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ABSTRACT
Replacing cuts in a circuit with configurable lookup-tables (LUTs)
that are securely programmed post-fabrication is a logic locking
technique that can be used to hide the complete design from an
untrusted foundry. In this paper, we study the security of basic
LUT-based locking against a set of oracle-less attacks, i.e. attacks
that do not have access to a functional oracle of the original circuit.
Specifically we perform cut graph/truth-table prediction using deep
and graph neural networks with various data encoding strategies.
Overall we observe that naive LUT-based locking with small cuts
with 2 or 3 inputs may be vulnerable to oracle-less approximation
whereas such attacks become less feasible for higher cut sizes. We
open source our software for this attack.

CCS CONCEPTS
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1 INTRODUCTION
Logic locking is a technique that can help hide the full design of
an integrated circuit (IC) from untrusted foundries or end-users.
Locking is done by adding extra “key” inputs into the circuit design
such the IC may not function correctly absent a post-fabrication
configuration of these key inputs to a secret value.

Locking can be done by adding key-controlled XOR/XNOR-
AND/OR-MUX logic [9] into the circuit in what we deem “additive”
locking. “Reductive” logic locking conversely is based on replacing
native parts of the original circuit with key-dependent logic. A
prominent example here is Lookup-Table (LUT)-based locking in
which a 𝑘-input cone/cut in the circuit is replaced with a 𝑘-input
key-controlled lookup-table with 2𝑘 key bits (see Fig. 1). This makes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9322-5/22/06. . . $15.00
https://doi.org/10.1145/3526241.3530377

it such that from the attacker’s perspective the LUT functionality
can be any of the 22

𝑘
different 𝑘-input Boolean functions.

Several oracle-less (OL) attacks against locking have been pro-
posed in recent years. These are attacks that use only the struc-
ture/functionality of the locked semi-programmable circuit to learn
the correct key, as opposed to an oracle-guided (OG) attack which
can use correct input-output patterns collected from an oracle of
the original circuit. SAIL [5] was first to propose analyzing the sur-
rounding logic (neighborhood/locality) of a key-dependent ambigu-
ous part of the locked circuit using machine-learning techniques to
infer the original inserted gate type in XOR/XNOR locking. This
was later on extended in OMLA [4] to use graph neural networks
(GNNs) to process the key-logic neighborhood. Recently in [3] GNN-
based link-prediction was used to attack MUX-based interconnect
obfuscation with great success. SWEEP/SCOPE [2] are OL attacks
that find correct keys by using the fact that loading the correct
key into the locked circuit is not expected to lead to unreasonable
area/delay/power reduction.

To the best of our knowledge, reductive LUT-based locking has
not been extensively studied in the context of machine-learning
oracle-less attacks. In this paper we focus on this problem and
deliver the following:

• We propose CUT-SAIL, a SAIL-based approach to inferring the
functionality/structure of missing 𝑘-cuts from their surrounding
logic using machine-learning.
• We explore several techniques for encoding the missing 𝑘-cut,
including using its truth-table, its adjacency matrix/list, or using
canonical graph representations. We develop a self-referencing
training and prediction scheme as well.
• We perform the above machine-learning attacks on a set of ISCAS
benchmarks and report the results. Our results demonstrate that
LUT-based locking with small LUTs (2, or 3 inputs) may be highly
susceptible to OL approximation, whereas for larger LUTs the
prediction accuracy drops dramatically. We release the source
code for our analysis [1].

The paper is organized as follows: Section 2 covers preliminaries,
Section 3 presents the proposed methodology. Section 4 presents
experimental results. Section 5 concludes the paper.
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Figure 1: LUT-based locking. A 𝑘-cut is replaced with a 𝑘-LUT, which
can be realized as a mux with 2𝑘 configuration bits and 𝑘 select lines.
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Figure 2: (a) the CUT-SAIL problem, (b) predicting the missing cut from its neighborhood, (c) encoding the neighborhood as an ordered list, (d)
encoding the cut using its truth-table, or its adjacency matrix/list.

2 PRELIMINARIES
Formally a circuit locking scheme 𝑐L for a family of circuits C𝑜
is an algorithm that converts an original circuit 𝑐𝑜 ∈ C𝑜 : 𝐼 → 𝑂

where 𝐼 /𝑂 are the 𝑛/𝑚-bit input/output space respectively, to an
obfuscated/locked circuit 𝑐𝑒 : 𝐾 × 𝐼 → 𝑂 , where a polynomial
number of key inputs 𝑙 have been added to the circuit, and there
must exist a correct key 𝑘∗ such that ∀𝑥 ∈ 𝐼 𝑐𝑒 (𝑘∗, 𝑥) = 𝑐𝑜 (𝑥).
C𝑒 = {𝑐𝑒 (𝑘, 𝑥) |𝑘 ∈ 𝐾} is the possible circuit space.

An oracle-guided attacker here in addition to access to the netlist
for 𝑐𝑒 (obvious), can query 𝑐𝑜 on chosen points and obtain 𝑦𝑖 =

𝑐𝑜 (𝑥𝑖 ). An oracle-less (OL) attacker is tasked with the much more
difficult problem of recovering the original functionality absent
oracle queries. This makes oracle-less attacks approximate in nature.
It is difficult if not impossible to achieve key correctness guarantees
in an oracle-less setting.

3 CUT-SAIL: MISSING-CUT-INFERENCE
SAIL [5] initially targeted random XOR/XNOR insertion. In tradi-
tional XOR/XNOR locking 𝑙 wires like 𝑤 are randomly selected,
opened to a left wire 𝑤𝑙 and a right wire 𝑤𝑟 . Then an X(N)OR
gate is inserted 𝑤𝑟 = X(N)OR(𝑘𝑖 ,𝑤𝑙 ). The correct key bit is the
value that makes𝑤𝑟 = 𝑤𝑙 = 𝑤 as it was in the original circuit. An
XOR/XNOR hence leads to the correct key 0/1 respectively. This
means that the type of the inserted gate readily reveals the correct
key bit. Therefore, XOR/XNOR insertion must be followed by post-
insertion mixing/resynthesis. During resynthesis and technology
mapping, the type of gates can change, and the inverter operator
at the output of an XNOR can get pushed around onto other wires.
This can dilute the direct association between the correct key and
the key inputs’ neighborhood.

SAIL is based on the following flow: the post-resynthesis local-
ity/neighborhood of a key input is taken, and a machine-learning
(ML) model is used to try to predict the pre-resynthesis neighbor-
hood. From the pre-resynthesis neighborhood, the value of the
correct key bit is then obvious. The ML model can be trained on
thousands of examples of insertion+resynthesis using a given syn-
thesis flow and cell library. It was later shown that one can simply
directly predict the correct key bit (as a Boolean ML problem) from
the post-resynthesis neighborhood [4]. We employ a similar ap-
proach in this paper but rather than predicting pre-resynthesis
circuit structures, or XOR/XNOR key-bits, we aim to infer a miss-
ing 𝑘-cut from its surrounding logic. Formally, we are given a 𝑘-cut
𝑐𝑖 (𝑥1, ..., 𝑥𝑘 ) embedded in a potentially-locked larger circuit 𝑐𝑒 . The
task is to predict the functionality of 𝑐𝑖 given 𝑐𝑒 . Per Fig. 2awe aim to
employ an ML model 𝐹 that takes in some representation of the cir-
cuit minus the missing cut 𝑐𝑒 \ 𝑐𝑖 , and predicts some representation
of the functionality of the cut 𝑐𝑖 , i.e. 𝑅𝑒𝑝𝑐 (𝑐𝑖 ) ← 𝐹 (𝑅𝑒𝑝𝑛 (𝑐𝑒 \ 𝑐𝑖 )).

3.1 Neighborhood Encoding
The first step is to encode and process the cut’s neighborhood. An
𝑙-neighborhood (denoted as 𝐿𝑙 ) of a gate 𝑔𝑖 in the circuit is defined
as gates that have a distance of ≤ 𝑙 to𝑔𝑖 . In SAIL the 𝑙-neighborhood
of the key-controlled XOR/XNOR gate is used as the input to the ML
model. In our case, the 𝑙-neighborhood of a 𝑘-lut can be obtained
by a breadth-first-search (BFS) traversal of depth 𝑙 starting from
the union of the LUT’s inputs and root (output) as the source.

The 𝑙-neighborhood of a key-controlled LUT is itself a graph.
The ML model has to hence take in this graph in some format and
operate on it to use it for prediction. Passing graphs to machine-
learning models has been a topic of extensive research for quite
some time with various frameworks being proposed. We discuss
two main approaches that are applicable herein:

Ordered List Encoding: Conventional neural networks (NNs)
are geared towards matrix data with fixed sizes. This makes it
difficult to directly pass an unstructured 𝑙-neighborhood graph
to an NN. One can convert a graph to its dense adjacency matrix
and pass it to a neural network model. This however quadratically
inflates the data size, since a non-sparse matrix representation of
a graph with 𝑁 nodes is of size 𝑂 (𝑁 2). Converting the graph to
its adjacency list reduces this size complexity to 𝑂 ( |𝑉 | ∗ |𝐸 |) (for a
graph 𝐺 = (𝑉 , 𝐸)). The order in which the nodes in the graph are
written down in an adjacency list/matrix can vary in a topology-
independent manner. This topology-divorced repositioning of input
features can be challenging for a conventional neural network.

If the order in the adjacency list is tied to the topology of the
graph somehow, this can alleviate the issue here. In an ordered list
encoding of the kind we use in our work, the 𝑙-neighborhood graph
of a cut is converted to a list with nodes near the cut being written
down before distant nodes.

For the gates 𝑔𝑖 ∈ 𝐿𝑙 , the ordered-list neighborhood encoding
creates a vector OrdNList(𝐿𝑙 ) by first appending all the gates at
distance 1 from the cut, then those at distance 2, and so on. A
negative sign can be added to the encoding of nodes that are in the
fanin of the cut to differentiate them from those in its fanout. In
this encoding approach, the explicit connection between the gates
in 𝐿𝑙 is lost. Only their closeness to one another is captured within
the order of the list.

For each gate 𝑔𝑖 ∈ 𝐺𝑖 , its gate-feature-vector is included in
the neighborhood ordered list encoding. The gate feature that we
use, captured by 𝑔𝑒 in Fig. 2, consists of an integer denoting the
functionality of the gate by its unique index in the gate library. This
is then followed by the number of inputs to the gate. Neighborhoods
that do not reach the 𝑙 gate count are padded with zeros to the
maximum size 𝑙 in the dataset. The above 𝐿𝑙 is in the form of a
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vector and can hence be passed to a neural network or other vector-
receiving ML models.

Graph-Neural-Network: In the above ordered-list encoding
the explicit connections between the nodes in the graph of 𝐿𝑙 are
lost. The closeness of two nodes is carried on the order of the list.
While there are ways to increase topological information in the
neighborhood encoding1, a modern alternative to the above prob-
lem is using graph-neural-networks (GNNs). These are ML models
that operate directly on graphs and hence can capture the topology
of a graph natively. A common such model is a graph-convolutional-
network (GCN) [6]. A GCN layer performs the following operation
on node encodings 𝐻 (𝑙) in a graph to update them:

𝐻 (𝑙+1) = 𝜎 (�̃�−
1
2𝐴�̂�−

1
2𝐻 (𝑙)𝑊 (𝑙) )

With �̃� = 𝐴 + 𝐼𝑛 being the adjacency matrix of the graph added
with 𝐼𝑛 denoting self-connections for each node, �̃� the degree ma-
trix of the graph,𝑊 the layer’s weights, and 𝜎 the activation func-
tion of the layer. In each application of the layer, the previous node
encodings are updated via combining themwith weights and encod-
ings from their neighbors through the matrix𝐴. Since the operation
corresponds to passing data around in the graph, the explicit full
rank adjacency matrix 𝐴 is not needed. 𝑙 GCN layers correspond to
each node sensing information from 𝑙 hops away in the graph.

With a GCN we can pass the neighborhood graph 𝐿𝑙 directly
to the graph ML model. OMLA [4] applied a similar approach to
XOR/XNOR OL deobfuscation and observed superior results. Our
results confirm that the GCN is indeed superior to the ordered list
neighborhood encoding in the cut-prediction task as well.

3.2 Cut Encoding
The ordered list or GCN can both process the OL attack problem
input, 𝐿𝑙 . Now the question is how to capture/encode the missing
cut’s functionality, i.e. the output of the ML model. We explored
several approaches in our work that we discuss here:

Truth-Table: To our surprise, we discovered that the best per-
forming encoding for the cut in our experimental setup appeared to
simply be its truth-table. Here per Fig. 2d given a cut 𝑐𝑖 (𝑥1, ..., 𝑥𝑘 ),
we simulate the cut on all 2𝑘 possible input patterns and record its
output bit in a 2𝑘 vector. This encoding grows exponentially with
the size of the cut inputs 𝑘2.

1[10] for instance reports beating graph-neural-networks by passing sorted encoding
lists along with other list-based topological information to a transformer.
2note that this is not an entirely symmetric challenge for the attacker. i.e. a defender
trying to incur exponential encoding size cost on the attacker by raising 𝑘 , may cost
himself exponentially in terms of area overhead if using 2𝑘 -entry fully-programmable

Adjacency Matrix: We can encode the cut using its adjacency
matrix maintaining reversibility. Per Fig. 2d, for a cut with 𝑠 nodes
(𝑘 inputs plus gates) an (𝑠) × (𝑠 + 1) matrix is built. The 0th column
stores the features for each node, i.e. the input index for input nodes,
and the gate-feature for gate nodes. The 1-to-𝑠 + 1 columns are set
to all zeros except for 1s in each (𝑖, 𝑗 + 1) locations where node 𝑖
has an outgoing connection to node 𝑗 . This produces an encoding
of size 𝑂 (𝑠2) which is manageable for the 𝑘-cuts (𝑘 < 8) explored
in our experimentation. Smaller matrices are padded with zeros to
the maximum adjacency matrix size in the dataset.

Adjacency List: Another way to encode the cut reversibly is
using its adjacency list per Fig. 2d. Here starting from the root node
in the cut, its gate feature is added to the encoding vector, followed
by listing its fanins. The gate feature includes the number of fanins,
which signals to a reverse parser where the fanin description ends
and the next node starts. Smaller cuts are padded with zeros to the
maximum adjacency list size in the dataset.

Canonical Graph Encoding: Two graphs𝐺1 and𝐺2 are isomor-
phic if it is possible to relabel the nodes of 𝐺1 to obtain𝐺2. Graph
isomorphism (GI) is an NP problem with no known polynomial-
time solver. However, there are software libraries that can compute
GI efficiently for reasonably sized graphs. The nauty [8] library is
one of such tools. In addition to solving GI, nauty has functionality
for “canonical labeling” of a graph. If two graphs are isomorphic,
DFS/BFS on the two graphs will produce the same sequence of
nodes if nodes with higher/lower canonical labels are explored first
in the DFS/BFS tree. Hence, performing the adjacency list encoding
while respecting the ordering set by the canonical labeling pro-
duced by nauty can create an encoding that unlike the adjacency
list/matrix is preserved under a set of node permutations. Per Fig.
3 the first two cuts 𝐶1 and 𝐶2 have different adjacency list/matrix
encodings, yet their canonical list encoding is the same.

An important functionality in nauty is the ability to color the
nodes in the graph. Graph isomorphism between 𝐺1 and 𝐺2 with
colored nodes requires that the relabeling-map that takes 𝐺1 to 𝐺2
to be color-preserving. We color the input nodes in the cut with 𝑘
different colors and the gates with 𝑔 different colors for each gate
functionality. This can be seen in Fig. 3.

3.3 Constructing and Training the Model
Model Output Layer. The output layer of the network is hence
heavily dependent on the type of cut encoding. We use a dense
layer followed by a sigmoid activation function for predicting truth-
tables bit-vectors. For adjacency-matrix/list/nauty encodings the
output is a sequence of numbers. We one-hot encode these numbers
and use a dense+softmax layer to produce each one.

Categorizing Cut Encodings. A technique that showed signifi-
cant accuracy improvement was output categorization. Here we take
a hash of the cut encoding (bit-vector for a truth-table or number
sequence in for adjacency-list/matrix encodings) and add it to a
hash-set. The hash-set will map each possible output/cut encoding
to a single index in the set. Denote the size of this set as |𝐶𝐸 |. Now
rather than having the model predict individual fields in the cut
encoding vector, we train the model to only predict an index into

LUTs. Semi-programmable structures may break this tie but are outside the scope of
this paper [7]
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Figure 4: GCN LUT-prediction accuracy (percentage of perfect matches) on pristine combined benchmark set for different values of 𝑙 and 𝑘 and
different cut encodings with output categorization activated.
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and different cut encoding schemes.

|𝐶𝐸 | via a softmax. If |𝐶𝐸 | is prohibitively large, this can create an
equally large NN/GCN model. However, for small values of 𝑘 (less
than 8 in our experiments) this appeared manageable (less than
10K).

Training via Cut-Enumeration and Self-Referencing. We
can mount the above CUT-SAIL OL attack under two different
threat models. Model1: the attacker trains the model on a large set
of unobfuscated/pristine benchmark circuits that are synthesized
using the same library and synthesis flow as the locked designs.
Model2: the attacker can use the obfuscated circuit itself as a train-
ing data generator. In this “self-referencing” approach (per the
terminology in [4]) the attacker does not need access to a replica
of the defender’s synthesis flow+library.

In both cases, training data requires generating a set of neigh-
borhoods {𝐿𝑙 } along with their correct 𝑘-cut functionality encod-
ing. This cannot be done on cuts in the obfuscated circuit that are
missing, i.e. have been mapped entirely to a key-controlled 𝑘-LUT.
However, it can be done on every present 𝑘-cut in the circuit, by
simply imagining that it was missing and using its neighborhood to
predict it. We can generate a large amount of such data from obfus-
cated or pristine circuits via cut-enumeration. The cut-enumeration
procedure works by recursively finding new cuts rooted at a node
by replacing cuts in the current cut set, with cuts with more inputs
by moving the cut’s boundary.

Poisoned Data. As the circuit is obfuscated with more and more
LUTs, the self-referenced training data will have more and more
missing functionalities in the set of 𝑙-neighborhoods. During train-
ing, we deal with this by first trying to avoid other 𝑘-LUTs in the
vicinity of the target cut as much as possible. If this is not possible
for some cuts, we set the missing functions in the 𝑙-neighborhood to
the most common 𝑘-cut in the rest of the circuit in a greedy manner.
More intelligent approaches such as A-star search are possible but
not explored here.

𝑙=3 𝑙=6 𝑙=8 𝑙=18
𝑘 catCE NN GCN NN GCN NN GCN NN GCN

2 - 73 74.4 74.1 78.9 74.8 79.6 74.9 78.3
✓ 74.9 76.2 76.6 80.4 78.1 82 78.2 82.5

3 - 32.7 40.1 35.2 38.8 37 37.7 36.8 39.1
✓ 42.9 48.4 48.6 53.3 50.8 51.1 50.1 54.1

4 - 0.965 0.851 2.24 0.738 1.62 1.65 1.53 1.59
✓ 10.9 12.5 16.2 15.4 20.6 17.1 20 17.1

5 - 0.892 1.78 4.24 0.964 4.29 4.14 4.99 1.16
✓ 8.48 9.64 18.4 16.2 25.6 18.9 26 19.4

6 - 0.768 0.791 1.54 1.02 1.33 0.605 1.51 0.931
✓ 5.63 4.98 7.8 7.91 10.3 8.61 27.2 10.4

7 - 0.664 0.387 0.609 0.996 0.387 0.277 0.692 0.498
✓ 3.21 2.77 6.5 3.32 6.72 2.43 5.84 2.38

Table 1: GCN vs NN 90/10-train/test split prediction accuracy over
unobfuscated combined benchmark circuits with different 𝑙 and 𝑘

and truth-table encoding. catCE denotes w/output categorization.

4 EXPERIMENTS
We implemented the above CUT-SAIL framework in Python using
tensorflow, spektral, and pynauty. Tests were run on an AMD
Ryzen Threadripper 3990X with 128 logical cores and 256 GB of
memory running Linux with no GPU acceleration. As benchmarks,
we used a random selection of ISCAS combinational and sequential
benchmarks as seen in Table 2 (42 original circuits and 608 locked
circuits in total). The benchmarks were resynthesized using ABC
with a cell library with basic primitive gates. Our script supports
designs in the NanGate45nm library as well.

Combined Dataset (Model1). Fig. 5 shows the neighborhood
and cut encoding count over all 𝑘-cuts enumerated for all 42 circuits
in the unobfuscated benchmark set for different 𝑘 and 𝑙 (neighbor-
hood depth) values. For 𝑘 ≤ 7 the number of different cuts remains
below 10K allowing for manageable output categorization.

We use a graph neural network with 3 GCN layers with 32 chan-
nels before an output layer. For ordered-list neighbor encodings we
used a neural network with 3 layers each with

√
𝑛𝑜𝑢𝑡 ∗ 𝑛𝑖𝑛 hidden

neurons before the output layer which is constructed following 3.3.
Inferring cuts with different 𝑘 requires different ML models in our
current implementation. We train both NN and GCN models for
250 epochs with an Adam optimizer and a batch size of 50 with
early stopping enabled. No training task on the combined dataset
took more than an hour to finish.

Fig. 4 shows the GCN’s LUT-prediction accuracy (number of
perfectly recovered LUTs with 90/10-train/test split) over all 𝑘-cuts
(limit of 20 per node) enumerated in the unobfuscated benchmark
set. It can be seen that the truth-table cut encoding is the best per-
former achieving above 80% accuracy (translates to 90% > key-bit
accuracy) on 2-LUT recovery followed by nauty and the adjacency



stats perc=5% perc=10% perc=15% perc=20%
bench i/o g nl k=2 k=3 k=4 k=5 nl k=2 k=3 k=4 k=5 nl k=2 k=3 k=4 k=5 nl k=2 k=3 k=4 k=5
s298 17/20 101 6 50 56.2 45.8 43.8 11 68.2 55.7 48.9 46.9 16 62.5 58.6 39.2 44.4 21 71.4 72 40.4 39.6
s349 24/26 116 6 100 54.2 59.4 66.1 12 87.5 61.5 55.7 62.2 18 90.3 63.2 48.3 56.2 24 93.8 64.6 57.2 59.6
s386 13/13 132 7 67.9 60.7 57.1 56.2 14 69.6 65.2 56.7 46.7 20 72.5 64.4 45.9 53.3 27 76.9 67.1 54.6 43.4
s641 54/42 148 8 87.5 79.7 48.4 53.9 15 70 59.2 62.5 57 23 69.6 55.4 59 60.4 30 68.3 70.4 57.6 53.1
s713 54/42 149 8 50 60.9 39.1 64.5 15 78.3 61.7 54.2 58.5 23 76.1 63.6 57.7 46.2 30 71.7 75 53.7 63.1
s526 24/27 156 8 46.9 51.6 54.7 58.6 16 71.9 53.9 53.9 53.1 24 79.2 62 54.9 43.6 32 68 59.4 52.3 56.1
c432 36/7 198 10 82.5 73.8 61.3 60 20 66.2 60.6 55 64.1 30 85.8 72.1 61.7 67.1 40 73.1 66.2 55.9 61.9
s510 25/13 209 11 77.3 61.4 53.4 60.2 21 82.1 79.2 63.7 69.9 32 72.7 84 65.6 71.4 42 78.6 79.5 66.9 63.8
s499 23/44 222 12 54.2 90.6 64.8 74.2 23 21.7 82.1 65.6 73.9 34 52.2 82 65.6 73.9 45 50 82.8 56.2 73.9
s820 23/24 265 14 67.9 80.4 56.7 65.4 27 66.7 77.8 60.9 63.4 40 74.4 77.2 62 60.8 54 67.6 71.1 60.7 65.7
s991 84/36 297 15 90 79.2 70.4 57.3 30 78.3 70.4 72.1 64 45 74.4 65.3 69.9 67 60 75 74.4 72.2 71.8
c880 60/26 308 16 65.6 70.3 53.5 56.6 31 86.3 66.9 65.9 65 47 81.4 68.1 59 60.1 62 82.7 69.8 60.2 57.6
s953 45/52 373 19 64.5 74.3 63.8 74.3 38 65.1 72.7 73.7 65.8 56 60.7 75.7 65.7 65.8 75 63.3 84.8 70.8 69.8
s967 45/52 390 20 80 60 60.9 75.8 40 82.5 72.8 70.9 70.1 59 73.7 75.2 64 73 79 79.7 77.8 69.6 74.8
c1908 33/25 398 20 78.8 75 56.2 51.1 40 81.9 73.1 54.4 55.4 60 83.8 81.5 60.2 64.4 80 82.2 79.7 62.5 55.8
s1269 55/47 408 21 90.5 85.7 71.4 70.1 41 95.7 72.9 69.2 67.4 62 88.3 71 68 58.4 82 89.3 70.1 64.3 67.7
s1196 32/32 444 23 91.3 84.2 63.3 65.4 45 78.3 76.4 64.4 65.8 67 82.1 71.6 64.1 63.8 89 78.1 80.8 66.2 63.3
s1512 86/78 459 23 88 72.3 61.4 53.4 46 87 71.2 59.8 52.7 69 89.5 71.6 53.1 52.9 92 80.4 69.4 50.9 51.9
c1355 41/32 481 25 100 83 60.2 57.9 49 95.4 70.9 61.7 41.9 73 98.3 72.6 54.5 36.5 97 96.9 76.4 54.7 37.2
s1238 32/32 485 25 76 83 64 59.9 49 86.2 81.1 57.4 58.3 73 79.5 82.9 63.3 62.3 98 82.9 76 60.9 58.9
c499 41/32 487 25 100 74 72.8 63.2 49 99.5 73 56.1 42.7 74 95.9 77.2 59 40.5 98 94.6 76.8 52 40.3
s1423 91/79 513 26 65.4 55.3 50.5 54.2 52 67.8 57.2 53.4 53.8 77 75.3 57.6 51.5 53.8 103 72.6 58.7 48.7 53.9
s1488 14/25 575 29 86.2 63.4 62.1 60.9 58 88.4 67.7 58.9 64 87 90.2 67.2 58.8 63.8 116 86.9 68.1 63.5 60.1
c2670 157/64 628 32 77.3 71.9 54.1 59.2 63 88.1 69.6 60.6 62.1 95 82.4 63.8 59.6 64.1 126 82.9 65 56.7 62.9
c3540 50/22 938 47 82.4 69.9 61.4 58.6 94 88 70.3 59.8 60 141 86.5 72.6 59.2 62.6 188 85.4 75.7 59 61.1
s3384 226/209 1049 53 70.8 59.4 59.1 54.1 105 81.9 61.8 55.8 53.5 158 77.4 58.9 54 53.3 210 71 58 54.3 52.7
s3271 142/130 1106 56 92.4 60 57.1 60.5 111 86.7 62.6 59.7 63.6 166 86 62.1 56.3 62 222 93.6 65.7 53.4 57.9
s5378 214/213 1169 59 86 67.8 53.9 62.3 117 79.9 70.1 60.7 65.7 176 81.7 73.2 61.2 66.2 234 82.2 71.9 61.6 66
c5315 178/123 1264 64 89.5 85.4 66.2 65.8 127 84.3 76 67.1 63 190 86.4 77 66.4 63.3 253 87.4 84.7 65.8 62.6
s4863 153/88 1458 73 91.8 76.4 69.3 58.9 146 95.4 72.3 62.6 55.3 219 87.9 74.9 62.4 55.8 292 88.3 72.9 61.9 55.5
s9234 247/250 1504 76 87.5 70.6 62.3 60 151 81.3 65.5 58.1 61 226 85.5 71.8 57.3 60.3 301 82.4 68.3 56.5 62.1
c7552 206/107 1510 76 83.2 70.7 59.8 50.6 152 86.7 65.5 56.3 53.7 227 85.8 67.5 55.2 51.2 303 84.2 65 55.1 54.6
s6669 322/269 1854 93 86.8 66.5 62 55.9 186 78.1 69 58.4 56.8 279 84.3 68 59.3 56 371 83 68 61.7 56.1
c6288 32/32 1917 96 97.4 98.8 79.6 57.3 192 99 96.5 73.3 57.3 288 97.8 90.9 75.2 57.8 384 97.8 75.5 73.5 57.3
s13207 700/790 2600 131 74.4 71 62.2 53.9 261 76.6 64.2 52.6 52 391 71.2 69.9 45.5 51.8 521 73.4 69.4 48.6 53.8
s15850 611/684 3080 155 83.7 67.8 58.5 57 309 82.7 67.7 55.5 54.7 463 81.2 64.8 49.4 52.8 617 80.9 63.9 48.5 51.9
s35932 1763/2048 8614 431 94.7 80.9 77.3 62.4 862 91.6 83.1 66.1 72.7 1293 90.6 82.8 67.8 70.3 1723 87.9 82.6 72.4 65.4
s38417 1664/1742 9107 456 82.2 64.6 63.2 62.7 911 82 66.3 65 63.1 1367 80.7 64.6 55.4 61.8 1822 79.8 64.6 53.7 62.5
avg-acc 80 71.3 60.5 60.1 80.4 69.6 60.7 59.4 80.9 70.6 58.8 58.7 80.1 71.6 58.8 58.6

Table 2: Single circuit self-referenced CUT-SAIL accuracy. nl is the number of LUTs inserted in the circuit which is derived from
perc × num_gates. 𝑘 is the number of LUT inputs (𝑘-cut).

matrix representation, while the non-canonical adjacency list per-
forms the worst barely achieving 45% on the same task. Table 1
compares the GCN to the NN with various 𝑙 and 𝑘 on the same
dataset with a truth-table encoding. The effect of output categoriza-
tion on the performance can be seen as a near order of magnitude
difference in higher 𝑘 values. The GCN outperforms the NN slightly
confirming the results in [4]. In some higher 𝑘 tasks the NN seems
to beat the GCN which we aim to explore in our future work.

Single Circuit Deobfuscation (Model2). Table 2 shows CUT-
SAIL in a single-circuit self-referencing mode using the GCN with a
truth-table encoding and 𝑙 = 20. An average 80% key-bit prediction
accuracy is observed across the benchmarks with 2-LUT insertion.
No deobfuscation task took longer than 10 minutes. The point at
which data poisoning becomes dominant is likely at higher lock-
ing percentages than 20%. Combining other locking schemes with
LUT insertion can also hurt our current CUT-SAIL implementation,
which a multi-task OL framework may be able to attack.

5 CONCLUSION
We presented CUT-SAIL, an OL ML-based attack that predicts miss-
ing 𝑘-cuts in a circuit. Our results demonstrate that insertion of 2
and 3-input LUTs for obfuscation without any post-processing can
be vulnerable to such OL approximation with 70 − 80% accuracy
reaffirming the point that using fewer larger LUTs may be superior
to using many smaller ones [7].
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