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Abstract

This study addresses the problem of identifying in-set versus out-of-set speakers in noise for limited train/test durations in situations
where rapid detection and tracking is required. The objective is to form a decision as to whether the current input speaker is accepted as a
member of an enrolled in-set group or rejected as an outside speaker. A new scoring algorithm that combines log likelihood scores across
an energy-frequency grid is developed where high-energy speaker dependent frames are fused with weighted scores from low-energy noise
dependent frames. By leveraging the balance between the speaker versus background noise environment, it is possible to realize an
improvement in overall equal error rate performance. Using speakers from the TIMIT database with 5 s of train and 2 s of test, the aver-
age optimum relative EER performance improvement for the proposed full selective leveraging approach is +31.6%. The optimum rel-
ative EER performance improvement using 10 s of NIST SRE-2008 is +10.8% using the proposed approach. The results confirm that for
situations in which the background environment type remains constant between train and test, an in-set/out-of-set speaker recognition
system that takes advantage of information gathered from the environmental noise can be formulated which realizes significant improve-
ment when only extremely limited amounts of train/test data is available.
� 2013 Elsevier B.V. All rights reserved.
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1. Introduction

In-set/out-of-set speaker recognition systems are useful
for situations where it is important to detect and track
the presence of speakers in a group. Examples of speech
systems that benefit from in-set/out-of-set recognition
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include dialog systems, communications systems, spoken
document retrieval, and security applications that allow
access of private information for only people belonging
to a specific group of authorized users (Angkititrakul and
Hansen, 2007; Hansen et al., 2005; Prakash and Hansen,
2007; Suh and Hansen, 2012). The objective of an in-set/
out-of-set speaker recognition system is to make a decision
as to whether to accept the claim that the current input
speaker is a legitimate member of the enrolled in-set group,
or to reject the claim and classify the speaker as an outside
speaker.

There are two aspects related to the formulation of the
problem in this study. First, the ability to leverage speaker
versus environment knowledge is employed, and for the
second, the ability to determine if an input speaker is a
member of an “in-set” versus “out-of-set” group. It is
important to differentiate this problem from other research
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tasks consider in the field for speaker recognition such as
those considered in the NIST SRE (Speaker Recognition
Evaluation). In this study, the following research assump-
tions are made:

� Only a limited amount of training data is available for
each speaker (i.e., approximately 5 s of training data
per speaker).
� It is not necessary to specifically identify who is speaker;

only if the input speaker is part of the “in-set” group,
and if not, set that speaker aside as being a member of
the “out-of-set” group.
� Only a limited amount of test data is available for each

input speaker (i.e., 2 s for any test set speaker).
� While all speaker recognition solutions capitalize on set-

ting aside silence, noise and non-speech/speaker related
input sample data, this study instead seeks to leverage
the knowledge of the particular environment the speaker
is in while producing speech. Since this study allows for
only 5 s of train, and 2 s of test data, the task of In-Set/
Out-of-Set Speaker ID is very challenging, and therefore
we assume (i) there is no mismatch in terms of micro-
phone or communications handset, and (ii) that the sub-
ject remains in the same acoustic environment between
train and test. This second assumption is deemed both
acceptable and common in cases where communications
takes place between subjects communicating between
each other in mobile environments and within a short
time window (i.e., drivers in various consumer, commer-
cial or military vehicles talking with each other).

Fig. 1 illustrates the two main issues for this study. In
Fig. 1, the difference between speaker recognition and com-
bined speaker/environment recognition is shown. Here, we
choose to capitalize on the fact that the speaker is not likely
Fig. 1. Speaker recognition in n
to change vehicles in a mobile context within a short time
window (i.e., within seconds or minutes from the audio
stream), and therefore it is possible to reduce speaker iden-
tification (ID) confusion since the probability that confus-
able speakers are also in the same or confusable noise
environments is lower. Therefore, when speakers are
clearly separable for speaker ID, the in-set/out-of-set
speaker recognition system could simply emphasize the
log likelihood score of speaker ID. If there is uncertainty
in the decision, combining the scores from both speaker
space and environment space would improve performance.
This is because, as shown in Fig. 1, that speakers are not as
likely to be in the same environment space and be confus-
able at the same time. We recognize there are many other
challenges associated with effective speaker recognition,
and that these are all important. However, in this study,
the focus is exclusively limited to (i) small train/test data
sets where (ii) it is acceptable to take advantage of the
acoustic environmental space in making a final output deci-
sion for in-set/out-of-set speaker recognition.

The area of speaker recognition has seen significant
research efforts in recent years. The U.S. NIST SRE has
resulted in numerous submissions from across the U.S.
and the world (50 groups participated in 2010) (National
Institute of Standards and Technology, 2009). In addition,
effort has also been made in addressing robustness for
speaker identification due to channel, noise, and speaker
variability, including features (Shao et al., 2007), modeling
(Rose et al., 1994), and normalization (Z-, T-, H-norm)
(Ariyaeeinia et al., 2006; Auckenthaler et al., 2000). How-
ever, with respect to the NIST SRE, the tasks in 2006,
2008, 2010 have all focused on noise free data with only
(i) handset, (ii) microphone, and (iii) communication chan-
nel variability. Speaker variability such as stress, task, etc.
has not been consider nor has emotion. An effort was made
oise free/noisy environment.
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to consider high and low vocal effort in low, but this por-
tion lacked the structure necessary to investigating of vocal
effort whisper, soft, loud, shout.

The evaluation of in-set speaker recognition is based on
two error measurements. The first, false rejection (FR),
occurs when a member of the enrolled in-set group is
rejected and classified as belonging to the out-of-set group;
the second, false acceptance (FA), occurs when an outside
speaker is accepted as being part of the in-set group. One of
the main challenges for this type of system is effective rejec-
tion of outliers, while allowing speech production variabil-
ity for the in-set speakers, such as interspeaker variations at
the segmental level (Doddington, 1985). For this study,
modeling is performed with what has become the dominant
approach in text-independent speaker recognition: Gauss-
ian Mixture Models (GMMs) with a UBM and maximum
a posteriori (MAP) speaker adaptation (Prakash and Han-
sen, 2007; Reynolds et al., 2000; Xiang and Berger, 2003).
Basic in-set/out-of-set speaker recognition is performed as
follows: a speaker-independent universal background
model (UBM) is generated from an available set of non-
target speakers, using the expectation–maximization
(EM) algorithm. For a speaker model Kn and D-dimen-
sional observation vector xt, the probability density func-
tion (pdf) of an M-component Gaussian is:

pðxtjKnÞ ¼
XM

m¼1

xnmNnmðxtÞ; ð1Þ

where xnm is the mixture weight of the mth component uni-
modal Gaussian density NnmðxtÞ. This Gaussian density is
assumed to have a mean vector lnm and diagonal covari-
ance matrix Rnm,

NnmðxtÞ ¼
1

ð2pÞ
D
2 jRnmj

1
2

e�
1
2ðxt�lnmÞ

T R�1
nm ðxt�lnmÞ: ð2Þ

Speaker dependent GMMs are then trained for all target in-
set speakers by MAP adaptation of the UBM parameters
x0m; l0m;R0m. This adaptation process is employed due to
its ability to cope with extremely limited data (�5 s) (Prak-
ash and Hansen, 2007). Based on experimental results, the
best performance is achieved using only mean adaptation.
The mean l̂nm of the mth component of Kn is updated via

l̂nm ¼
gm

gm þ c
EmðXnÞ þ

c
gm þ c

lnm; ð3Þ

where c is relevance factor, retained for all baseline settings
in our experiments, that controls the adaptation balance
between UBM parameters and training observations. Fi-
nally, gm and EmðXnÞ can be computed as,

P ðmjxntÞ ¼
xnmNnmðxntÞPM
j¼1xnjNnjðxntÞ

; ð4Þ

gm ¼
XT n

t¼1

P ðmjxntÞ; ð5Þ
EmðXnÞ ¼
1

gm

XT n

t¼1

P ðmjxntÞ � xnt: ð6Þ

The speaker-dependent model obtained from the MAP-
adapted UBM serves two purposes: (i) it provides a tighter
coupling between the speaker specific models and the
UBM, and (ii) it helps to mitigate the problem of sparse-
ness that results from limited enrollment data.

When a test speaker is submitted to the system, two
alternate Mel Frequency Cepstral Coefficient (MFCC)
parameterizations are used, one for each of two databases:
TIMIT (Garofolo et al., 1993) and NIST SRE-2008
(National Institute of Standards and Technology, 2008).
For evaluations involving TIMIT, a 19-dimensional static
MFCC feature is used with a frame size of 30 ms and skip
rate of 10 ms. For evaluations involving NIST SRE data,
19-dimensional static and dynamic (Mþ MM) MFCCs with
log energy are used with a frame size of 25 ms and frame
skip rate of 10 ms. During testing, the extracted MFCCs
for the input speaker are tested against each of the in-set
speaker models, as well as the UBM. The model with the
highest probability is selected as the input speaker. There-
fore, for an in-set size of N speakers, the input speaker has
a total of Nþ 1 possible classifications, consisting of any
one of the N in-set speakers, or the UBM. If any of the
in-set speakers is selected, the input speaker’s claim is
accepted; otherwise, the UBM has the highest probability
and the claim is rejected. The fundamental idea explored
here is that for extremely small train/test size data sets
can knowledge of the background acoustic environment
classification aid in improving in-set/out-of-set speaker rec-
ognition? Therefore, for this study, it is assumed and exper-
imented that the speaker remains to the same environment.

This study is organized as follows. In Section 2, the cor-
pus and background noise types used are discussed. Sec-
tion 3 considers both noise and in-set/out-of-set speaker
recognition. Section 4 presents the proposed new approach
which incorporates models across an energy-frequency grid
to obtain information from both high-energy speaker
dependent frames and low-energy noise dependent frames,
and reports on a series of experimental results for an initial
version of the approach. Section 5 presents the foundation
and results of the complete selective based speaker/envi-
ronment leveraging system. Finally, conclusions and dis-
cussion for future work are presented in Section 6.

2. Corpus and noise types

In this study, evaluations are performed using both the
TIMIT corpus and NIST SRE-2008 corpus. For the in-
set/out-of-set scenario, there are 60 total speakers, divided
into 15 in-set speakers and 45 out-of-set speakers. The
short duration of train and test data is required for rapid
enrollment and detection of speakers. The sparse data
causes the acoustic mismatch in train and test data (Prak-
ash and Hansen, 2007; Suh and Hansen, 2012), and this
study focuses on sparse data problem in noisy background.



Table 1
Summary of noise sources. Stationarity is from 1 (stationary) to 10 (non-
stationary).

Noise type Stationarity Noise group

FLN 1 Broadband
HEL 3 Low frequency band
LCI 3 Time varying colored
LCR 5 Time varying colored
SUN 1 Low frequency
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The sparse train (5 s) and test data (2 s) case are very spe-
cific sparse data problem, and the various data size of
sparse train and test experiments were studied in previous
study (Suh and Hansen, 2012).

For TIMIT evaluations, the training data is 5 s in dura-
tion and test data is 2 s in duration. System evaluations are
also performed on the 5 min core condition of NIST SRE-
2008. The 5 min core condition audio segments are reduced
to 10 s duration. It is important to note that for TIMIT
speaker data is collected in controlled, prompted read,
noise-free conditions with a fixed Shure SMIOA head-
worn microphone. However, for NIST SRE-2008 data,
alternative handsets (landline, cordless, cellphone) as well
as microphones are employed. Also, SRE-2008 has multi-
ple languages, as well as language mismatch where a speak-
er’s training data can be in one language, and their test
data in a different language. Finally, NIST SRE-2008 data
is essentially noise-free, so some form of controlled distor-
tion needs to be introduced. Therefore, these two corpora
represent two diverse data sets which can illustrate the
potential impact of leveraging speaker/environment spaces
for speaker recognition.

Two different noise data sets were used in this study. The
first set, referred to as ‘diverse’ set, consists of five noise
types that can be distinctly separated by a human listener.
These noise include: (1) a flat communications channel
(FLN), (2) a helicopter fly-by (HEL), (3) a large city
(LCI), (4) a large crowd (LCR), and (5) the cooling fan
of a Sun 4/330 workstation (SUN). These noise types were
subjectively scored for their stationarity based on first and
second moment analysis on a scale of 1 (wide sense station-
ary) to 10 (nonstationary) for robust speech recognition
using the constrained iterative Auto-LSP enhancement
(Hansen and Arslan, 1995). These noise types can also be
classified based on their frequency characteristics, as sum-
marized in Table 1.

The second set of noise, (which is referred to as the
‘vehicle’ set), consists of recordings from inside six different
types of vehicles. These include (all models manufactured
by General Motors Corporation): (1) Chevy Blazer
(BLA) SUV, (2) 4-door passenger Cavalier (CAV) car,
(3) an Express (EXP) delivery cargo van, (4) an S10 (S10)
compact 2-door pickup truck, (5) a Silverado (SIL) full-size
truck, and (6) a Venture (VEN) passenger minivan. Each
vehicle noise has eight different sessions. For example,
the Silverado has 65 miles per hour (mph) windows-closed,
65 mph windows-open-one-inch, 20–45 mph window-
down-one-inch, 20–45 mph windows-closed, 20–45 mph
windows-open-halfway, turn signals, idle, accelerate, and
these sessions apply to other vehicle noises. Train and test
data set are degraded with various noise sessions, and the
noise audio never overlaps between train and test data. A
more detailed acoustic analysis of the noise for these vehi-
cle types can be found in the study by Hansen (2004). Sep-
arate samples of each vehicle noise were used to degrade
speakers for train, development, and test, to ensure open
segment time variability. All noise files for both noise sets
were sampled at 8 kHz and added to the clean TIMIT
and SRE 2008 speech at 5 dB SNR.

In order to obtain an objective measurement of the dif-
ference/separability of the noise types, the Kullback–Lei-
bler (KL) divergence measure was utilized to help
quantify the information for discriminating between
speaker models. We can estimate the difference between
two GMMs using the symmetric KL divergence, which is
defined as the sum of the relative entropy between a model
pair according to Ben and Bimbot (2003) and Ang-
kititrakul and Hansen (2004):

KLðKi;KjÞ ¼ EKi log
Ki

Kj

� �
þ EKj log

Kj

Ki

� �
; ð7Þ

where Ki and Kj are the speaker model. The individual
divergence is computed as Do (2003),

EKi log
Ki

Kj

� �
¼ 1

2
log

detðRiÞ
detðRjÞ

� dimðRiÞ þ trðR�1
j RiÞ

�

þðli � ljÞ
tR�1

j ðli � ljÞ
i
: ð8Þ

Table 2 summarizes the resulting log KL divergences for the
two sets of noise types used in our experiments. From Table 2,
the average “self” log KL divergence is 1.94 (i.e., averaging
along the diagonal in bold values), while the average “mis-
match” noise distance is 4.12 (i.e., average of all noise-pairs
consisting of off-diagonal terms). This table therefore allows
us to assess the relative separation of one noise type to another.
The individual mismatches within the vehicle set are much
closer than that from the diverse noise set.

The key result therefore obtained from the KL diver-
gences is the average distance from a noise type belonging
to one set to an alternative noise type, from either set. For
matched comparisons, the average log KL divergence is
shown to be 1.92 for the diverse noise set and 1.96 for
the vehicle noise set. The mismatched average log KL
divergence results are summarized in Table 3 (i.e., the
diverse–diverse average distortion of �5.31 represents the
average of all non-diagonal entries in the upper-left 5� 5
matrix of Table 2).

These results indicate that while the vehicle noise types
are clustered closely together, the diverse noise types are
relatively far apart from both the vehicle and other diverse
noises themselves. Therefore, one might expect that an
algorithm which utilizes information from the background
environment of a speaker would have an easier time iden-
tifying speakers with noise types from the diverse set, while



Table 2
Summary of KL divergences between noise trained GMMs.

Noise Diverse set Vehicle set

FLN HEL LCI LCR SUN BLA CAV EXP S10 SIL VEN

FLN �1.68 �5.52 �5.50 �6.96 �5.71 �5.19 �4.89 �4.89 �5.04 �4.69 �5.11
HEL �4.88 �2.00 �4.87 �5.04 �4.82 �4.09 �4.01 �4.02 �4.30 �3.88 �4.29
LCI �6.00 �5.68 �1.96 �5.28 �4.53 �3.48 �3.31 �4.15 �3.80 �3.79 �3.44
LCR �6.10 �5.43 �4.77 �2.03 �5.53 �4.38 �4.48 �4.14 �4.49 �4.31 �4.56
SUN �7.04 �5.79 �5.05 �6.75 �1.95 �4.41 �4.99 �4.59 �4.65 �4.79 �4.70

BLA �4.80 �4.41 �3.31 �4.45 �3.75 �1.92 �2.81 �3.00 �2.83 �3.03 �2.85
CAV �4.64 �4.16 �3.13 �4.40 �4.02 �2.74 �1.98 �2.97 �2.90 �2.93 �2.74
EXP �4.61 �4.20 �3.85 �4.23 �3.86 �3.00 �3.08 �1.97 �2.96 �2.97 �2.85
S10 �4.72 �4.63 �3.56 �4.52 �3.87 �2.81 �2.95 �2.93 �1.96 �2.90 �3.05
SIL �4.36 �3.97 �3.46 �4.19 �3.92 �2.94 �2.93 �2.90 �2.87 �1.95 �2.95
VEN �4.82 �4.51 �3.20 �4.40 �3.82 �2.77 �2.74 �2.78 �3.00 �2.93 �1.97
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noise types belonging to the vehicle set might produce less
potential performance gain since the noise types are closer
acoustically. However, there are still distinct differences
between the vehicle noises that allow for acoustic model
separation.

In this phase, an analysis of vehicle noise effects is per-
formed using a comparison between clean and vehicle noise
speech. A total of 20 speakers are randomly selected from
the TIMIT corpus, with 10 sentences from each speaker
used for analysis. In this scenario, 10 speakers are selected
as the target speaker set, and the other 10 speakers become
the non-target speaker set. A single vehicle noise is added
to each of the target speaker group, and the other five vehi-
cle noises are randomly added to the non-target speaker
group (i.e., a single noise type selected from the set of five,
and added to a single non-target speaker). Based on the
transcribed phone information, the same phonemes are
selected from all the speakers. The purpose of this analysis
is to compare the inter-speaker differences between clean
and vehicle noise speech. To investigate this, we can reduce
the potential diversity of the speaker traits by comparing
them at the phoneme level. The average log power spectral
density (PSD) is computed on each phoneme token, and
the PSD of the phoneme from the target and non-target
groups is measured by KL divergence. The KL divergence
is measured here in the frequency domain since we wish to
emphasize the discriminating acoustic speaker space, so the
simplified version of the KL from Logan et al. (2001) is
used here,

KLðPSDi;PSDjÞ ¼
Ri

Rj
þ Rj

Ri
þ ðli � ljÞ

2 � 1

Ri
þ 1

Rj

� �
: ð9Þ

The phoneme distance using the KL divergence is a mea-
sure of inter-speaker distance between clean and noisy con-
Table 3
Average mismatch in log KL divergence results.

Noise set Diverse Vehicle

Diverse �5.31 �4.36
Vehicle �4.13 �2.90
ditions. The results of the divergence measurements are
shown in Table 4. The selected phonemes are produced
more than 5 times for each speaker so as to capture general
speaker variability and reduce phoneme context dependen-
cies. When it comes to KL difference between clean and
noisy conditions, the average KL difference of phonemes
from the low energy phoneme group is larger than from
a high energy phoneme group. This means that the low en-
ergy phoneme group provides useful information when
comparing clean and noise conditions although this pho-
neme group has generally been set aside and considered
unreliable for traditional clean speaker recognition applica-
tions. The largest KL difference occurs in the silence part
containing vehicle information.

3. Noise and in-set/out-of-set speaker recognition

While most in-set/out-of-set speaker recognition systems
(Angkititrakul and Hansen, 2007; Prakash and Hansen,
2007; Angkititrakul and Hansen, 2004; Suh and Hansen,
2012) work reasonably well under clean conditions, the
introduction of noise corruption causes a significant
change in performance and thus degrades the equal error
rate of the system. Numerous techniques have been sug-
gested for general speaker recognition as a means to sup-
press noise from the speech signal in order to decrease
system error; these include spectral subtraction and quan-
tile-based noise reduction (Stahl et al., 2000). Recently, sev-
eral studies have considered using the noise context as an
information source for which the system can adapt its deci-
sions. Akbacak and Hansen (2007) proposed the frame-
work of “Environmental Sniffing” which can detect,
classify, and track acoustical environmental structure in
order to seek out detailed information that characterizes
these conditions and use that knowledge to direct the pro-
cessing of speech systems. In another example, Müller con-
sidered estimating the acoustic context in order to
determine whether or not certain acoustic classifiers would
be reliable for speaker classification (Müller et al., 2005;
Müller, 2007). Müller compare the various classifiers such
as Gaussian Mixture Model (GMM), Support Vector



Table 4
Log power spectrum KL divergence measure comparison between clean and noise condition for energy based.

Phone Class Phoneme Number of Phonemes KL in clean KL in noisy KL difference Avg. Total avg.

Low energy phonemes Stops t 140 277 301 24 27 17
k 159 275 328 53
q 150 281 285 4

Fricatives s 307 309 309 0 7
sh 157 308 291 �11
f 115 276 315 35

High energy phonemes Nasals m 169 279 308 29 13 15
n 289 284 281 �3

Semivowels glide l 270 299 284 �15 26
r 292 266 286 20
w 121 294 366 72

Vowels iy 272 283 291 8 5
ih 221 286 293 7
eh 154 275 287 12
ey 123 283 287 4
ae 178 281 280 �1
aa 137 280 294 14
ah 100 300 315 15
ao 113 309 304 �5
ax 159 283 286 3
ix 361 272 273 1
axr 143 285 287 2

Silence h# 400 265 350 85 85 85
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Machine (SVM), and Neural Network (NN) to extract the
context information integrating into speaker recognition.

For the purposes of this study, we assume that the back-
ground environment is the same for a particular speaker
between train and test. This assumption allows for the
use of noise as an aid in the successful acceptance or rejec-
tion of an input speaker for in-set/out-of-set speaker recog-
nition. While this assumption cannot be made for every
speaker recognition scenario, there are many applications
in which it applies. In the case where the rapid detection
and tracking of speakers in a relatively short time period
is necessary, generally the speaker will be in the same envi-
ronmental context (i.e., seconds).

There are many applications where rapid detection and
tracking of speakers over audio streams is necessary, such
as spoken document retrieval, real-time voice dialog, or
monitoring pilots during air traffic control. For example,
consider the tracking of various TV anchors and corre-
spondents reporting the news. The main anchors will be,
with a high degree of certainty, reporting from within the
studio, and thus a noise model based on the background
acoustics of the studio should be seen both during the
training and test phases. Likewise, the traffic correspondent
reporting from a helicopter will always have the helicopter
as his or her environmental context. Another scenario
where this assumption holds is for monitoring and tracking
of commercial communications at airports involving
ground and air units. Commercial aircraft communications
will have pilots in the same aircraft during take-off, taxi
(moving on the ground), and landing. The pilot will have
a distinctive noise environment when compared to the dri-
ver of a baggage transportation vehicle or an air traffic con-
troller. Furthermore, it is highly unlikely that these
speakers would switch environments during a restricted
time period, since the probability of an individual such as
a pilot also being an operator of a ground transport vehicle
can safely be assumed to be very small.

It is important to note that the background noise infor-
mation is not the main focus of an in-set/out-of-set speaker
recognition system; but rather, the noise context plays a
role since that knowledge can be used to augment the
speaker-dependent information the system already employs
as a basis for its decision.

4. Leveraged approach: SPKR + ENV

The new approach proposed in this study is to increase per-
formance of in-set/out-of-set speaker recognition by taking
advantage of the assumption that a given speaker will remain
in the same noise environment between train and test phases.
With this scenario as our foundation, we choose to not sup-
press or ignore the background acoustics, but instead embrace
this as potential knowledge which could further improve
speaker recognition performance in noisy conditions.

The ‘standard’ input frame selection method used as our
baseline is one in which an energy threshold is applied to
the speech waveform; frames with an energy above the
threshold are used to train a GMM for the enrolled speak-
ers, while frames with energy lower than the threshold are
set aside. For clean speech, this baseline system produces
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an EER of 5.00%. The new method developed here
employs an energy-frequency grid to tag input frames. In
the simplest case, low energy frames (separated from high
energy frames by an energy threshold k) are used to train
a separate GMM which represents the noise or silence con-
tent, with some low energy consonant information (see
Fig. 2). When an input speech signal is submitted, the sys-
tem evaluates the log likelihood frame scores associated
with both in-set and out-of-set cases for both high energy
and low energy GMMs. Next, a weight (b) is applied to
the low energy scores and used to combine with those from
the high energy GMM to create an overall leveraged
(SPKR + ENV) score. The final decision is based on these
scores and EER performance is calculated. The system is
then enhanced by considering a generalization where the
frame scheme grid consists of both energy and frequency.

Speaker recognition systems generally set aside low
energy frames, since they normally contain low-energy con-
sonants or silence which are prone to noise. Since our
method for in-set/out-of-set speaker recognition considers
very small amounts of train (5 s) and test (2 s) data, setting
aside any data could lower performance in noise scenarios.
Therefore, the proposed method assumes that high energy
frames have speaker dependent phonemic content with
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Fig. 2. Leveraged (SPKR + ENV) system appro
some background environmental structure, and low energy
frames which are expected to have primarily environmental
content with some speaker dependent consonant informa-
tion. We employ an in-set framework similar to our earlier
work (Angkititrakul and Hansen, 2007), where the speaker
size is 60, with a 15/45 in-set/out-of-set size. By varying the
weight value b (see Fig. 2), it is possible to control the
emphasis placed on low energy environmental centric ver-
sus high energy speaker centric scores.

The results reported in this section are based on a sim-
plified version of the algorithm that does not yet employ
frequency analysis/filtering (Section 5 introduces the fre-
quency analysis/filtering phase).

4.1. Evaluation: diverse noise set results

In order to provide a comparative analysis of the bene-
fits of the new (SPKR + ENV) leverage approach, several
test sets were randomly created with an equal number of
each of the five noise types from the diverse noise set.
For the 60 speakers, each of the five noise types were used
for a random set of 12 speakers, and the speakers that com-
prised a certain noise type were kept constant between train
and test. The same 15 speakers were chosen as the in-set
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Table 5
System comparison for EER and variance for diverse noise set.

k ¼ 0:3 k ¼ 0:1

Avg. EER Variance Avg. EER Variance

Baseline 9.31 9.85 9.31 9.85
Average SPKR + ENV 6.78 0.51 6.73 0.53
Optimum SPKR + ENV 5.28 0.97 5.7 0.93
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speakers for all tests, and eight random noise combinations
were used to allow for a more comprehensive evaluation
within the in-set scenario.

Once the test sets were constructed, the traditional base-
line method which sets aside low energy frames was
employed for in-set/out-of-set speaker recognition, yielding
an average EER of 9.31% using TIMIT and the 5-type
diverse noise set. The baseline method sets the fixed energy
threshold with k ¼ 0:3 for diverse noise set. Next, the sim-
plest case of the leveraged (SPKR + ENV) approach (no
frequency partitioning) was employed, with k ¼ 0:3 and
with b values ranging from 0.05 to 1.00 (note: k and b terms
are shown in the processing blocks of Fig. 2). It is noted
that with b 2 ð0:05$ 1:00Þ, the log likelihood scores from
the GMM trained on low energy frames are counted at
most as equal to the scores from the high energy frames
(b ¼ 1:0), with a minimum weight of 5% (b ¼ 0:05).

For example, if b ¼ 0:50, and assuming S1 and S2 are the
high energy and low energy scores, respectively, then the
final log likelihood score result is S1 þ ð0:50ÞS2. Thus, the
high energy scores comprise 1

1:5
, or 2=3 of the final score,

while the low energy score comprises 0:5
1:5

, or 1=3 of the final
score. This also allows the researcher/developer to under-
stand from where the most salient/consistent speaker con-
tent is located.

The average results from this method (the average of the
EERs for each possible b value) results in an EER of 6.78%,
with an average relative performance gain of +27.2%. For
each of the evaluation sets, the optimum performance occurs
when b ¼ 0:65, with an average EER of 5.28%. These results
indicate that for the optimum tested value of b, the absolute
improvement (decrease in EER) was 4.03%, with a relative
improvement of +43.3%. Additionally, we see that the opti-
mum performance of the SPKR + ENV algorithm
approaches that of the clean baseline.

The evaluation process was also performed using an
energy threshold of k ¼ 0:1. Using this threshold, the result-
ing average EER is 6.73%, which corresponds to an average
relative performance gain of 27.7%. Using the optimum
tested value of b, the EER decreases to 5.70%, resulting in
an absolute improvement of 3.61%, with a relative improve-
ment of +38.8%. Therefore, while still yielding improved
performance over the baseline method, the improvement
obtained with an energy threshold of k ¼ 0:1 was less than
that seen when the frame energy threshold is set to k ¼ 0:3.
The results of the k ¼ 0:3 and k ¼ 0:1 experiments are sum-
marized in Table 5, where the average EER rates are
recorded. The variance of the EER rates across the tests is
also shown, in order to reflect the variability in performance
as random noise combinations are used. The results here
show significant improvement in system consistency when
employing the leveraged SPKR + ENV system.

Fig. 4 shows the detection error tradeoff (DET) curves
for the baseline and optimum SPKR + ENV methods for
the k ¼ 0:3 configuration. This curve demonstrates how
the SPKR + ENV algorithm improves overall EER perfor-
mance for the diverse noise set.
4.2. Evaluation: vehicle noise set results

Similar to the speaker + noise audio test sets created for
the diverse noise set, a collection of test sets were also ran-
domly created with the 6 vehicle noise set, where an equal
number of noise tracks for each of the noise types were
used. For the 60 speakers, a random selection of each of
the 6 vehicle noise types were used to acoustically degrade
10 speakers’ speech segments for each noise, and those
speakers that comprised a certain noise type were kept con-
stant between train and test for both TIMIT and SRE-2008
databases. The same 15 speakers were chosen as the in-set
speakers for all tests, and eight random noise combinations
were used to increase the experimental file count.

Once the TIMIT test sets were constructed, the tradi-
tional baseline method of setting aside low energy frames
was employed for in-set/out-of-set speaker recognition,
yielding an average EER of 10.14%, which is relatively
increased by rate of �8.18% compared the EER of diverse
noise set.

Next, the simplest case of the leveraged (SPKR + ENV)
approach (no frequency partitioning) was employed, with a
frame energy threshold of k ¼ 0:3 and with b values rang-
ing from 0.05 to 1.00, where again the log likelihood scores
from the GMM trained on low energy frames were counted
at most as equal to the scores from the high energy frames
(b ¼ 1:0), with a minimum weight of 5% (b ¼ 0:05). The
average results from this method (the average of the EERs
for each possible b value) resulted in an EER of 8.29%,
with an average relative performance gain of +18.3%.
For each of the evaluation sets, the optimum performance
occurred when b ¼ 0:70, with an average EER of 7.36%.
These results indicate that for the optimum tested value
of b, the absolute improvement (decrease in EER) was
2.78%, with a relative improvement of +27.4%.

The evaluation process was also performed using an
energy threshold of k ¼ 0:1. Using this threshold, the
resulting average EER is 9.44%, which corresponds to an
average relative performance gain of 6.90%. Using the opti-
mum tested value of b, the EER decreases to 7.92%, result-
ing in an absolute improvement of +2.22%, with a relative
improvement of +21.9%. Once again, the improvement
obtained with an energy threshold of k ¼ 0:1 was less than
that for the increased frame energy threshold of k ¼ 0:3.
The results for the k ¼ 0:3 and k ¼ 0:1 experiments are
summarized in Table 6. Again, there is measurable
improvement in overall average EER; however, the reduc-
tion in the variance of the EER is not as significant for
vehicle (Table 6) versus diverse (Table 5) Noise sets.



Table 6
System comparison for EER and variance for vehicle noise set.

k ¼ 0:3 k ¼ 0:1

Avg. EER Variance Avg. EER Variance

Baseline 10.14 10.36 10.14 10.36
Average SPKR + ENV 8.29 5.51 9.44 7.21
Optimum SPKR + ENV 7.36 5.96 7.92 7.93

λ

Fig. 3. DET curve for baseline and optimum SPKR + ENV method for
the diverse noise set using TIMIT data.

λ 

Fig. 4. DET curve for baseline and optimum SPKR + ENV method for
the vehicle noise set.

Table 7
System comparisons of EER for SRE 2008 plus vehicle noise set.

Duration Clean
baseline

One noise
baseline

Baseline Optimum
SPKR + ENV

10 s 32.2 48.0 39.7 35.8 (b ¼ 0:5)
5 min 13.3 33.4 25.4 23.8 (b ¼ 0:1)
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Fig. 3 shows the detection error tradeoff (DET) curves
for the baseline and optimum SPKR + ENV methods for
the k ¼ 0:3 setup. This curve demonstrates how the
SPKR + ENV algorithm improves overall EER perfor-
mance also for the vehicle noise set.

Next, speaker data from the NIST SRE-2008 database
were degraded under the same vehicle noise set configura-
tion as that used for TIMIT. Here, the 5 min core set of
NIST SRE-2008 database is used to construct a set of 60
speakers, where the duration of data is reduced to 10 s to
explore the benefit of the leveraged approach. The frame
energy threshold k ¼ 0:3 with b values ranging from 0.1
to 0.5 were chosen, and b values over 0.5 does not improve
any performance. Table 7 shows the baselines, as well as
average and optimum SPKR + ENV leveraged
approaches. The experiment is performed to measure the
effect of various vehicle noise on recognition. One vehicle
noise are added to clean speech for one experiment, and
6 vehicle noise are also added to clean speech to measure
the effect of noise on recognition. Silverado vehicle noise
is selected for one noise type experiment. The Baseline sys-
tem only uses the High Energy (HE) part of speech feature,
and the prefix word indicates the condition of speech type
in experiment in Table 7. Prefix word “Clean” indicates
that the system is performed with the only clean speech
audio, and the prefix “One” indicates using only one vehi-
cle noise is used for the baseline evaluation. The Baseline
without any prefix word uses the 6 vehicle noise types same
as TIMIT experiment for vehicle noise. The noise leverage
system performs better in both data durations. The abso-
lute +3.89% EER in 10 s and +1.53% EER in 5 min are
improved from baseline performance. The one noise and
6 noise types experiment also verifies that the noise also
has discrimination ability within limited number of noise
types. In the 10 s case, the leveraged approach improves
performance gains more than 5 min case since the low
energy GMM model helps to provide accurate environ-
mental classification results with the high energy GMM
model. It is noted that for the 5 min core case data sce-
nario, the increased amount of data has a clear benefit in
more accurately representing both the speaker and envi-
ronment spaces.

Comparing results from both noise sets, we see that the
variance of the SPKR + ENV results for the diverse noise
set is an order of magnitude lower than that of the vehicle
noise set. This is due to the tighter clustering of the output
results, which is believed to be due to noises from the
diverse noise set being more distinct from each other.
4.3. Mixture optimization

In order to further refine and optimize the
SPKR + ENV framework, the effects of the number of



Fig. 5. Decision grid consisting of energy versus frequency partitioning.
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mixtures used in the creation of the In-set/Out-of-set UBM
and GMMs were examined. Initially, 32 mixtures were
used for the UBM, which was used for modeling both
the high-energy speaker dependent frames and the low-
energy noise dependent frames. Due to the relatively sub-
stantial amount of speech and speaker data available for
UBM training, the UBM mixture number was increased
to 128. Additionally, what limited speaker content is pres-
ent in the low-energy noise dependent frames is believed to
be insufficient to completely ‘fill’ all 32 mixtures of the
GMM. Therefore, the algorithm was evaluated with
reduced mixture numbers for low energy (LE) GMM train-
ing; specifically, results were obtained for 16 and 8 mix-
tures. The GMM training for the high energy (HE)
speaker dependent frames was kept fixed at 32 mixtures
(the four configurations are shown in column 1 of Table 8).

The results from these optimization tests using the vehi-
cle noise set with k ¼ 0:3 are summarized in Table 8. These
results show that the largest performance increase (decrease
in EER) occurs when the UBM mixture order is increased
from 32 to 128. An additional slight performance increased
is obtained by reducing the mixture order of the low-energy
from 32 to 8. Therefore, the optimum results were obtained
for a 128 mixture UBM, with a 32 mixture GMM used for
high-energy frames and an 8 mixture GMM for low-energy
frames during the test phase. The optimum SPKR + ENV
EER with optimized mixture order is 6.81%, corresponding
to a +5.40% relative improvement over the SPKR + ENV
algorithm with an un-optimized mixture order (e.g., case
where UBM/HE GMM/LE GMM is 32/32/32).

5. Selective leveraging framework

The next step in enhancing the SPKR + ENV algorithm
is to formulate a method in which the noise environments
could be evaluated in a manner that allows the decision
to strengthen the leveraging process. A framework for this
type of selectively leveraged SPKR + ENV system can be
developed that evaluates the speakers using a grid with
both energy and frequency thresholds, thereby partitioning
the dimensions as seen in Fig. 5. The goal of the frequency-
energy partitioning is that some partitions will contain
more speaker dependent traits while other partitions will
contain more noise dependent traits.

An examination was performed for three car noise types
(BLA, CAV, and EXP) using frequency partitioning vari-
ables of F1 = 300 Hz and F2 = 600 Hz, and energy parti-
Table 8
SPKR + ENV mixture optimization EER results for vehicle noise set.

Mixtures (UBM / HE
GMM / LE GMM)

Baseline
EER

Optimum
SPKR + ENV
EER

Avg.
SPKR + ENV
EER

32/32/32 10.14 7.36 8.29
128/32/32 8.75 6.95 7.96
128/32/16 8.75 7.22 8.34
128/32/8 8.75 6.81 7.95
tioning variables of E1 = 0.1 (normalized) and E2 = 0.3
(normalized). The total number of frames distributed to
each of the partitions was tabulated, and the percent of
the total frames calculated. Fig. 6 shows the percent of
the total frames contained in the Low Frequency, High
Energy partition (Cell 1 in Fig. 5) after being passed
through a five-point median filter for each utterance. This
Fig. 6 clearly demonstrates three distinct bands for the
BLA, CAV, and EXP degraded files, confirming that envi-
ronmental background would be a useful discriminatory
trait with frequency dependency. Therefore, it is possible
to develop a SPKR + ENV system that performs front-
end analysis of the noise content using the grid partitioning
method before leveraging the background noise. An appli-
cation of this analysis is to verify that the speaker stays in
the same environment between train and test, and upon
verification apply the SPKR + ENV process.

The SPKR + ENV method proposed in Fig. 2 is
employed with the frequency-energy partitioning method
illustrated in Fig. 5, using the vehicle noise set with parti-
tioning variables of F1 = 300 Hz, F2 = 600 Hz, E1 = 0.1
(normalized), and E2 = 0.3 (normalized). The noise depen-
dent frames (Cells 1 and 2 in Fig. 5) were combined, as
were the speaker dependent frames (Cells 3 and 4). The
weighted scores of the noise dependent frames were then
added to those from the speaker dependent frames. This
leveraging of the background environment yielded the
results summarized in Table 9.

Thus, we see that the noise dependent and mixed parti-
tions (1,2, and 5) provide limited speaker discriminatory per-
formance in terms of in-set speaker identification. The
speaker-dependent partitions (3 and 4), however, yield
improved results over baseline (+15.8% relative improvement)
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even before leveraging of the background environment.
Once the background environment is leveraged by applying
the weighted noise dependent frames, the optimum EER
drops to 7.22%, which represents a +28.8% relative improve-
ment over the baseline. Fig. 7 shows the resulting detection
error tradeoff (DET) curves for baseline and optimum
SPKR + ENV methods for the selective frequency-energy
leveraging framework. This curve demonstrates how the
selective SPKR + ENV algorithm improves performance
across a range of operating points.

Unfortunately, the average SPKR + ENV results (the
average EER across all possible values of b) are actually
worse than the standard baseline. This is because the selec-
tive leveraging approach utilizing the frequency and energy
partitioning grid requires a much more fine tuned optimi-
zation when compared to the simplified version that does
not account for frequency. This issue is illustrated clearly
in Fig. 8.

Fig. 8 shows that while the EER result of each b value
for the simplified approach is relatively independent of
the value of b, the same cannot be said for the selective
approach; rather, the EER of the selective approach dra-
matically increases as b is increased. Therefore, it is much
more important that the selective approach framework be
optimized (which in its most basic form means utilizing
only small values of b).

Furthermore, the selective leveraging approach was
applied with only Cell 1 (see Fig. 5) used as the noise
dependent frames which were weighted and combined with
the speaker dependent frames. This was done in an attempt
to determine if the low energy, low frequency frames in Cell
2 (see Fig. 5) were to blame for the extreme dependency of
the EER on the value of b. This experiment results in an
optimum average EER of 6.94%, corresponding to a
+31.6% improvement over the baseline (an additional
2.8% over the approach utilizing both Cells 1 and 2). How-
ever, the results were just as dependent on the value of b,
indicating that the selective leveraging approach still
requires a refined optimization process. Fig. 9 shows the
final DET curves for the standard baseline and optimum
SPKR + ENV methods for this version of the selective
leveraging framework.

It is important to note that while at first glance the aver-
age results across all possible values of b are not effective,
merely restricting the range of b can significantly improve
performance. Specifically, by restricting b to be in the range
Table 9
Selective leveraging results.

Evaluation setting Overall average
EER(%)

Original baseline 10.14
Using only Cells 1 and 2 42.00
Using only Cells 3 and 4 8.54
Using only group 5 43.42
Average SPKR + ENV w/ freq. � energy part. 15.90
Optimum SPKR + ENV w/ freq. � energy

part.
7.22

Fig. 7. DET curve for baseline and optimum selective SPKR + ENV
method for vehicle noise set.
of 0.05–0.20 (as opposed to the normal range of 0.05–1.00),
the average SPKR + ENV EER drops to 9.10% when Cells
1 and 2 are used, and 8.75% when only Cell 1 is used.
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Fig. 8. Optimization comparison of selective and simplified approaches.

Fig. 9. DET curve for baseline and optimum selective SPKR + ENV
method excluding low energy/low frequency content (Cell 2) for vehicle
noise set.
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Therefore, by restricting the possible values of b, we elim-
inate a significant portion of the problems that arise from
the full selective approach being more sensitive than the
simplified approach. We again emphasize the fact that all
in-set speaker models were trained with only 5 s of data,
and tests performed using 2 s duration files.
6. Discussion and conclusions

Speaker recognition systems must overcome a range of
issues in order to achieve and maintain performance in
diverse environments. For in-set/out-of-set speaker recog-
nition, where limited amounts of train/test data are gener-
ally available, leveraging knowledge of the acoustic
environment offers an additional dimension to improve
overall system performance. The proposed SPKR + ENV
approach shows significant performance improvement by
leveraging environmental structure, which virtually all
other algorithms intentionally ignore.

By taking into account low energy noise-dependent
frames, we significantly increase the performance for in-
set/out-of-set speaker recognition. For a simplified version
of the algorithm that did not partition the frequency
domain, the optimum relative performance improvement
was +43.3% for the diverse noise set comprised of notice-
ably different noise types, and +27.4% on the vehicle noise
set comprised of six different vehicle noises (further
improved to +32.8% by optimizing the GMM mixture
order, where speaker data was drawn from TIMIT) . The
performance using 10 s from NIST SRE-2008 shows a
+10.8% relative improvement in EER over baseline. For
the full selective leveraging approach, the optimum relative
performance improvement was +28.8% (low energy, low
frequency frames from Cell 2 leveraged) or +31.6% (low
energy, low frequency frames ignored).

These results indicate that for situations in which one
can assume that the background environment for a speaker
remains constant (but randomly distributed across the in-
set speakers) between train and test phases, the leveraged
(SPKR + ENV) approach will eliminate roughly between
(1 out of every 4) to (1 out of every 3) decision errors. Since
we are focused on a scenario in which both train and test
data are of short duration, this reduction in error is partic-
ularly beneficial because of the limitation a lack of data
places on other methods such as spectral subtraction.

One important aspect of error reduction is whether the
errors fall into either false accept (FA) or false reject
(FR) categories. If the models for two speakers are similar,
but their acoustic backgrounds are different, knowledge of
the background noise should help drive the models farther
apart. An analysis of errors from both the baseline and the
SPKR + ENV algorithm shows that the leveraged method
eliminates many of the false accept errors.

Several further enhancements are possible given the
framework of the SPKR + ENV algorithm. In particular,
optimization of the frequency partitioning threshold, and
the formulation of an algorithmic approach to adaptively
optimize the frequency and energy thresholds for an
unknown background environment are options. It was also
demonstrated that the selective leveraging approach
requires a finer tuned optimization process in order to
achieve comparable results to the simplified approach;
however, merely restricting the possible range of b signifi-
cantly improves performance and removes much of the
optimization requirement.

One of the major focuses for future work on the
SPKR + ENV approach is to determine the optimized
energy and frequency thresholds for a wide variety of noise
sources. Once this task is completed, if a speaker with a
“new” arbitrary noise environment is present in the test
phase, the SPKR + ENV algorithm can attempt to classify
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the acoustic environment present by comparing it to envi-
ronments that have previously been optimized. Once the
closest a priori environment is determined, the optimized
thresholds are applied to the new acoustic background.
This enhancement would dramatically increase the robust-
ness of the SPKR + ENV algorithm and allow its perfor-
mance improvements to be experienced over a much
wider range of possible noise contexts.

While the leveraged SPKR + ENV approach presented
here cannot be applied to every in-set/out-of-set speaker
recognition scenario, it does significantly improve perfor-
mance when utilized in systems focused on the rapid detec-
tion and tracking of speakers that remain in the same noise
environment between train and test phases. It also allows
us to achieve an upper bound on performance improve-
ment when noise is present.
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