
Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

EVOLVING INSIDER THREAT DETECTION

STREAM MINING PERSPECTIVE

PALLABI PARVEEN, NATHAN MCDANIEL, ZACKARY WEGER, JONATHAN EVANS,

BHAVANI THURAISINGHAM, KEVIN HAMLEN, LATIFUR KHAN

Department of Computer Science, University of Texas at Dallas, 800 W. Campbell Rd.

Richardson, TX 75080-3021, USA

{pxp013300, nate.mcdaniel, zrw100020, jonathan.evans,
bhavani.thuraisingham, hamlen, lkhan}@utdallas.edu

Received 15 November 2012

Accepted 15 August 2013

Published 25 October 2013

Evidence of malicious insider activity is often buried within large data streams, such

as system logs accumulated over months or years. Ensemble-based stream mining lever-
ages multiple classification models to achieve highly accurate anomaly detection in such

streams, even when the stream is unbounded, evolving, and unlabeled. This makes the

approach effective for identifying insider threats who attempt to conceal their activities
by varying their behaviors over time. This paper applies ensemble-based stream min-

ing, supervised and unsupervised learning, and graph-based anomaly detection to the

problem of insider threat detection. It demonstrates that the ensemble-based approach
is significantly more effective than traditional single-model methods, supervised learning

outperforms unsupervised learning, and increasing the cost of false negatives correlates
to higher accuracy. Future work will consider a wider range of tunable parameters in an
effort to further reduce false positives, include a more sophisticated polling algorithm

for weighting better models, and implement parallelization to lower runtimes to more
rapidly detect emerging insider threats.

Keywords: stream data mining; supervised and unsupervised learning; insider threat

detection

1. Introduction

There is a growing consensus within the intelligence community that malicious

insiders are perhaps the most potent threats to information assurance in many or

most organizations.1,31,24,35 One traditional approach to the insider threat detection

problem is supervised learning, which builds data classification models from training

data. Unfortunately, the training process for supervised learning methods tends to

be time-consuming and expensive, and generally requires large amounts of well-

balanced training data to be effective. In our experiments we observe that less than

3% of the data in realistic datasets for this problem are associated with insider

threats (the minority class); over 97% of the data is associated with non-threats

1

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

2 PARVEEN, MCDANIEL, WEGER, EVANS, THURAISINGHAM, HAMLEN, KHAN

(the majority class). Hence, traditional support vector machines (SVM)36,37 trained

from such imbalanced data are likely to perform poorly on test datasets.

One-class SVMs (OCSVM)37 address the rare-class issue by building a model

that considers only normal data (i.e., non-threat data). During the testing phase,

test data is classified as normal or anomalous based on geometric deviations from

the model. However, the approach is only applicable to bounded-length, static data

streams. In contrast, insider threat-related data is typically continuous, and threat

patterns evolve over time. In other words, the data is a stream of unbounded length.

Hence, effective classification models must be adaptive (i.e., able to cope with evolv-

ing concepts) and highly efficient in order to build the model from large amounts

of evolving data.

An alternative approach is unsupervised learning, which can be effectively ap-

plied to purely unlabeled data—i.e., data in which no points are explicitly identified

as anomalous or non-anomalous. Graph-based anomaly detection (GBAD) is one

important form of unsupervised learning,2,3,4 but has traditionally been limited to

static, finite-length datasets. This limits its application to streams related to insider

threats, which tend to have unbounded length and threat patterns that evolve over

time. Applying GBAD to the insider threat problem therefore requires that the

models used be adaptive and efficient. Adding these qualities allow effective models

to be built from vast amounts of evolving data.

In this paper we cast insider threat detection as a stream mining problem and

propose two methods for efficiently detecting anomalies in stream data. To cope

with concept-evolution, our supervised approach maintains an evolving ensemble

of multiple OCSVM models. Our unsupervised approach combines multiple GBAD

models in an ensemble of classifiers. The ensemble updating process is designed in

both cases to keep the ensemble current as the stream evolves. This evolutionary

capability improves the classifier’s survival of concept-drift as the behavior of both

legitimate and illegitimate agents varies over time. In experiments, we use test data

that records system call data for a large, Unix-based, multiuser system.

The main contributions of this work can be summarized as follows.

• We show how stream mining can be effectively applied to detect insider threats.

• We propose a supervised learning solution that copes with evolving concepts using

one-class SVMs.

• We increase the accuracy of the supervised approach by weighting the cost of

false negatives.

• We propose an unsupervised learning algorithm that copes with changes based

on GBAD.

• We effectively address the challenge of limited labeled training data (rare instance

issues).

• We exploit the power of stream mining and graph-based mining by effectively

combining the two in a unified manner. This is the first work to our knowledge

to harness these two approaches for insider threat detection.

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

EVOLVING INSIDER THREAT DETECTION STREAM MINING PERSPECTIVE 3

• We compare one and two class support vector machines on how well they handle

stream insider threat problems.

• We compare supervised and unsupervised stream learning approaches and show

which has superior effectiveness using real-world insider threat data.

The remainder of the paper is organized as follows. Section 2 presents related

work. Section 3 presents our ensemble-based approaches to insider threat. Section 4

discusses the background of supervised and unsupervised learning methods. Sec-

tion 5 describes our experiments and testing methodology. Section 6 presents our

results and findings. Finally, Section 7 concludes with an assessment of the viability

of ensemble-based mining for real-world insider threat detection.

2. Related Work

Insider threat detection work has applied ideas from both intrusion detection and

external threat detection.5,6,7,41,26 Supervised learning approaches collect system

call trace logs containing records of normal and anomalous behavior,8,9,25,29 extract

n-gram features from the collected data, and use the extracted features to train

classifiers. Text classification approaches treat each system call as a word in a bag-

of-words model.10. Various attributes of system calls, including arguments, object

path, return value, and error status, have been exploited as features in various

supervised learning methods.11,12

Hybrid high-order Markov chain models detect anomalies by identifying a sig-

nature behavior for a particular user based on their command sequences.40 The

Probabilistic Anomaly Detection (PAD) algorithm38 is a general purpose algorithm

for anomaly detection (in the windows environment) that assumes anomalies or

noise is a rare event in the training data. Masquerade detection is argued over by

some individuals. A number of detection methods were applied to a data set of

“truncated” UNIX shell commands for 70 users.5 Commands were collected using

the UNIX acct auditing mechanism. For each user a number of commands were

gathered over a period of time (http://www.schonlau.net). The detection meth-

ods were supervised by a multistep Markovian model and a combination of Bayes

and Markov approaches. It was argued that the data set was not appropriate for the

masquerade detection task.7,41 It was pointed out that the period of data gathering

varied greatly from user to user (from several days to several months). Furthermore,

commands were not logged in the order in which they were typed. Instead, they

were coalesced when the application terminated the audit mechanism. This leads

to the unfortunate consequence of possible faulty analysis of strict sequence data.

Therefore, in this proposed work we have not considered this dataset.

These approaches differ from our supervised approach in that these learning

approaches are static in nature and do not learn over evolving streams. In other

words, stream characteristics of data are not explored further. Hence, static learning

performance may degrade over time. On the other hand, our supervised approach

will learn from evolving data streams. Our proposed work is based on supervised

http://www.schonlau.net

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

4 PARVEEN, MCDANIEL, WEGER, EVANS, THURAISINGHAM, HAMLEN, KHAN

learning and it can handle dynamic data or stream data well by learning from

evolving streams.

In anomaly detection, one class SVM algorithm is used.38 OCSVM builds a

model by training on normal data and then classifies test data as benign or anoma-

lous based on geometric deviations from that normal training data. For masquerade

detection, one class SVM training is as affective as two class training.38 Investiga-

tions have been made into SVMs using binary features and frequency based features.

The one class SVM algorithm with binary features performed the best.

Recursive mining has been proposed to find frequent patterns.42 One class SVM

classifier were used for masquerade detection after the patterns were encoded with

unique symbols and all sequences rewritten with this new coding.

To the best of our knowledge there is no work that extends this OCSVM in

a stream domain. Although our approach relies on OCSVM, it is extended to the

stream domain so that it can cope with changes.

Past works have also explored unsupervised learning for insider threat detection,

but only to static streams to our knowledge.13,27,28 Static GBAD approaches2,3,4,32

represent threat and non-threat data as a graph and apply unsupervised learning

to detect anomalies. The minimum description length (MDL) approach to GBAD

has been applied to email, cell phone traffic, business processes, and cybercrime

datasets.14,15 Our work builds upon GBAD and MDL to support dynamic, evolving

streams.

Stream mining16 is a relatively new category of data mining research that applies

to continuous data streams. In such settings, both supervised and unsupervised

learning must be adaptive in order to cope with data whose characteristics change

over time. There are two main approaches to adaptation: incremental learning17,39

and ensemble-based learning18,19,16. Past work has demonstrated that ensemble-

based approaches are the more effective of the two, motivating our approach.

Ensembles have been used in the past to bolster the effectiveness of posi-

tive/negative classification.20,19 By maintaining an ensemble of K models that col-

lectively vote on the final classification, the number of false negatives (FN) and

false positives (FP) for a test set can be reduced. As better models are created,

poorer models are discarded to maintain an ensemble of size exactly K. This helps

the ensemble evolve with the changing characteristics of the stream and keeps the

classification task tractable.

A comparison of the above related works is summarized in Table 1. A more

complete survey is available in 34. Our previous work in this area includes both

supervised43 and unsupervised44 methods. This is the first time we have combined

the progress of both of our previously explored methods and included both super-

vised and unsupervised algorithms for the purpose of detecting insider threats. We

have also extended our previous work in a few very significant ways. We have for-

mally taken a look at the effects on detection efficiency for different values for q, the

number of normative substructures considered in a model, and k, the ensemble size.

This analysis aims to find the most effective parameters for which our algorithm

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

EVOLVING INSIDER THREAT DETECTION STREAM MINING PERSPECTIVE 5

will run. We have also introduced a weighted False Negative cost to offset model

selection and elimination. This weighted cost aims to punish the models that most

adequately help our cause in detecting insider threats the least. Both of these new

additions expound greatly on our previous work and have produced measurable

results.

Table 1. Simulation Configuration

(Un)Super- concept- insider graph-

Approach vised drift threat based

9 S × X ×
27 S X × ×
13, 28 U × X ×
GBAD U × X X
stream 20, 16 S X N/A N/A

ensemble (ours) S/U X X X

3. Ensemble-based Insider Threat Detection

Data relevant to insider threats is typically accumulated over many years of organi-

zation and system operations, and is therefore best characterized as an unbounded

data stream. Such a stream can be partitioned into a sequence of discrete chunks;

for example, each chunk might comprise a week’s worth of data.

Figure 1 illustrates how a classifier’s decision boundary changes when such a

stream observes concept-drift. Each circle in the picture denotes a data point, with

unfilled circles representing true negatives (TN) (i.e., non-anomalies) and solid cir-

cles representing true positives (TP) (i.e., anomalies). The solid line in each chunk

represents the decision boundary for that chunk, while the dashed line represents

the decision boundary for the previous chunk.

chunk 1 chunk 2 chunk 3

anomaly
non-anomaly
concept-drift victim

old decision boundary
new decision boundary

data stream

Fig. 1. Concept drift in stream data

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

6 PARVEEN, MCDANIEL, WEGER, EVANS, THURAISINGHAM, HAMLEN, KHAN

Shaded circles are those that embody a new concept that has drifted relative

to the previous chunk. In order to classify these properly, the decision boundary

must be adjusted to account for the new concept. There are two possible varieties

of misapprehension (false detection):

(1) The decision boundary of chunk 2 moves upward relative to chunk 1. As a result,

some non-anomalous data is incorrectly classified as anomalous, causing the FP

(false positive) rate to rise.

(2) The decision boundary of chunk 3 moves downward relative to chunk 2. As a

result, some anomalous data is incorrectly classified as non-anomalous, causing

the FN (false negative) rate to rise.

In general, the old and new decision boundaries can intersect, causing both of the

above cases to occur simultaneously for the same chunk. Therefore, both FP and

FN counts may increase.

These observations suggest that a model built from a single chunk or any finite

prefix of chunks is inadequate to properly classify all data in the stream. This

motivates the adoption of our ensemble approach, which classifies data using an

evolving set of K models.

The ensemble classification procedure is illustrated in Figure 2. We first build

a model using OCSVM (supervised approach) or GBAD (unsupervised approach)

from an individual chunk. In the case of GBAD normative substructures are iden-

tified in the chunk, each represented as a subgraph. To identify an anomaly, a test

substructure is compared against each model of the ensemble. A model will classify

the test substructure as an anomaly based on how much the test differs from the

model’s normative substructure. Once all models cast their votes, weighted majority

voting is applied to make a final classification decision.

λ4

λ6

λ0

x, ? M3

M1

M7

+

+

−

+

input classifiers classifer
outputs

voting ensemble
output

Fig. 2. Ensemble classification, where M1 to M7 are models within the ensemble that come to
together to form a consensus.

Ensemble evolution is arranged so as to maintain a set of exactly K models at

all times. As each new chunk arrives, a K+1st model is created from the new chunk

and one victim model of these K + 1 models is discarded. The discard victim can

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

EVOLVING INSIDER THREAT DETECTION STREAM MINING PERSPECTIVE 7

Algorithm 1: Unsupervised Ensemble Classification and Updating

Input: E (ensemble), t (test graph), and S (chunk)

Output: A (anomalies), and E′ (updated ensemble)

1 M ′ ← NewModel(S) ; // build new model

2 E′ ← E ∪ {M ′} ; // add model to ensemble

3 foreach M ∈ E′ do // for each model

4 cM ← 0;

5 foreach q ∈M do // find anomaly candidates

6 A1 ← GBADP (t, q);

7 A2 ← GBADMDL(t, q);

8 A3 ← GBADMPS (t, q);

9 AM ← ParseResults(A1, A2, A3)

end

end

10 foreach a ∈
⋃
M∈E′ AM do // for each candidate

11 if round(WA(E′, a)) = 1 then // if anomaly

12 A← A ∪ {a};
13 foreach M ∈ E′ do // approbate yes-voters

14 if a ∈ AM then cM ← cM + 1

end

end

15 else // if non-anomaly

16 foreach M ∈ E′ do // approbate no-voters

17 if a 6∈ AM then cM ← cM + 1

end

end

end

18 E′ ← E′ − {choose(arg minM (cM))}; // drop worst model

be selected in a number of ways. One approach is to calculate the prediction error

of each of the K + 1 models on the most recent chunk and discard the poorest

predictor. This requires the ground truth to be immediately available for the most

recent chunk so that prediction error can be accurately measured. If the ground

truth is not available, we instead rely on majority voting; the model with least

agreement with the majority decision is discarded. This results in an ensemble of

the K models that best match the current concept.

Algorithm 1 summarizes the unsupervised classification and ensemble updating

algorithm. Lines 1–2 build a new model from the most recent chunk and temporarily

add it to the ensemble. Next, Lines 3–9 apply each model in the ensemble to test

graph t for possible anomalies. We use three varieties of GBAD for each model (P,

MDL, and MPS), each discussed in Section 4.2. Finally, Lines 10–18 update the

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

8 PARVEEN, MCDANIEL, WEGER, EVANS, THURAISINGHAM, HAMLEN, KHAN

ensemble by discarding the model with the most disagreements from the weighted

majority opinion. If multiple models have the most disagreements, an arbitrary

poorest-performing one is discarded.

Weighted majority opinions are computed in Line 11 using the formula

WA(E, a) =

∑
{i |Mi∈E, a∈AMi

} λ
`−i∑

{i |Mi∈E} λ
`−i (1)

where Mi ∈ E is a model in ensemble E that was trained from chunk i, AMi
is

the set of anomalies reported by model Mi, λ ∈ [0, 1] is a constant fading factor,33

and ` is the index of the most recent chunk. Model Mi’s vote therefore receives

weight λ`−i, with the most recently constructed model receiving weight λ0 = 1,

the model trained from the previous chunk receiving weight λ1 (if it still exists in

the ensemble), etc. This has the effect of weighting the votes of more recent models

above those of potentially outdated ones when λ < 1. Weighted average WA(E, a)

is then rounded to the nearest integer (0 or 1) in Line 11 to obtain the weighted

majority vote.

For example, in Figure 2, models M1, M3, and M7 vote positive, positive, and

negative, respectively, for input sample x. If ` = 7 is the most recent chunk, these

votes are weighted λ6, λ4, and 1, respectively. The weighted average is therefore

WA(E, x) = (λ6 +λ4)/(λ6 +λ4 +1). If λ ≤ 0.86, the negative majority opinion wins

in this case; however, if λ ≥ 0.87, the newer model’s vote outweighs the two older

dissenting opinions, and the result is a positive classification. Parameter λ can thus

be tuned to balance the importance of large amounts of older information against

smaller amounts of newer information.

Our approach uses the results from previous iterations of GBAD to identify

anomalies in subsequent data chunks. That is, normative substructures found in

previous GBAD iterations may persist in each model. This allows each model to

consider all data since the model’s introduction to the ensemble, not just that of

the current chunk. When streams observe concept-drift, this can be a significant

advantage because the ensemble can identify patterns that are normative over the

entire data stream or a significant number of chunks but not in the current chunk.

Thus, insiders whose malicious behavior is infrequent can still be detected.

Algorithm 2 shows the basic building blocks of our supervised algorithm. Here,

we first present how we update the model. Input for algorithm 2 will be as follows:

Du is the most recently labeled data chunk (most recent training chunk) and A is

the ensemble. Lines 1–2 calculate the prediction error of each model on Du. Line 3

builds a new model using OCSVM on Du. Line 4 produces K + 1 models. Line 5

discards the model with the maximum prediction error, keeping the K best models.

Algorithm 3, focuses on ensemble testing. Ensemble A and the latest unlabeled

chunk of instance Du will be the input. Line 1 performs feature extraction and

selection using the latest chunk of unlabeled data. Lines 2–6 will take each extracted

feature from Du and do an anomaly prediction. Lines 4–5 use each model to predict

the anomaly status for a particular feature. Finally, Line 6 predicts anomalies based

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

EVOLVING INSIDER THREAT DETECTION STREAM MINING PERSPECTIVE 9

Algorithm 2: Supervised Ensemble Classification Updating

Input: Du (most recently labeled chunk), and A (ensemble)

Output: A′ (updated ensemble)

1 foreach M ∈ A do // for each model

2 test(M,Du) ; // compute expected error

end

3 Mn ← OCSVM (Du); // newly trained classifier

4 test(Mn, Du) ; // compute expected error

5 A′ ← {K : Mn ∪A} ; // eliminates highest expected error

Algorithm 3: Supervised Testing Algorithm

Input: Du (most recent unlabeled chunk), and A (ensemble)

Output: D′u (labeled/predicted Du)

1 Fu ← ExtractandSelectFeatures(Du);

2 foreach xj ∈ Fu do // for each feature

3 R← NULL; // build new results

4 foreach M ∈ A do // for each model

5 R← R ∪ predict(xj ,M); // predict if anomaly

end

6 anomalies←MajorityV ote(R)

end

on majority voting of the results.

Our ensemble method uses the results from previous iterations of OCSVM exe-

cutions to identify anomalies in subsequent data chunks. This allows the consider-

ation of more than just the current data being analyzed. Models found in previous

OCSVM iterations are also analyzed, not just the models of the current dataset

chunk. The ensemble handles the execution in this manner because patterns identi-

fied in previous chunks may be normative over the entire data stream or a significant

number of chunks but not in the current execution chunk. Thus insiders whose mali-

cious behavior is infrequent will be detected. It is important to note that we always

keep our ensemble size fixed. Hence, an outdated model which is performing worst

on the most recent chunks will be replaced by the new one.

It is important to note that the size of the ensemble remains fixed over time.

Outdated models that are performing poorly are replaced by better-performing,

newer models that are more suited to the current concept. This keeps each round

of classification tractable even though the total amount of data in the stream is

potentially unbounded.

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

10 PARVEEN, MCDANIEL, WEGER, EVANS, THURAISINGHAM, HAMLEN, KHAN

4. Details of Learning Classes

This section will describe the different classes of learning techniques. It serves the

purpose of providing more detail as to exactly how each method arrives at detecting

insider threats and how ensemble models are built, modified and discarded. The first

subsection goes over supervised learning in detail and the second subsection goes

over unsupervised learning. Both contain the formulas necessary to understand the

inner workings of each class of learning.

4.1. Supervised Learning

In a chunk, a model is built using OCSVM.37 The OCSVM approach first maps

training data into a high dimensional feature space (via a kernel). Next, the al-

gorithm iteratively finds the maximal margin hyperplane which best separates the

training data from the origin. The OCSVM may be considered as a regular two-

class SVM. Here the first class entails all the training data, and the second class is

the origin. Thus, the hyperplane (or linear decision boundary) corresponds to the

classification rule:

f(x) = 〈w, x〉+ b (2)

where w is the normal vector and b is a bias term. The OCSVM solves an optimiza-

tion problem to find the rule with maximal geometric margin. This classification

rule will be used to assign a label to a test example x. If f(x) < 0, we label x as an

anomaly, otherwise it is labeled normal. In reality there is a trade-off between max-

imizing the distance of the hyperplane from the origin and the number of training

data points contained in the region separated from the origin by the hyperplane.

4.2. Unsupervised Learning

Algorithm 1 uses three varieties of GBAD to infer potential anomalies using each

model. GBAD is a graph-based approach to finding anomalies in data by search-

ing for three factors: modifications, insertions, and deletions of vertices and edges.

Each unique factor runs its own algorithm that finds a normative substructure and

attempts to find the substructures that are similar but not completely identical

to the discovered normative substructure. A normative substructure is a recurring

subgraph of vertices and edges that, when coalesced into a single vertex, most

compresses the overall graph. The rectangle in Figure 3 identifies an example of

normative substructure for the depicted graph.

Our implementation uses SUBDUE21 to find normative substructures. The best

normative substructure can be characterized as the one with minimal description

length (MDL):

L(S,G) = DL(G | S) + DL(S) (3)

where G is the entire graph, S is the substructure being analyzed, DL(G | S) is the

description length of G after being compressed by S, and DL(S) is the description

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

EVOLVING INSIDER THREAT DETECTION STREAM MINING PERSPECTIVE 11

E

A B

C D

E

A B

C D

E

A B

E D

C

A B

E D

E

A B

E D

Fig. 3. A basic graph with a normative substructure (boxed) and anomalies (shaded). Nodes

A through E are destinctively unique procedures. Shaded nodes and edges represent anomolies

compared to that of the boxed subgraph.

length of the substructure being analyzed. Description length DL(G) is the minimum

number of bits necessary to describe graph G.22

Insider threats appear as small percentage differences from the normative sub-

structures. This is because insider threats attempt to closely mimic legitimate sys-

tem operations except for small variations embodied by illegitimate behavior. We

apply three different approaches for identifying such anomalies, discussed below.

4.2.1. GBAD-MDL

Upon finding the best compressing normative substructure, GBAD-MDL searches

for deviations from that normative substructure in subsequent substructures. By

analyzing substructures of the same size as the normative one, differences in the

edges and vertices’ labels and in the direction or endpoints of edges are identified.

The most anomalous of these are those substructures for which the fewest modifi-

cations are required to produce a substructure isomorphic to the normative one. In

Figure 3, the shaded vertex labeled E is an anomaly discovered by GBAD-MDL.

4.2.2. GBAD-P

In contrast, GBAD-P searches for insertions that, if deleted, yield the normative

substructure. Insertions made to a graph are viewed as extensions of the normative

substructure. GBAD-P calculates the probability of each extension based on edge

and vertex labels, and therefore exploits label information to discover anomalies.

The probability is given by

P (A=v) = P (A=v | A)P (A) (4)

where A represents an edge or vertex attribute and v represents its value. Probability

P (A=v | A) can be generated by a Gaussian distribution:

ρ(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
(5)

where µ is the mean and σ is the standard deviation. Higher values of ρ(x) corre-

spond to more anomalous substructures.

Using GBAD-P therefore ensures that malicious insider behavior that is reflected

by the actual data in the graph (rather than merely its structure) can be reliably

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

12 PARVEEN, MCDANIEL, WEGER, EVANS, THURAISINGHAM, HAMLEN, KHAN

identified as anomalous by our algorithm. In Figure 3, the shaded vertex labeled C

is an anomaly discovered by GBAD-P.

4.2.3. GBAD-MPS

Finally, GBAD-MPS considers deletions that, if re-inserted, yield the normative sub-

structure. To discover these, GBAD-MPS examines the parent structure. Changes in

size and orientation in the parent signify deletions amongst the subgraphs. The most

anomalous substructures are those with the smallest transformation cost required

to make the parent substructures identical. In Figure 3, the last substructure of

A-B-C-D vertices is identified as anomalous by GBAD-MPS because of the missing

edge between B and D marked by the shaded rectangle.

5. Experiments

We tested both of our algorithms on the 1998 Lincoln Laboratory Intrusion Detec-

tion dataset.23 This dataset consists of daily system logs containing all system calls

performed by all processes over a 7 week period. It was created using the Basic

Security Mode (BSM) auditing program. Each log consists of tokens that represent

system calls using the syntax exemplified in Figure 4.

header,129,2,execve(2),,Tue Jun 16 08:14:29 1998, +
518925003 msec

path/op/local/bin/tcsh
attribute,100755,root,other,8388613,79914,0
exec_args,1,
-tcsh
subject,2142,2142,rjm,2142,rjm,401,400,24

1 135.13.216.191
return,success,0
trailer,129

Fig. 4. A sample system call record from the MIT Lincoln dataset

Time, userID, machineIP, command, arg, path, return
1 1:29669 6:1 8:1 21:1 32:1 36:0

Fig. 5. Feature set extracted from Figure 4

The token arguments begin with a header line and end with a trailer line. The

header line reports the size of the token in bytes, a version number, the system

call, and the date and time of execution in milliseconds. The second line reports the

full path name of the executing process. The optional attribute line identifies the

user and group of the owner, the file system and node, and the device. The next

line reports the number of arguments to the system call, followed by the arguments

themselves on the following line. The subject line reports the audit ID, effective

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

EVOLVING INSIDER THREAT DETECTION STREAM MINING PERSPECTIVE 13

user and group IDs, real user and group IDs, process ID, session ID, and terminal

port and address, respectively. Finally, the return line reports the outcome and

return value of the system call.

Since many system calls are the result of automatic processes not initiated by

any particular user, they are therefore not pertinent to the detection of insider

threat. We limit our attention to user-affiliated system calls. These include calls for

exec, execve, utime, login, logout, su, setegid, seteuid, setuid, rsh, rexecd,

passwd, rexd, and ftp. All of these correspond to logging in/out or file operations

initiated by users, and are therefore relevant to insider threat detection. Restricting

our attention to such operations helps to reduce extraneous noise in the dataset.

Further, some tokens contain calls made by users from the outside, via web servers,

and are not pertinent to the detection of insider threats. There are six such users

in this data set and have been pulled out. Table 2 reports statistics for the dataset

after all irrelevant tokens have been filtered out and the attribute data in Figure 6

has been extracted. Preprocessing extracted 62K tokens spanning 500K vertices.

These reflected the activity of all users over 9 weeks.

Figure 5 shows the features extracted from the output data in Figure 4 for our

supervised approach and Figure 6 depicts the subgraph structure yielded for our

unsupervised approach.

path

data

ca
ll

return

〈user
audit ID〉

ID
terminalar

gs

proc
ID

token〈path〉

〈data〉

〈call〉

〈return
value〉

〈terminal〉〈args〉 〈proc ID〉

Fig. 6. A token subgraph

The first number in Figure 5 is the classification of the token as either anomalous

(-1) or normal (1). The classification is used by 2-class SVM for training the model,

but is unused (although required) for one class SVM. The rest of the line is a

list of index-value pairs, which are separated by a colon (:). The index represent

the dimension for use by SVM, and the value is the value of the token along that

dimension. The value must be numeric. The list must be ascending by index. Indices

that are missing are assumed to have a value of 0. Attributes which are categorical

in nature (and can take the value of any one of N categories) are represented by

N dimensions. In Figure 5, “1:29669” means that the time of day (in seconds) is

29669, “6:1” means that the user’s ID (which is categorical) is 2142, “8:1” means

that the machine IP address (also categorical) is 135.13.216.191, “21:1” means that

the command (categorical) is execve, “32:1” means the path begins with /opt, and

“36:0” means that the return value is 0. The mappings between the data values and

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

14 PARVEEN, MCDANIEL, WEGER, EVANS, THURAISINGHAM, HAMLEN, KHAN

the indices were set internally by a configuration file.

All of these features are important for different reasons. The time of day could

indicate that the user is making system calls during normal business hours, or, al-

ternatively, is logging in late at night, which could be anomalous. The path could

indicate the security level of the system call being made—for instance, a path be-

ginning with /sbin could indicate use of important system files, while a path like

/bin/mail could indicate something more benign, like sending mail. The user ID is

important to distinguish events; what is anomalous for one user may not be anoma-

lous for another. A programmer that normally works from 9am to 5pm would not be

expected to login at midnight, but a maintenance technician (who performs main-

tenance on server equipment during off hours, at night), would. Frequent changes in

machine IP address or changes that are not frequent enough could indicate some-

thing anomalous. Lastly, the system call itself could indicate an anomaly most users

would be expected to login and logout, but only administrators would be expected

to invoke super user privileges with a command such as su.

We used LIBSVM36 to build our models and to generate predictions for our test

cases in our supervised approach. First, we will give an overview of our use of SVM

software, which is standard procedure and is well documented in LIBSVM’s help

files. We chose to use the RBF (radial-based function) kernel for the SVM. It was

chosen because it gives good results for our data set. Parameters for the kernel (in

the case of two-class SVM, C and γ, and in the case of one-class SVM, ν and γ)

were chosen so that the F1 measure was maximized. We chose to use the F1 measure

in this case (over other measures of accuracy) because, for the classifier to do well

according to this metric, it must minimize false positives while also minimizing false

negatives. Before training a model with our feature set, we used LIBSVM to scale

the input data to the range [0, 1]. This was done to ensure that dimensions which

takes on high values (like time) do not outweigh dimensions that take on low values

(such as dimensions which represent categorical variables). The parameters that

were used to scale the training data for the model are the same parameters that

were used to scale that model’s test data. Therefore, the model’s test data will be

in the vicinity of the range [0, 1].

We conducted two experiments with the SVM. The first, as seen in Table 4,

was designed to compare one-class SVM with two-class SVM for the purposes of

insider threat detection, and the second, as seen in Table 5, was designed to compare

a stream classification approach with a more traditional approach to classification.

We will begin by describing our comparison of one-class and two-class SVM. For this

experiment, we took the 7 weeks of data, and randomly divided it into halves. We

deemed the first half training data and the other half testing data. We constructed

a simple one-class and two-class model from the training data and recorded the

accuracy of the model in predicting the test data.

For the insider threat detection approach we use an ensemble-based approach

that is scored in real time. The ensemble maintains K models that use one-class

SVM, each constructed from a single day and weighted according to the accuracy

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

EVOLVING INSIDER THREAT DETECTION STREAM MINING PERSPECTIVE 15

of the models’ previous decisions. For each test token, the ensemble reports the

majority vote of its models.

The stream approach outlined above is more practical for detecting insider

threats because insider threats are stream in nature and occur in real time. A

situation like that in the first experiment above is not one that will occur in the

real world. In the real world, insider threats must be detected as they occur, not

after months of data have piled in. Therefore, it is reasonable to compare our up-

dating stream ensemble with a simple one-class SVM model constructed once and

tested (but not updated) as a stream of new data becomes available, see Table 5.

For our unsupervised approach, we needed to accurately depict the effects of

two variables. Those variables are K, the number of ensembles maintained, and q,

the number of normative substructures maintained for each model in the ensemble.

We used a subset of data during this wide variety of experiments, as depicted in

Table 3, in order to complete them in a manageable time. The decision to use

the small subset of data was arrived at due to the exponential growth in cost for

checking subgraph isomorphism.

Each ensemble iteration was run with q values between 1 and 8. Iterations were

made with ensemble sizes of K values between 1 and 6.

Table 2. Dataset statistics after filtering

and attribute extraction

Statistic Value

vertices 500,000

tokens 62,000

normative substructures 5
users all

duration 9 weeks

Table 3. Summary of data

subset A

Statistic Dataset A

user donaldh

vertices 269

edges 556
week 2–8

weekday Friday

6. Results

Performance and accuracy was measured in terms of total false positives (FP)

and false negatives (FN) throughout 7 weeks of test data. The Lincoln Labora-

tory dataset was chosen for both its large size and because its set of anomalies is

well known, facilitating an accurate performance assessment via misapprehension

counts.

Table 4 shows the results for the first experiment using our supervised method.

One-class SVM outperforms two-class SVM in the first experiment. Simply, two-

class SVM is unable to detect any of the positive cases correctly. Although the

two-class SVM does achieve a higher accuracy, it is at the cost of having a 100%

false negative rate. By varying the parameters for the two-class SVM, we found it

possible to increase the false positive rate (the SVM made an attempt to discrim-

inate between anomaly and normal data), but in no case could the two-class SVM

predict even one of the truly anomalous cases correctly. One-class SVM, on the

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

16 PARVEEN, MCDANIEL, WEGER, EVANS, THURAISINGHAM, HAMLEN, KHAN

other hand, achieves a moderately low false negative rate (20%), while maintaining

a high accuracy (87.40%). This demonstrates the superiority of one-class SVM over

two-class SVM for insider threat detection.

Table 4. Experiment A: One-class vs Two-class SVM

One-class SVM Two-class SVM

False Positives 3706 0

True Negatives 25701 29407

False Negatives 1 5
True Positives 4 0

Accuracy 0.87 0.99

False Positive Rate 0.13 0.0
False Negative Rate 0.2 1.0

The superiority of one-class SVM over two-class SVM for insider threat detection

further justifies our decision to use one-class SVM for our test of stream data. Table 5

gives a summary of our results for the second experiment using our supervised

method. The updating stream achieves much higher accuracy than the non-updating

stream, while maintaining an equivalent, and minimal, false negative rate (10%).

The accuracy of the updating stream is 76%, while the accuracy of the non-updating

stream is 58%.

Table 5. Experiment B: Updating vs Non-updating Stream Approach

Updating Stream Non-updating Stream

False Positives 13774 24426

True Negatives 44362 33710
False Negatives 1 1

True Positives 9 9

Accuracy 0.76 0.58

False Positive Rate 0.24 0.42
False Negative Rate 0.1 0.1

The superiority of updating stream over non updating stream for insider threat

detection further justifies our decision to use updating stream for our test of stream

data. By using labeled data, we establish a ground truth for our supervised learning

algorithm. This ground truth allows us to place higher weights on false negatives

or false positives. By weighing one more than the other, we punish a model more

for producing that which we have increased the weight for. When detecting in-

sider threats it is more important that we do not miss a threat (false negative)

than identify a false threat (false positive). Therefore, we weigh false negative more

heavily—i.e. we add a FN cost. Figure 7 and Figure 8 show the results of weighting

the false negatives more heavily than false positives with this established ground

truth. This is to say, that at a FN cost of 50, a false negative that is produced will

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

EVOLVING INSIDER THREAT DETECTION STREAM MINING PERSPECTIVE 17

count against a model 50 times more than a false positive will. Increasing the FN

cost also increases the accuracy of our OCSVM, updating stream approach. We can

see that that increasing the FN cost up to 30 only increases the total cost without

affecting the accuracy, but after this, the accuracy climbs and the total cost comes

down. Total cost, as calculated by Equation 6, represents the total number of false

positives and false negative after they have been modified by the increased FN Cost.

We see this trend peak at a FN cost of 80 where accuracy reaches nearly 56% and

the total cost is at a low of 25229.

TotalCost = TotalFalsePositives + (TotalFalseNegatives ∗ FNCost) (6)

The false negatives are weighted by cost more heavily than false positives because

it is more important to catch all insider threats. False positives are acceptable in

some cases, but an insider threat detection system is useless if it does not catch all

positive instances of insider threat activity. This is why models who fail to catch

positive cases and produce these false negatives are punished, in our best case result,

80 times more heavily than those who produce false positives.

0.552

0.5525

0.553

0.5535

0.554

0.5545

0.555

0.5555

0.556

0.5565

0.557

0.5575

0 50 100 150 200

A
cc

u
ra

cy

False Negative Cost

Fig. 7. Accuracy by FN Cost

Table 6 reinforces our decision to include FN cost during model elimination that

heavily punishes models who produce false negatives over those that produce false

positives. Including FN cost increases the accuracy of the ensemble and provides a

better F2 Measure.

We next investigate the impact of parameters K (the ensemble size) and q (the

number of normative substructures per model) on the classification accuracy and

running times for our unsupervised approach. To more easily perform the larger

number of experiments necessary to chart these relationships, we employ the smaller

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

18 PARVEEN, MCDANIEL, WEGER, EVANS, THURAISINGHAM, HAMLEN, KHAN

25200

25250

25300

25350

25400

25450

25500

0 50 100 150 200

C
o

st

False Negative Cost

Fig. 8. Total Cost by FN Cost

Table 6. Impact of FN Cost

Accuracy F2 Measure

w/ FN Cost 0.55682 0.00159

w/o FN Cost 0.45195 0.00141

datasets summarized in Table 3 for these experiments. Dataset A consists of activity

associated with user donaldh during weeks 2–8. This user displays malicious insider

activity during the respective time period. This dataset evince similar trends for all

relationships discussed henceforth; therefore we report only the details for dataset

A throughout the remainder of the section.

Figure 9 shows the relationship between the cutoff q for the number of normative

substructures and the running time in dataset A. Times increase approximately

linearly until q = 5 because there are only 4 normative structures in dataset A. The

search for a 5th structure therefore fails (but contributes running time), and higher

values of q have no further effect.

Figure 10 shows the impact of ensemble size K and runtimes for dataset A. As

expected, runtimes increase approximately linearly with the number of models (2

seconds per model on average in this dataset).

Increasing q and K also tends to aid in the discovery of true positives (TP).

Figures 11 and 12 illustrate by showing the positive relationships of q and K, re-

spectively, to TP. Once q = 4 normative substructures are considered per model and

K = 4 models are consulted per ensemble, the classifier reliably detects all 7 true

positives in dataset A. These values of q and K therefore strike the best balance

between coverage of all insider threats and the efficient runtimes necessary for high

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

EVOLVING INSIDER THREAT DETECTION STREAM MINING PERSPECTIVE 19

1 2 3 4 5 6 7 8

10

20

30

40

normative structure limit (q)

ti
m

e
(s

ec
s)

Fig. 9. The effect of q on runtimes for

fixed K = 6 on dataset A

1 2 3 4 5 6

10

20

30

40

ensemble size (K)

ti
m

e
(s

ec
s)

Fig. 10. The effect of K on runtimes

for fixed q = 4 on dataset A

responsiveness.

1 2 3 4 5 6

2

4

6

8

normative structure limit (q)

tr
u

e
p

os
it

iv
es

(T
P

)

Fig. 11. The effect of q on TP rates for

fixed K = 6 on dataset A

1 2 3 4 5 6

2

4

6

8

ensemble size (K)

tr
u

e
p

os
it

iv
es

(T
P

)

Fig. 12. The effect of K on TP rates

for fixed q = 4 on dataset A

Increasing q to 4 does come at the price of raising more false alarms, however.

Figure 13 shows that the false positive rate increases along with the true positive

rate until q = 4. Dataset A has only 4 normative structures, so increasing q beyond

this point has no effect. This is supported with q = 4, 5, 6 showing no increase in

TP.

1 2 3 4 5 6

50

100

150

normative structure limit (q)

fa
ls

e
p

os
it

iv
es

(F
P

)

Fig. 13. The effect of q on FP rates for fixed K = 6 on dataset A

Table 7 considers the impact of weighted versus unweighted majority voting

on the classification accuracy. The unweighted columns are those for λ = 1, and

the weighted columns use fading factor λ = 0.9. The dataset consists of all tokens

associated with user ID 2143. Weighted majority voting has no effect in these ex-

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

20 PARVEEN, MCDANIEL, WEGER, EVANS, THURAISINGHAM, HAMLEN, KHAN

periments except when K = 4, where it reduces the FP rate from 124 (unweighted)

to 85 (weighted) and increases the TN rate from 51 (unweighted) to 90 (weighted).

However, since these results can be obtained for K = 3 without weighted voting,

we conclude that weighted voting merely serves to mitigate a poor choice of K;

weighted voting has little or no impact when K is chosen wisely.

Table 7. Impact of fading factor λ (weighted voting)

K = 2 K = 3 K = 4

λ=1 λ=0.9 λ=1 λ=0.9 λ=1 λ=0.9

TP 10 10 10 10 14 14

FP 79 79 85 85 124 85

TN 96 96 90 90 51 90
FN 4 4 4 4 0 0

Table 8 gives a summary of our results comparing our supervised and unsu-

pervised learning approaches. For example, on dataset A the supervised learning

achieves much higher accuracy (71%) than the unsupervised learning (56%), while

maintaining lower false positive rate (31%) and false negative rate (0%). On the

other hand, unsupervised learning achieves 56% accuracy, 54% false positive rate

and 42% false negative rate.

Table 8. Supervised vs Non Supervised Learning Approach

Supervised Unsupervised

False Positives 55 95

True Negatives 122 82

False Negatives 0 5
True Positives 12 7

Accuracy 0.71 0.56

False Positive Rate 0.31 0.54

False Negative Rate 0.0 0.42

7. Conclusions

The supervised learning approach to insider threat detection outperformed the un-

supervised learning approach. The supervised method succeeded in identifying all

12 anomalies in the 1998 Lincoln Laboratory Intrusion Detection dataset with zero

false negatives and a lower false positive rate than the unsupervised approach. The

technique combines the power of one-class SVMS with the adaptiveness of stream

mining to achieve effective, practical insider threat detection for unbounded, evolv-

ing data streams. Increasing the weighted cost of false negatives increased accuracy

and ultimately allowed our approach to perform as well as it did. Though false

positives could be further reduced through more parameter tuning, our supervised

approach accomplished its goal, detecting all of the insider threats.

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

EVOLVING INSIDER THREAT DETECTION STREAM MINING PERSPECTIVE 21

Acknowledgments

The authors would like to thank Dr. Robert Herklotz for his support. This work is

supported by the Air Force Office of Scientific Research, under grant FA9550-08-1-

0088.

Appendix A.

In this appendix, we explain the method for obtaining accuracy and F2 Measure

reported in some of our results. Because the data set used is well documented, the

true positives are all well known and we can accurately measure false positives and

false negatives. F2 Measure is a specific case of Fβ Measure that weighs recall more

than precision

Fβ = (1 + β2)
(precision)(recall)

β2(precision) + (recall)

Precision and recall are defined in terms of true/false positives and negatives by

precision =
TP

(TP + FP)

recall =
TP

(TP + FN)

Accuracy can also be measured in term of true/false positives and negatives by

accuracy =
(TP + TN)

(TP + TN + FP + FN)

References

1. R. C. Brackney and R. H. Anderson, Understanding the Insider Threat. RAND Cor-
poration, (March 2004).

2. D. J. Cook and L. B. Holder, Mining Graph Data. John Wiley & Sons, Inc. (Hoboken,
New Jersey, 2007).

3. W. Eberle and L. B. Holder, Mining for Structural Anomalies in Graph-based Data, in
Proceedings of the International Conference on Data Mining (DMIN). (2007) 376–389.

4. D. J. Cook and L. B. Holder, Graph-based Data Mining, in IEEE Intelligent Systems.
15:2(2000) 32–41.

5. M. Schonlau and W. DuMouchel and W. Ju and A. F. Karr and M. Theus and Y.
Vardi, Computer Intrusion: Detecting masquerades, in Statistical Science. 16:1(2001)
1–17.

6. K. Wang and S. J. Stolfo, One-Class Training for Masquerade Detection, in Proceedings
of the ICDM Workshop on Data Mining for Computer Security (DMSEC). (2003).

7. R. A. Maxion, Masquerade Detection Using Enriched Command Lines, in Proceedings
of the IEEE International Conference on Dependable Systems & Networks (DSN).
(2003) 5–14.

8. S. Forrest and S. A. Hofmeyr and A. Somayaji and T. A. Longstaff, A Sense of Self
for Unix Processes, in Proceedings of the IEEE Symposium on Computer Security and
Privacy (S&P). (1996) 120–128.

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

22 PARVEEN, MCDANIEL, WEGER, EVANS, THURAISINGHAM, HAMLEN, KHAN

9. S. A. Hofmeyr and S. Forrest and A. Somayaji, Intrusion Detection using Sequences
of System Calls, in Journal of Computer Security. 6:3(1998) 151–180.

10. Y. Liao and V. R. Vemuri, Using Text Categorization Techniques for Intrusion Detec-
tion, in Proceedings of the 11th USENIX Security Symposium. (2002) 51–59.

11. C. Krügel and D. Mutz and F. Valeur and G. Vigna, On the Detection of Anomalous
System Call Arguments, in Proceedings of the 8th European Symposium on Research
in Computer Security (ESORICS). (2003) 326–343.

12. G. Tandon and P. Chan, Learning Rules from System Call Arguments and Sequences
for Anomaly Detection, in Proceedings of the ICDM Workshop on Data Mining for
Computer Security (DMSEC). (2003) 20–29.

13. A. Liu and C. Martin and T. Hetherington and S. Matzner, A Comparison of System
Call Feature Representations for Insider Threat Detection, in Proceedings of the IEEE
Information Assurance Workshop (IAW). (2005) 340–347.

14. S. Staniford-Chen and S. Cheung and R. Crawford and M. Dilger and J. Frank and
J. Hoagland and K. Levitt and C. Wee and R. Yip and D. Zerkle, A Graph Based
Intrusion Detection System for Large Networks, in Proceedings of the 19th National
Information Systems Security Conference. (1996) 361–370.

15. E. Kowalski and T. Conway and S. Keverline and M. Williams and D. Cappelli and B.
Willke and A. Moore, Insider Threat Study: Illicit Cyber Activity in the Government
Sector, in U.S. Department of Homeland Security, U.S. Secret Service, CERT, and
the Software Engineering Institute (Carnegie Mellon University). (January 2008).

16. W. Fan, Systematic Data Selection to Mine Concept-drifting Data Streams, in Proceed-
ings of the ACM International Conference on Knowledge Discovery and Data Mining
(KDD). (2004) 128–137.

17. P. Domingos and G. Hulten, Mining High-speed Data Streams, in Proceedings of the
ACM International Conference on Knowledge Discovery and Data Mining (KDD).
(2000) 71–80.

18. M. M. Masud and Q. Chen and J. Gao and L. Khan and C. Aggarwal and J. Han and
B. Thuraisingham, Addressing Concept-evolution in Concept-drifting Data Streams,
in Proceedings of the IEEE International Conference on Data Mining (ICDM). (2010)
929–934.

19. M. M. Masud and J. Gao and L. Khan and J. Han and B. Thuraisingham, Clas-
sification and Novel Class Detection in Concept-drifting Data Streams under Time
Constraints, in IEEE Transactions on Knowledge and Data Engineering (TKDE).
23:6(2011) 859–874.

20. M. M. Masud and J. Gao and L. Khan and J. Han and B. Thuraisingham, A Prac-
tical Approach to Classify Evolving Data Streams: Training with Limited Amount of
Labeled Data, in Proceedings of the IEEE International Conference on Data Mining
(ICDM). (2008) 929–934.

21. N. S. Ketkar and L. B. Holder and D. J. Cook, Subdue: Compression-based Frequent
Pattern Discovery in Graph Data, in Proceedings of the ACM KDD Workshop on
Open-Source Data Mining. (2005).

22. W. Eberle and J. Graves and L. Holder, Insider Threat Detection Using a Graph-based
Approach, in Journal of Applied Security Research. 6:1(2011) 32–81.

23. K. Kendall, A Database of Computer Attacks for the Evaluation of Intrusion Detection
Systems, in Massachusetts Institute of Technology. (1998).

24. S. Matzner and T. Hetherington, Detecting Early Indications of a Malicious Insider,
in IA Newsletter. 7:2(2004) 42–45.

25. N. Nguyen and P. Reiher and G. H. Kuenning, Detecting Insider Threats by Monitor-
ing System Call Activity, in Proceedings of the IEEE Information Assurance Workshop

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

EVOLVING INSIDER THREAT DETECTION STREAM MINING PERSPECTIVE 23

(IAW). (2003) 45–52.
26. E. E. Schultz, A Framework for Understanding and Predicting Insider Attacks, in

Computers and Security. 21:6(2002) 526–531.
27. E. Eskin and A. Arnold and M. Prerau and L. Portnoy and S. Stolfo, A Geometric

Framework for Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled
Data, in Applications of Data Mining in Computer Security. (Springer 2002)

28. E. Eskin and M. Miller and Z. Zhong and G. Yi and W. Lee and S. Stolfo, Adaptive
Model Generation for Intrusion Detection Systems, in Proceedings of the ACM CCS
Workshop on Intrusion Detection and Prevention (WIDP). (2000).

29. D. Gao and M. K. Reiter and D. Song, On Gray-box Program Tracking for Anomaly
Detection, in Proceedings of the USENIX Security Symposium. (2004) 103–118.

30. J. A. Swets and R. M. Pickett, Evaluation of Diagnostic Systems: Methods from Signal
Detection Theory, in Medical Physics. 10:2(1983) 266–267.

31. M. P. Hampton and M. Levi, Fast Spinning into Oblivion? Recent Developments in
Money-laundering Policies and Offshore Finance Centres, in Third World Quarterly.
20:3(1999) 645–656.

32. X. Yan and J. Han, gSpan: Graph-based Substructure Pattern Mining, in Proceedings
of the International Conference on Data Mining (ICDM). (2002) 721–724.

33. L. Chen and S. Zhang and L. Tu, An Algorithm for Mining Frequent Items on Data
Stream Using Fading Factor, in Proceedings of the IEEE International Computer Soft-
ware and Applications Conference (COMPSAC). (2009) 172–177.

34. M. B. Salem and S. Herkshkop and S. J. Stolfo, A Survey of Insider Attack Detection
Research, in Insider Attack and Cyber Security. 39(2008) 69–90.

35. M. B. Salem and S. J. Stolfo, Modeling User Search Behavior for Masquerade Detec-
tion, in Proceedings of the International Symposium on Recent Advances in Intrusion
Detection (RAID). (2011).

36. C. Chang and C. Lin, LIBSVM: a library for support vector machines, in
ACM Transactions on Intelligent Systems and Technology. (2011) 2:27:1–27:27.
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

37. L. M. Manevitz and M. Yousef, One-class SVMs for document classification, in The
Journal of Machine Learning Research. (March 2002) 2.

38. S. J. Stolfo and F. Apap and E. Eskin and K. Heller and S. Hershkop and A. Honig
and K. Svore, A Comparative Evaluation of Two Algorithms for Windows Registry
Anomaly Detection, in Journal of Computer Security. 13:4 (Amsterdam, The Nether-
lands, July 2005) 659–693.

39. B. D. Davison and H. Hirsh, Predicting Sequences of User Actions. In Working Notes of
the Joint Workshop on Predicting the Future: AI Approches to Time Series Analysis,
in Proceedings of the 15th National Conference on Artificial Intelligence and Machine.
(AAAI Press 1998) 5–12.

40. W. Ju and Y. Vardi, A Hybrid High-order Markov Chain Model for Computer Intru-
sion Detection, in Journal of Computational and Graphical Statistics. (June 2001).

41. R. A. Maxion and T. N. Townsend, Masquerade Detection Augmented with Error
Analysis, in IEEE Transactions on Reliability. (2004) 53(1):124–147.

42. B. K. Szymanski and Y. Zhang, Recursive Data Mining for Masquerade Detection and
Author Identification, in Proceedings of the 13th Annual IEEE Information Assurance
Workshop. (IEEE Computer Society Press 2004).

43. P. Parveen and Z. Weger and B. Thuraisingham and K. Hamlen and L. Khan, Su-
pervised Learning for Insider Threat Detection Using Stream Mining, in Proceedings
of the IEEE International Conference on Tools with Artificial Intelligence (ICTAI).
(2011) 1032–1039.

Published in International Journal on Artificial Intelligence Tools, Vol. 22, No. 5 (1360013)

24 PARVEEN, MCDANIEL, WEGER, EVANS, THURAISINGHAM, HAMLEN, KHAN

44. P. Parveen and J. Evans and B. Thuraisingham and K. W. Hamlen and L. Khan,
Insider Threat Detection Using Stream Mining and Graph Mining, in Proceedings of
the 3rd IEEE Conference on Privacy, Security, Risk and Trust (PASSAT). (2011)
1102–1110.

	Introduction
	Related Work
	Ensemble-based Insider Threat Detection
	Details of Learning Classes
	Experiments
	Results
	Conclusions
	Appendix
	References

