFCCs represent information regarding the smoothed
spectral envelope in the Mel domain, hence, the differences
between whisper and neutral in the linear frequency
domain (Ito et al., 2005; Morris and Clements, 2002),
might be distorted and represented in a different way in
the Mel domain. The other facet is the consistency of the
differences among speakers and phonemes. For example,
if the spectral differences between whispered and neutral
speech are consistent across speakers, a transformation
estimated using whispered adaptation data from several
non-target speakers could be applied directly to all whis-
pered enrollment and test data for automatic speaker ID.
On the other hand, if spectral differences between whis-
pered and neutral speech are inconsistent across speakers
(i.e., the way someone “whisper” may be speaker depen-
dent), it is necessary to explore alternative methods that
could estimate the particulars of a given enrollment speak-
er’s whispered speech. If the spectral differences are pho-
neme or phoneme-class dependent, the problem will be
even more complex since a unique mapping will be needed
for each phoneme or phoneme-class. Past studies (Ito et al.,
2005; Jovicic, 1998; Matsuda and Kasuya, 1999; Eklund
and Traunmuller, 1996) provided comparison results for
the average differences between whispered and neutral
speech across phonemes in the linear frequency domain.
However, those studies have not examined individual
speaker differences in terms of the variations of those differ-
ences in the linear frequency or the Mel domain.

This study first compares the smoothed spectral enve-
lope of whispered and neutral speech using a maximum
likelihood transformation estimation. The dependence of
the estimated transformation on speakers and phonemes
is analyzed. Based on the analysis results, this study pro-
poses a method that models the differences between whis-
pered and neutral speech by a convolutional filter with
zero mean additive noise (ConvTran). The parameters of
the ConvTran transformation are estimated using a first
order vector Taylor series (VTS) approximation and the
expectation maximization (EM) algorithm. Pseudo-whis-
per features generated with the proposed ConvTran model
are used to train a SMI-UBM, which will include equal
amounts of neutral and pseudo-whispered speech. Also,
because the proposed method keeps some level of
speaker-dependent information in the resulting pseudo-
whisper features, after the SMI-UBM is trained, a speaker
dependent model can be further obtained by adaptation of
the SMI-UBM with both neutral and selected pseudo-whis-
per features. Constrained maximum likelihood linear
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regression (CMLLR) and factor analysis (FA) transforma-
tion models are also applied for the purpose of perfor-
mance comparison.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the production and acoustic characteris-
tics of whispered speech. Section 3 describes the
constructed corpus employed for acoustic analysis and
speaker ID. Section 4 introduces the transformation estima-
tion method based on VTS and EM algorithms. Section 5
discusses the analysis methods and results. Section 6
describes the speaker ID system and subsequent experimen-
tal results. Finally, Section 7 discusses the conclusions.

2. Whispered speech

In neutral speech, voiced phonemes are produced
through a periodic vibration of the vocal folds to produce
glottal air flow into the pharynx, oral cavities and nasal
cavities. However, for whispered speech, the vocal folds
remain open without vibration, resulting in a continuous
uninterrupted air stream with no periodic excitation. The
air flow from the lungs is used as the excitation sound
source, and the shape of the pharynx is adjusted such that
the vocal folds will not vibrate (Thomas, 1969; Gavidia-
Ceballos and Hansen, 1996; Meyer-Eppler, 1957). In order
to illustrate this, Fig. 1 shows the significant differences in
waveform and spectrogram characteristics of the speech
signal “Don’t do Charlie’s dirty dishes” from the same
speaker between neutral and whisper modes. Clearly, the
time waveform for whisper speech is significantly lower in
amplitude and the complete absence of voiced excitation
is obvious in both the whispered speech time waveform
and spectrogram. Other variations, such as duration differ-
ences, can be observed as well.
Fig. 1. Time domain waveforms and spectrogram of the speech signal “Don’t
whispered speech mode.
The differences in the speech production process
between whispered and neutral speech are reflected in the
following aspects in the spectral domain: first, there is no
periodic excitation or harmonic structure in whisper. Sec-
ond, the location of lower frequency formants in whispered
speech is generally shifted to higher frequencies compared
to neutral speech (Ito et al., 2005). Third, the spectral slope
of whispered speech is much flatter than that of neutral
speech, and the duration of whispered speech is longer than
that of neutral speech (Zhang and Hansen, 2007). Fourth,
the boundaries of vowel regions in the F1–F2 frequency
space also differ from neutral speech (Eklund and Traun-
muller, 1996; Kallail et al., 1984). Finally, whispered speech
has a much lower energy contour compared with the same
neutral speech sequence. Due to these differences, tradi-
tional neutral speech trained speaker ID systems degrade
significantly when tested with whispered speech. From a
physiological perspective, it is possible that an equivalent
“amount” of speaker dependent information as that seen
in neutral speech is present, but the resulting speech fea-
tures and speaker model are not capable of characterizing
this content. Alternatively, it is possible that the speaker
dependent information is actually lost or not conveyed
under whispered speech. If this is the case, it may not be
theoretically possible to achieve the same level of speaker
ID performance for whispered speech as that seen for neu-
tral speech.

3. Corpus description

In order to confirm the validity of the analysis results as
well as the effectiveness of the proposed system, this study
employs two corpora: UT-VocalEffort I and II for acoustic
analysis and speaker ID system development, respectively.
do Charlie’s dirty dishes” from the same speaker in (a,c) neutral and (b,d)
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The UT-VocalEffort I corpus (Zhang and Hansen, 2007)
supplies the whispered/neutral paired utterances used in
the acoustic analysis of this study. Ten male native
speakers of American English were recruited to speak ten
sentences drawn from the TIMIT database in both whisper
and neutral modes (Garofolo et al., 1993). This corpus has
the advantage that for phone level acoustic analysis, the
same phoneme context is provided across both speakers
as well as speech modes, and thus any dependency resulting
from different phoneme distributions is minimized.

For the development and evaluation of speaker ID sys-
tem for whispered speech, the UT-VocalEffort II corpus
developed in Zhang and Hansen (2009) is employed. This
corpus consists of a total of 112 speakers, 37 males and
75 females. Whispered and neutral speech from 28 native-
speaking American English female subjects are chosen for
the development of a closed-set speaker ID recognition sys-
tem. For simplicity, this set is referred as the NW28 set for
the remainder of this paper. In the NW28 set, each speaker
has an average 4.5 minutes neutral training data and an
average of 34 whispered test utterances ranging from 1 to
3 s. The neutral speech from NW28 set is used for GMM
training, and the whispered speech from NW28 is used as
test data for automatic speaker ID. Another 10 separate
female speakers’ (without overlap with NW28) whispered
speech are chosen as the development set and is referred
as the WH10 set. The UT-VocalEffort II corpus consists
of both read and spontaneous parts. In this study, only
the read part is considered. In the WH10 development
set, each speaker has an average of 1 min whispered data.
All utterances are entire utterances from the UTVocal
effort corpus instead of being segmented.

The whispered and neutral streams of all subjects were
manually separated to constitute the whisper and neutral
corpora. All recordings were obtained in an ASHA-certi-
fied single-walled soundbooth, using a Shure Beta 53
head-worn close talking microphone, and were digitized
and recorded using a Fostex 8 D824 channel synchronized
digital recorder at 44.1 kHz, with 16 bits per sample, and
down sampled to 16 kHz for this study. From Zhang and
Hansen (2009) and Zhang and Hansen (2007), we also note
that all recordings include a 1 kHz 75 dB pure-tone calibra-
tion test sequence to provide ground-truth on true vocal
effort for all speakers and sessions.

4. VTS based adaptation formulation

The VTS approximation based acoustic-model/feature
adaptation is previously proposed for joint compensation
of additive and convolutive distortions in robust speech rec-
ognition systems (Moreno et al., 1996; Deng et al., 2004; Li
et al., 2009). The strategy is applied here with modification
for the purpose of feature transformation estimation.
Before it is applied in our study for acoustic analysis and
automatic speaker ID in Sections 5 and 6, this section will
present a general description of the speech transformation
model, and the derivation for adaptation formulas of
Gaussian mixture models used in our VTS based adaptation
algorithm.
4.1. Speech transformation model

In the VTS expansion adaptation algorithm, the target
speech yðtÞ is assumed to be generated from the source
speech xðtÞ with a channel filter hðtÞ and noise nðtÞ accord-
ing to:

yðtÞ ¼ xðtÞ � hðtÞ þ nðtÞ: ð1Þ

For simplicity, we assume the cosine of the angle between
xðtÞ � hðtÞ and n(t) in frequency domain equals zero. Thus,
in the MFCC domain, the relationship between yðtÞ and
xðtÞ can be represented as:

y ¼ xþ hþ gðx; h; nÞ; ð2Þ
gðx; h; nÞ ¼ Clogð1þ expðC�1ðn� x� hÞÞÞ; ð3Þ

where C�1 is the pseudo-inverse DCT matrix and y; x; h; n
are the MFCCs for yðtÞ; xðtÞ; hðtÞ and nðtÞ respectively. In
this study, the noise n is assumed to be Gaussian distrib-
uted with zero mean ln and a diagonal covariance matrix
Rn. The channel filter h is assumed to be a fixed vector with
deterministic values that represents the shape of the
smoothed spectral envelope of hðtÞ. Assuming lx is the
mean of x and applying the first order VTS approximation
around the point (lx; lh; ln), we have

y � lx þ lh þ gðlx; lh; lnÞ þ Gðx� lxÞ þ Gðh� lhÞ
þ F ðn� lnÞ; ð4Þ

where,

@y
@x jlx;lh;ln

¼ @y
@h jlx ;lh;ln

¼ G
@y
@n jlx;lh;ln

¼ I � G ¼ F

G ¼ C � diag 1
1þexpðC�1ðln�lx�lhÞÞ

n o
� C�1;

ð5Þ

where diagfg stands for a diagonal matrix with its diagonal
component value equal to the value of the vector in the
argument. Taking the expectation and variance operations
of both sides of Eq. (4), the resulting static ly and Ry are
(noting that the filter h is a fixed vector):

ly � lx þ lh þ gðlx; lh; lnÞ;
Ry � GRxG

t þ F RnF t:
ð6Þ

For the dynamic feature vectors (delta and delta/delta
portions of MFCC features), the following hold Li et al.
(2009):

lDy � GlDx

lDDy � GlDDx

RDy � GRDxG
t þ F RnF t

RDDy � GRDDxG
t þ F RnF t:

ð7Þ
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Given that lsm
x is the mean of the mth Gaussian and Rsm

x

is the covariance matrix of the mth Gaussian in the sth
state from source speech x’s models (either GMMs or
HMMs), Eq. (6) and Eq. (7) can be employed for updating
the corresponding Gaussian pdf parameters.
Referring to Eq 5, compute the       and          
corresponding to each original neutral Gaussian pdf 

in the phone HMM by using the current      .

 Given the MFCC feature vectors of a particular 
phone in whispered speech, Obtain the 

corresponding             and                from the 
trained monophone neutral HMMs, Set the 

initialized        to be zero.

phone
en , ms

phone
en , ms

h

smGsmF

h

4.2. EM algorithm for estimation of parameters

The EM algorithm (Dempster et al., 1977; Li et al.,
2009) is applied to estimate lh. Given a target utterance
y, the EM auxiliary function is:

Qðkj�kÞ ¼
X

t

X
s;m

ctsm logðpðytjs;m; kÞÞ; ð8Þ

where pðytjs;m; kÞ � Nðyt; lx;sm;Rx;smÞ and ctsm is the poster-
ior probability of the mth Gaussian pdf in the sth state of
HMM for the tth frame in y.

In the M-step, we take the derivatives of Q with respect
to lh. The update formula for each lh is found by setting
the derivatives to zero:

lh ¼ lh;0 þ
X

t

X
s;m

ctsmGt
s;mR�1

x;smGs;m

( )�1

�
X

t

X
s;m

ctsmGt
s;mR�1

x;sm½yt � lx;sm � lh;0 � gðlx;sm;lx;sm;lnÞ�
( )

:

ð9Þ

The noise term n is assumed to be short-time stationary,
thus lDn ¼ 0 and lDDn ¼ 0. The Rn is updated as in Li et al.
(2009) using Newton’s method:

Rn ¼ Rn;0 �
@2Q

@2Rn

� ��1
@Q
@Rn

� �" #
: ð10Þ

For RDn and RDDn, a similarly derived update formula is em-
ployed. The next two sections will consider the application
of VTS adaptation in detail.
Record

Referring to Eq 9 and Eq 10, update the     ,       ,       
and         .

Referring to Eq 6 and Eq 7, update the parameters 
of the given phone HMM and compute the posterior 
probability        using forward-backward algorithm.tsm

n

n n

h

h

Decode the whispered phone with the updated 
HMMs and compute the likelihood.

Likelihood 
converge?

No

Yes

Fig. 2. VTS-based adaptation algorithm used in acoustic analysis.
5. Acoustic analysis for phoneme and speaker dependency

This section explores how the differences between whis-
pered and neutral speech depend on speakers and pho-
nemes. In particular, this section models the
transformation of neutral speech yneðtÞ towards whisper
xwhðtÞ using a linear time-invariant (LTI) filter h(t) plus a
noise term n(t) in the MFCC domain. The parameters of
h(t) in the cepstral domain are obtained using a first order
VTS approximation and the EM algorithm as described in
Section 4. This assumption serves as a first order approxi-
mation; therefore the model is limited in its power to cap-
ture detailed spectral structure change, but will capture
overall aspects of the differences between whispered and
neutral speech in smoothed spectral envelope. Also, due
to the introduction of convolution, the complexity of the
model to be estimated decreases significantly compared
with other cepstral domain linear regression, thus reducing
the chance of overfitting and resulting in an estimate close
to ground truth.
5.1. Experimental method

Let ywhðtÞ represent the target whispered MFCC feature
and xneðtÞ represent the source neutral MFCC feature. Next,
the speech transformation model described in Section 4.1
can be represented as:

ywh ¼ xne þ hþ gðxne; h; nÞ; ð11Þ
gðxne; h; nÞ ¼ C logð1þ expðC�1ðn� xne � hÞÞÞ: ð12Þ

In order to estimate h for separate phonemes and speakers,
the general VTS adaptation algorithm, described in Sec-
tion 4, is implemented as shown in Fig. 2. Note that we as-
sume h is deterministic, so lh simply equals to h

In this section, all speech is windowed with a Hamming
window of length 25 ms, with a 10 ms overlap. 13-dimen-
sional MFCCs, appended with their first- and second-order
time derivatives are used as acoustic features. Each HMM
is left-to-right with 3 states and 16 Gaussian mixtures per
state. In order to obtain reliable neutral HMMs used in
the first block in Fig. 2, the TIMIT corpus (Garofolo
et al., 1993) is employed to obtain an initial sets of HMMs.
Next, using the 10 neutral sentences from each speaker in
UT-VocalEffort I, speaker dependent neutral HMMs are



124 X. Fan, J.H.L. Hansen / Speech Communication 55 (2013) 119–134
adapted from the TIMIT HMMs using maximum likeli-
hood linear regression (MLLR).

From the obtained speaker dependent neutral HMMs,

lphone
ne;sm and Rphone

ne;sm in Fig. 2 are simply the mean and covari-

ance of the mth mixture Gaussian in the sth state. In order
to segment all whispered speech from UT-VocalEffort I
into phone level units, we adapt the TIMIT HMMs into
speaker-dependent whisper HMMs using the same whis-
pered data with transcription, and apply forced-alignment
to detect the phone boundaries. Next, given each whisper
phone from a particular speaker, we follow the steps in
Fig. 2 and estimate h from Eq. (11) using the neutral
HMM from the corresponding speaker/phone. To make
sure the speaker dependent neutral HMMs that provide

lphone
ne;sm and Rphone

ne;sm capture enough speaker information, only

phonemes with sufficient neutral adaptation data for
MLLR are considered, which results in a total of 32 mon-
ophones in our study.
5.2. Analysis results

After we estimate the parameter h for each whispered
phone occurrence in the UT-VocalEffort I corpus, it is con-
verted to the frequency domain by applying C�1, the
pseudo inverse of the DCT matrix, and is denoted as lH .
As an example of the resulting estimate, the left column
of Fig. 3 shows the means of lH for the whispered phoneme
/ih/, /n/, and /z/ for each speaker. To confirm the reliability
of our estimation methods and its implementation, we also
estimate the means of lH per speaker using the neutral pho-
nemes instead of whisper phonemes. The neutral phoneme
units used to obtain the right column of Fig. 3 are without
overlapping with the neutral adaptation data used for
obtaining speaker dependent neutral HMMs. The transfor-
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Fig. 3. Examples of the a
mations estimated on the right column are all near zero,
which indicates that the given neutral phoneme units are
similar to the data used to train the corresponding neutral
monophone HMMs. The left column of Fig. 3 shows that
for vowel /ih/ and nasal /n/, the transformation of neutral
speech into whisper includes compression of the energy of
the neutral speech especially below 2 kHz. For the voiced
fricative “z”, the transform is near zero, implying that the
neutral speech and the whispered speech are very similar
in the MFCC domain. The remaining sections will divide
the lh into vowels and consonants for separate analysis.
5.2.1. Results of the vowel analysis

Fisher’s discriminant power is used to analyze the
dependence of inter-speaker variation and inter-phone var-
iation. A greater magnitude of the discriminant power
implies better separation between the given clusters in the
sample space. Therefore, by comparing the Fisher’s dis-
criminant power relatively under different classification cri-
terions we can explore the dependency of the differences
between whispered and neutral speech on phonemes and
speakers.

Given K classes of lh that constitute the sample space
UK , there are K cluster means lh;k and K cluster diagonal
covariances matrix Rh;k, where 1 6 k 6 K. The mean of
the cluster means lh;k is denoted �lg. Assuming there are
W k samples in each class of lh;k, Fisher’s discrimination
power is defined as:

F ðlhÞ ¼
PK

k¼1W kðlh;k � �lgÞ
T ðlh;k � �lgÞ

trace
PK

k¼1Rh;k

� � : ð13Þ

The Fisher discrimination power F p is computed for all
speakers s, treating each phoneme p as a class. This mea-
sures the inter-phoneme variability of lh among all the
2000 4000 6000
Frequency/Hz

Neutral ih

2000 4000 6000
Frequency/Hz

Neutral n

2000 4000 6000
Frequency/Hz

Neutral z

Spkr1
Spkr2
Spkr3
Spkr4
Spkr5
Spkr6
Spkr7
Spkr8
Spkr9
Spkr10

verage estimated lH .
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speakers. The Fisher discrimination power F s is computed
for all the phonemes, treating each speaker s as a class. This
measures the inter-speaker variability of lh among all the
phonemes. The F p and F s is calculated and listed in Table 1.
A larger F p indicates a better separation of lH among pho-
nemes class, while a larger F s indicates a better separation
of lH among speakers.

To provide more detailed information, the frequency
range from 0 to 8 kHz is arbitrarily divided into 3 sub-
bands: S1(0–2700 Hz), S2(2700–4000 Hz), and S3(4000–
8000 Hz), representing approximately a phone dependent
frequency range, a speaker dependent frequency range,
and the remaining high frequency range. The subbands
lS1

h ; l
S2
h , and lS3

h can be obtained from lh through simple
linear algebra. Fisher’s discriminant power is also used to
separately analyze the dependence of each subband on
the inter-speaker variation F Sx

s and inter-phone variation
F Sx

p with results listed in Table 1.
Table 1 shows that the F Sx

s increases with increasing fre-
quency subband, while in comparison F Sx

p remains stable
with relatively small values. This suggests that the differ-
ences between whispered vowels and neutral vowels are
similar across the frequency range given a specific speaker.
At lower frequencies, F S1

p and F S1
s shares similar values,

which indicates the differences are somewhat phoneme
dependent and somewhat speaker dependent. With an
Table 1
Fisher’s discrimination power in discriminating vowels
and discriminating speakers, for fullband S and subbands
S1, S2 and S3.

Subband F Sx
p F Sx

s

S (fullband) 71.0 168.6
S1 82.7 85.3
S2 47.1 206.8
S3 48.0 447.3
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Fig. 4. Examples of c0 (energy), c1 (first order of MFCC) and c2 (second
order of MFCC) for three speakers under whisper speech model using
same phoneme content.
increase in frequency, the phoneme-dependency is lost
while the speaker-dependency difference strongly remains
and increases significantly.

Fig. 4 confirms the above observation, where the first
three orders of MFCC: c0, c1 and c2 of all lh estimated
from vowels for three distinct speakers are plotted respec-
tively. The three colors represent each of the three speakers
and each color covers all seen vowel phonemes from the
corresponding speaker. This figure shows that lh is clearly
more speaker dependent than phoneme dependent because
of the obvious separation of lh among the three speakers.
Fig. 5 also confirms the same conclusion, where the average
lh for each speaker in the corpus for the vowels /ax/, /ih/
and /uw/ are plotted. The figure shows that the lh is gener-
ally speaker dependent, especially in higher frequencies,
while there are slight variations in the lower frequencies.
The observations in Fig. 5 confirm results of the statistical
analysis in the fullband and subband with Fisher’s discrim-
ination power.

5.2.2. Results from consonant analysis

For the following analysis, all consonants are grouped
into five categories due to their different production mech-
anism: (1) Unvoiced consonants (UVC), which include
unvoiced stops, affricates, and fricatives, (2) Voiced conso-
nants from stops, affricates, and fricatives (VC) that can be
mapped to the unvoiced consonants, (3) Nasals, (4) Liquids
and (5) Glides. In order to analyze the impact of the
absence of voiced excitation on consonants, the spectral tilt
of the neutral-whisper transfer function lH is measured
using a first order linear regression of
lH ¼ a½log frequency� þ b, where a represents the spectral
tilt of the estimated lH . Fig. 6 shows that a and b are
around zero for UVC and VC, which suggests that UVC
and VC share a similar spectral tilt change in the smoothed
spectral envelope, despite the absence of voiced excitation
in whispered VC. However, we can observe from Fig. 6
that the values of a and b for nasals, glides and liquids
are much larger, which suggests that the spectral tilt of
nasals, glides, and liquids undergoes a greater change from
neutral to whisper than that seen for UVC and VC.

In order to investigate the speaker and phoneme depen-

dency of lh for consonants, F sðlS;S1;S2;S3
h Þ and F pðlS;S1;S2;S3

h Þ
are calculated in the same way as that used for the analysis
of the vowels. Considering the similarity between whis-
pered speech and neutral speech for the production of
stops, fricatives and affricates, only liquids, glides, and
nasals are considered in this part of the experiment. Table 2
lists the Fisher discrimination power, which shows that lh

is highly phoneme dependent in the lower frequency range.
This result is consistent with a and b in Fig. 6. Also, lh

becomes more speaker dependent with increase in fre-
quency band, similar to that seen for vowels.

Results from this analysis on the whisper/neutral differ-
ence dependency for phonemes and speakers suggest that
for vowels, the difference between whispered and neutral
speech is generally more consistent across speakers than
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Table 2
Fisher’s discrimination power in discriminating conso-
nants, and discriminating speakers, for fullband S, and
subband S1, S2 and S3.

Subband F Sx
p F Sx

s

S (full band) 151.2 60.8
S1 210.5 33.5
S2 83.6 70.5
S3 76.2 137.2
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phonemes, especially beyond 3 kHz. The results also sug-
gest that the differences between whispered and neutral
speech are somehow less pattern tractable below 2700 Hz.
However, consonants are similar between whispered and
neutral speech given the same speaker with the exception
of liquid, glides and nasals. Considering the fact that
voiced and unvoiced fricatives, affricatives and stops con-
stitute the majority of consonants, our speaker ID system,
which is introduced in the next section, only considers a
specific compensation for the whisper vowels.
6. Speaker ID system

6.1. Methodology

The specific speaker ID task for whispered speech in this
study assumes the absence of whispered adaptation data
from target speakers and the availability of a small amount
of whispered adaptation data from non-target speakers.
However, results from Section 5 suggest that the difference
between whispered and neutral speech is generally speaker
dependent for vowels. This suggests that the direct estima-
tion of a transformation given the target speakers whose
whispered speech is not accessible is very challenging. This
study avoids this test-phase estimation. Instead, we pro-
pose an estimation method to generate the pseudo-whisper
features from neutral training features.

Given a small amount of whispered speech from non-

target speakers, a speaker-independent whisper UBM can
be trained. The goal here is to generate a pseudo-whisper
feature corresponding to each given neutral feature using
this whisper UBM. In this way, equal amounts of “whis-
pered” and neutral data can be used to train a SMI-
UBM. In Section 5.2, the statistical analysis shows that
the difference between whispered and neutral vowels is gen-
erally speaker dependent. Therefore, given a neutral utter-
ance from one speaker containing only vowels, we can use
a global transformation to map the neutral features to
whisper features for this speaker. The observations in Sec-
tion 5.2 also suggest that the difference between whispered
and neutral speech is similar across different phoneme con-
texts for vowels, therefore, the whisper UBM employed in
this session is a GMM instead of HMM in Section 5.

This section considers three transformation formula-
tions that model the difference between the neutral features
and the whisper features: ConvTran, MLLR, and factor
analysis (FA). In the ConvTran model, the whisper feature
is assumed to be obtained by passing the neutral feature
through a linear filter with additive noise in time domain,
therefore the relation between whisperer and neutral fea-
tures is non-linear in the MFCC domain as shown in Eq.
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(2). The MLLR model, however, uses a linear transforma-
tion estimated at the maximum likelihood point to simulate
the difference between whispered and neutral MFCC fea-
tures. MLLR has been employed in many past studies for
voice conversion (Dempster et al., 1977; Ye and Young,
2006) and adaptive training for speech recognition (Degu-
chi et al., 2010). It is also used in this study as a comparison
to the ConvTran and FA model. In particular, we use the
same affine transformation parameters to capture both the
mean and the covariance differences between whisper and
neutral speech as in constrained MLLR (CMLLR) (Degu-
chi et al., 2010). In the FA model, the principle components
of the differences between whispered and neutral speech are
extracted by projecting this difference on a pre-trained low-
dimensional total variability space (Kenny et al., 2007).
Compared to the CMLLR model, the ConvTran and FA
models are have fewer parameters. However, the FA model
requires training the low-dimensional total variability
space that captures the variance of the difference between
whisper and neutral features, while the ConvTran parame-
ters are estimated for each utterance.

The above three modeling methods are essentially simi-
lar transformation estimation problems with different
transformation formulations, where the transformation
parameters are estimated iteratively with the expectation–
maximization (EM) algorithm. The left side of Fig. 7 shows
the general steps to obtain the final estimated transforma-
tion. After the transformation is obtained, the compensa-
tion will be conducted on the original neutral feature to
obtain the pseudo-whisper feature. Eventually, both the
neutral features and the pseudo-whisper features will be
used to train a speech mode independent UBM as shown
on the right side of Fig. 7. Details on the system framework
will be included in Section 6.2.
6.1.1. ConvTran model

The ConvTran model employed in this section is essen-
tially the same as the one employed in Section 5.2, but
Obtaining neutral utterance 
vowel, whispered vowel UBM and 

initialize the transformation 

Update the transformation 
estimation 
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Collect statistics (Calculate 
posterior probability) 
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EM 

Estimated transformation 

Fig. 7. Transformation estimation a
instead of estimating h given whisper features and a neutral
HMM, here we will estimate h using neutral features and a
whisper UBM. Therefore, the parameter update formulas
based on the EM algorithm as described in Section 4 will
be also employed here. Specifically, the whisper feature is
assumed to be obtained by passing the neutral features
through a linear filter with additive noise. This assumption
is valid because only the smoothed spectral envelope is con-
sidered here. In the MFCC domain, this relationship can
be presented as follows:

yne ¼ xwh þ hþ gðxwh; h; nÞ; ð14Þ
gðxwh; h; nÞ ¼ C logð1þ expðC�1ðn� xwh � hÞÞÞ: ð15Þ

The above model is chosen for two reasons. First, due to
the introduction of nonlinearity, the complexity of the
parameters to be estimated decreases significantly, thus
reducing the chance of overfitting given the limited
amounts of adaptation data, as well as increasing the speed
of adaptation. Second, considering that the differences be-
tween whispered and neutral vowels in the spectral enve-
lope are mostly caused by formant and slope shifting,
this model provides a reasonable way to capture aspects
of the smoothed spectral envelope differences between
whispered and neutral speech in the MFCC domain. After
h is estimated, under the assumption of zero mean additive
noise, a pseudo-whisper feature given the neutral feature
can be obtained through:

^xwh;t � yne;t � h: ð16Þ

In order to estimate h given the feature stream of a neu-
tral utterance and a whisper UBM, the general VTS adap-
tation algorithm described in Section 4 is implemented as in
Fig. 8.

In addition to the estimation model in Eq. (14), the imple-
mentation in this section differs from that in Section 5.1 as
follows: only GMMs are considered here, which makes
the calculation of ct;m faster. Also, due to the duration differ-
ence between whispered and neutral speech, it is observed
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Fig. 8. Implementation of VTS adaptation algorithm for generating
pseudo-whisper features.
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that appending the delta coefficients will degrade perfor-
mance, and thus only static features are considered here.
6.1.2. CMLLR model
Maximum likelihood linear transformation has been

employed in Ye and Young (2006) for the purpose of voice
conversion and in Deguchi et al. (2010) for compensation
of acoustic differences introduced by various recording
conditions in body-conducted speech conversation. As a
common algorithm to model the mismatch introduced by
speaker, background noise, or channel differences through
a linear regression, it is also employed in this study as a
comparison to the method described in Section 6.1.1. In
the CMLLR context, the differences between whisper
MFCC feature xwh and neutral features yne are modeled
as an affine transformation ðA; bÞ as follow:

yne ¼ Axwh � b: ð17Þ

Given Eq. (17), the relation between the mean and covari-
ance of xwh and yne can be represented as:

lne ¼ Alwh � b; ð18Þ
Rne ¼ ARwhAT : ð19Þ

By using the EM algorithm to iteratively maximize an aux-
iliary function, an estimation of A and b at the maximum
likelihood point can be obtained (Gales, 1998). The pseu-
do-whisper feature can thus be obtained through:

x̂wh ¼ A�1yne þ A�1b: ð20Þ
Assuming that the dimension of the feature vector is M,
there will be a total of M ðMþ 1Þ parameters to be esti-
mated. Therefore, to avoid the problem of overfitting, un-
like estimating a transformation at utterance level as in the
ConvTran model, a CMLLR is performed to obtain an
estimation of A and b at speaker level, where all neutral
utterances from a given speaker will be used to obtain a
single global transformation. Compared with the Conv-
Tran method in Section 6.1.1, the CMLLR method has
the advantage that multiple transformations can be easily
incorporated using methods such as regression class trees
in order to capture the variability of the mismatch. How-
ever, because the acoustic analysis in Section 5 showed that
the difference between whispered and neutral speech is gen-
erally speaker dependent, one global transformation is used
for each speaker.

6.1.3. Factor analysis model

State-of-the-art performance in speaker ID is typically
achieved with factor analysis (Kenny et al., 2007; Dehak
et al., 2009; Lei and Hansen, 2009). In these systems, the
speaker/channel variability is modeled through a low
dimensional subspace. Most factor analysis based frame-
works for speaker ID, including joint factor analysis
(JFA) (Kenny et al., 2007) and total variability modeling
(TVM) (Dehak et al., 2009), are based on probabilistic
principle component analysis (PPCA) (Tipping and
Bishop, 1999), where the principal eigenvectors are esti-
mated with a finite set of speakers/channel training data.
This approach supports estimation of eigenvectors from a
relatively smaller training set (Kenny et al., 2005). In Sec-
tion 6.1.1 and Section 6.1.2, the difference between whis-
pered and neutral features was modeled with a
convolutional filter and an affine transformation. In this
section, the difference between whispered and neutral
speech is projected onto a low dimensional subspace using
factor analysis. The projection result is a latent vector used
in an estimate of pseudo-whispered data.

In the context of FA, we use a similar modeling strategy
as the TVM (Dehak et al., 2009). Instead of using a rectan-
gular matrix T of low rank to capture the variability of
speakers and channels, this study uses T to model the prin-
ciple subspace for speakers and speech mode changes. In
particular, the whisper UBM is represented by a supervec-
tor, which is simply the concatenation of the mean vectors
given all mixtures of the UBM. A latent vector x represents
the projection of a given neutral utterance on the subspace
T. Since the transformation is estimated in the supervector
domain, a neutral utterance is represented by a supervector
Mne as:

Mne ¼ mwh þ Tx; ð21Þ

where mwh is the speaker-independent whisper supervector,
T is the total variability space and x is a random vector
having a standard normal distribution Nð0; IÞ. This model
can be seen as a projection of the difference between speak-
er-independent whispered and speaker-dependent neutral
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speech into a low-dimensional total variability space.
Therefore, the distribution of Mne given x can be seen as
Nðmwh; TT tÞ.

Unlike the ConvTran model, where the value of h needs
to be estimated, or the CMLLR model, where a linear
transformation matrix needs to be estimated, in FA model,
we will obtain the subspace T first on a development set. In
this study, we employ 1 h neutral data from 20 female
speakers in UT-VocalEffort II corpus without overlap with
the NW28 set as the development set for T. Using this
development set together with the same whisper UBM used
in ConvTran and CMLLR, we use the EM algorithm to
obtain the subspace T in the same way as in Dehak et al.
(2009).

Next, given each neutral utterance in the training set and
the obtained T, we will estimate the projection x and even-
tually obtain the pseudo-whisper features. The estimation
of x also follows Dehak et al. (2009) by using the EM algo-
rithm. After we obtain the x, the pseudo-whisper vector is
obtained by:

x ^wh;t ¼
XM�1

k¼0

ct;kðMne � T xÞk; ð22Þ

where ct;k is the posterior probability for the kth whispered
UBM Gaussian mixture and ðMne � TxÞk represents the
kth mixture components in the supervector. In this study,
the dimension of the latent factor is 5.
6.2. System

6.2.1. Baseline

As described in Section 3, the WH10 data set is used to
train the whispered UBM in order to generate pseudo-
whispered data. The NW28 set is used to train and test
the speaker ID system. The feature parameters used in this
study are 19-dimensional static Mel-frequency cepstral
coefficients (MFCCs). All silence parts for whispered and
neutral speech systems are first removed using a dynamic
energy threshold that depends on the SNR of each partic-
ular sentence block sequence. The analysis frame length is
25 ms, with a 10 ms frame shift. For the baseline system,
Fig. 9. Framework for ba
models for each speaker are obtained via MAP adaptation
of a 64 mixture neutral UBM trained with an average of
4.5 min of neutral data per speaker from the set NW28.
Fig. 9 shows the procedures for training/testing the base-
line model. The whispered UBM for ConvTran, CMLLR
and FA transformation trained using whisper data in the
set WH10 has a fixed mixture size of 16.
6.2.2. ConvTran/CMLLR/FA based system

The model training procedures when ConvTran/
CMLLR/FA models are incorporated are shown in
Fig. 10. Given every neutral utterance, we will extract the
vowel part, which will be used together with the whisper
UBM to generate the pseudo-whisper features as described
in Section 6.1. After we obtain the corresponding pseudo-
whisper features for all given neutral features, we will fur-
ther train a SMI-UBM. With this system, we can either use
only neutral data to adapt this SMI-UBM as we do in the
baseline system, or we can select some data from the
pseudo-whisper feature pool and use them to adapt the
SMI-UBM together with neutral data. The feature selec-
tion process is discussed in detail later in this section.

The vowel/consonant detection used to extract neutral
vowels is implemented using two GMMs trained with neu-
tral vowels and consonants respectively, where the vowels
and consonants are obtained by using forced-alignment
on TIMIT database. Given neutral speech data, each frame
is tested against these two GMMs and tagged as the class
that achieves the higher likelihood. Hence, for each neutral
utterance, a neutral vowels set can be obtained and the
ConvTran/CMLLR/FA based feature compensation will
be only conducted on these neutral vowels.

Fig. 11a shows the log Mel power spectra versus time of
a neutral utterance with all consonants and silence
removed, since the compensation is only conducted on
the vowel part of neutral features in our study. Fig. 11
shows the resulting pseudo-whisper log Mel power spectra
via (b) ConvTran, (c) CMLLR and (d) FA model respec-
tively. The log Mel power spectra of the real whispered
vowels sequence (with consonants and silence removed)
from the same speaker is shown in Fig. 12 for comparison.
They are the same vowels in a different phoneme context.
seline training/testing.



Fig. 10. System flow diagram for training GMMs.

Fig. 11. (a) Is the log Mel power spectra of a neutral utterance with consonants (fricatives, affricatives, stops) removed, (b) is the corresponding pseudo-
whispered log Mel power spectra obtained using ConvTran model, (c) is the corresponding pseudo-whispered log Mel power spectra obtained using
CMLLR model and (d) is the corresponding pseudo-whispered log Mel power spectra obtained using FA model. (Note: 100 frames correspond to features
for 1 second of speech duration with silence and consonant frames removed.)
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Fig. 12 shows that, compared to CMLLR and FA, the
pseudo-whisper features obtained from ConvTran model
provide greater similarity to real whisper. For
example, the energy below 1000 Hz is better suppressed.



Fig. 12. Log Mel power spectra of some whispered vowels from the same speaker as in Fig. 11a.

Table 3
KL divergence between UBMs trained with different vowels.

KLD real
NE

real
WH

ConvTran
WH

CMLLR
WH

FA
WH

real WH 12.1 0 0.4 1.6 2.4
real NE 0 12.1 8.6 4.6 6.5
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Components above 4000 Hz are properly emphasized. The
bandwidth of formants in higher frequencies are increased.
These differences were also observed in Ito et al. (2005)
when comparing the acoustic properties of real whispered
and neutral speech.

In order to quantitatively and statistically measure the
distances among pseudo-whisper features, original neutral
features, and real whisper features, the Kullback Leibler
(KL) divergence (Kullback et al., 1968) is applied to com-
pare the distance of UBMs trained with different sets of
features. The asymmetric property of the KL divergence
is resolved by taking the mean of DðPkQÞ and DðQkPÞ. A
smaller value of KL divergence indicates two similar prob-
ability distribution. UBMs considered here include: one
UBM trained with real whispered data from the NW28
set; one UBM trained with real neutral data from the
NW28 set, and three UBMs trained with pseudo-whispered
data generated from neutral data in the NW28 set through
ConvTran, CMLLR, and FA model, respectively. Table 3
lists results. Compared to CMLLR and FA, the UBMs
obtained through ConvTran pseudo-whisper features
shows a closer distance (0.4) to UBMs trained with real
whisper features and a farther distance (8.6) to UBMs
trained with real neutral features. The results quantitatively
confirm the observation in Fig. 11 and show that the
pseudo-whisper in fact moves toward whispered speech.

After pseudo-whispered vowels are generated through
ConvTran/CMLLR/FA, equal amounts of neutral and
pseudo-whispered vowels are available for model training.
In order to balance the distribution of phonemes, the neu-
tral consonants from the vowel/consonant detection are
also used to train the SMI-UBM model. The complexity
of the UBM is also doubled to 128 mixtures to account
for the increased diversity of training data.

The purpose of the feature selection procedure in Fig. 10
is to select pseudo-whisper features that are similar to the
real whispered data for subsequent MAP adaptation. The
candidates for feature selection are obtained from the
pseudo-whispered vowels generated from the same speaker.
For example, in order to obtain the GMM for Speaker 1,
feature selection only considers the pseudo-whispered vow-
els obtained from Speaker 1’s neutral data. The criterion of
selection is the correctness of recognition by the neutral
trained GMMs. For example, given two pseudo-whispered
vowels from Speaker 1: whA and whB, they will be tested
against the GMMs obtained from MAP adaptation using
only neutral data. If whA is recognized as Speaker 2 and
whB is recognized as Speaker 1, whB will be selected for
MAP adaptation to obtain Speaker 1’s GMM. If none of
the pseudo-whispered vowels are correctly recognized,
those that achieve the highest rank will be chosen. The
available amount of pseudo-whispered adaptation data is
also under the constraint that the average must be equal
among all the speakers. This prevents the amount of adap-
tion data for any given speaker from being much greater
than any other. This study uses on average 5–10 s
pseudo-whispered data per each speaker in the adaptation
step.

A minimum mean square error (MMSE) criterion
between the pseudo-whispered vowels and the conditional
expectation of it given the neutral model was also
considered. However, this criterion resulted in poorer
overall performance, and hence will not be discussed here.
For simplicity, feature selection will be referred to as FS for
the remainder of this study.
6.2.3. Experimental results

Given the proposed ConvTran/CMLLR/FA based
training procedure, the testing phase employs the same
procedure as that used for the baseline system. A total of
961 whispered utterances from the NW28 set are employed
for recognition. Table 4 summarizes the data used for
UBM training and MAP adaptation in all systems. Ceps-
tral mean normalization (CMN) is a simple method for
suppressing microphone and channel effects, so it is also
employed for comparison. However, the resulting accuracy
is only 23.93%.

Fig. 13 shows that the baseline system provides an accu-
racy of 79.29% (i.e., speaker ID models trained with neutral
speech; all test data are whispered speech). When we use



Table 4
Data for training UBM and speaker dependent GMM. NE represents neutral speech; WH represents whispered speech; FS represents feature selection.
The corpus name in the bracket after NE or WH indicates where are the whispered and neutral data from.

System/data Training data for UBM Adaptation data for MAP

Baseline NE(NW28) NE(NW28)
Whispered UBM NE(NW28) + WH(WH10) NE(NW28)
CMLLR wo FS NE(NW28) + pseudo WH NE(NW28)
FA wo FS NE(NW28) + pseudo WH NE(NW28)
ConvTran wo FS NE(NW28) + pseudo WH NE(NW28)
CMLLR with FS NE(NW28) + pseudo WH NE(NW28) + pseudo WH (5–10 s/spkr)
FA with FS NE(NW28) + pseudo WH NE(NW28) + pseudo WH (5–10 s/spkr)
ConvTran wth FS NE(NW28) + pseudo WH NE(NW28) + pseudo WH (5–10 s/spkr)
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Fig. 13. Recognition results for closed set speaker ID using whispered test data, where speaker ID models are either trained with neutral,
neutral + whisper, or neutral + various pseudo-whisper schemes.
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half of the neutral data from the NW28 set to train the
speaker ID model, and another half of the neutral data
from the NW28 set to test the obtained model, an accuracy
of 99.06% is achieved. The results confirm the degradation
in speaker ID performance caused by the whisper/neutral
mismatched training/testing condition. When we combine
all the whispered data from the WH10 set with all the neu-
tral speech from NW28 to train a UBM using only neutral
data for MAP adaptation, a performance of 81.48% is
obtained. This result suggests that if some whispered data
is incorporated in training the UBM, even if the whispered
speech is not from the “target” speakers, some level of whis-
pered speech style is captured to improve the performance.

When all pseudo-whispered data obtained from the (i)
ConvTran, (ii) CMLLR or (iii) FA models is employed
to train the SMI-UBM along with the available neutral
speech, a closed-set speaker ID performance of 85.43%,
82.10% and 82.62% is obtained respectively. As described
in Section 6.1, in the ConvTran model, the estimation is
obtained at the utterance level where each neutral vowel
stream contains about 3–10 s data. In CMLLR model,
we estimate an affine transformation per speaker using all
neutral data from the speaker. Thus in the NW28 set, there
are a total of 28 transformations needed to be obtained,
where each speaker has an average of 3 min neutral vowel
data. In the FA model, the transformation is represented as
x in Eq. (22) and the estimation is obtained at the utter-
ance level as the same as the ConvTran model.

Although, the model complexity for the FA model at the
estimation step is also small compared with the CMLLR
model, the FA model requires a fair amount of data in
order to obtain a valid low dimensional subspace at the
training steps. The ConvTran model does not require any
data for pre-training.

When combined with feature selection, the highest per-
formance of 88.87% is achieved with the ConvTran model
using 5–10 s of pseudo-whispered data selected for each
speaker as described in Section 6.2. This represents a signif-
icant relative improvement of +46.6% in closed-set speaker
recognition accuracy and demonstrates the effectiveness of
the feature selection strategy. The system based on Conv-
Tran outperforms both the FA and CMLLR systems,
which indicates that the generated pseudo-whispered fea-
tures from the ConvTran model keep more speaker-depen-
dent information than those generated from FA and
CMLLR.

We used the model from ConvTran pseudo-whisper
with 88.87% accuracy to test 953 neutral utterances not
seen from the training phase. An accuracy of 99.37% is
achieved in this case, which demonstrates that the pro-
posed technique does not reduce system performance on
neutral speech.
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7. Conclusion

The goal of this study has been to develop a robust
speaker ID system which can provide sustained perfor-
mance for whispered speech in the absence of any
speaker-dependent whispered adaptation data. An acoustic
analysis was conducted first in order to develop an efficient
model training/adaptation method and those analysis
results suggested that the difference between whispered
and neutral speech is generally consistent across speakers,
especially beyond 4 kHz. Shifts in spectral tilt due to whis-
per of consonants were shown to differ across five conso-
nant categories. It was also observed that the differences
between whispered and neutral speech focus on liquids,
glides, and nasals.

Based on results from the acoustic analysis, a new sys-
tem framework was proposed that resulted in a speech
mode independent model without the requirement of a par-
allel data collection for whispered and neutral speech.
Three transformation models were employed in this study,
including ConvTran, CMLLR, and FA, where the Conv-
Tran model provided an overall better quality of pseudo-
whispered features based on KL divergence measurement.
With the highest closed-set speaker ID accuracy of
88.87%, a relative improvement of 46.6% was achieved.
The proposed system also retains the neutral test data per-
formance with an 99.37% accuracy, and retains the conven-
tional test procedure for speaker recognition systems. Thus
no additional data processing or calculation is required
during the test phase.

A similar method can be helpful for speech transforma-
tion from whispered speech to neutral speech as well, which
is usually implemented by using a codebook. The study has
therefore offered a viable approach for closed-set speaker
ID of whispered speech when whispered training data is
not available for the target speaker set, and a possible
method to balance model training when insufficient data
is available under specific speaking conditions.
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