
Graph Neural Network based Netlist Operator Detection
under Circuit Rewriting

Guangwei Zhao
University of Texas at Dallas, ECE Department

Richardson, Texas, USA
guangwei.zhao@utdallas.edu

Kaveh Shamsi
University of Texas at Dallas, ECE Department

Richardson, Texas, USA
kaveh.shamsi@utdallas.edu

ABSTRACT
Recently graph neural networks (GNN) have shown promise in
detecting operators (multiplication, addition, comparison, etc.) and
their boundaries in gate-level digital circuit netlists. Unlike formal
approaches such as NPN Boolean matching, GNN-based methods
are structural and statistical. This means that making structural
changes to the circuit while maintaining its functionality may nega-
tively impact their accuracy. In this paper, we explore this question.
We show that indeed the prediction accuracy of GNN-based opera-
tor detection does fall following simple circuit rewriting. Thismeans
that custom rewrites may be a way to hamper operator detection in
applications such as logic obfuscation where such undetectability
is a security goal. We then present ways to improve the accuracy
of prediction under such transforms by combining functional/semi-
canonical information into the training and evaluation of the ML
model.

CCS CONCEPTS
• Security and privacy→ Security in hardware.

KEYWORDS
graph convolutional network, circuit rewriting, circuit reverse en-
gineering, hardware security

ACM Reference Format:
Guangwei Zhao and Kaveh Shamsi. 2022. Graph Neural Network based
Netlist Operator Detection under Circuit Rewriting. In Proceedings of the
Great Lakes Symposium on VLSI 2022 (GLSVLSI ’22), June 6–8, 2022, Irvine, CA,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3526241.
3530330

1 INTRODUCTION
Modern real-world digital designs are generated by a multi-stage
process akin to software compilation. A description of the func-
tionality of the design is described first in a hardware-description-
language (HDL) programming language. This HDL code is then
typically translated into a data-flow-graph (DFG) with operators
(e.g. addition, multiplication, Boolean, etc.) and operands as nodes,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9322-5/22/06. . . $15.00
https://doi.org/10.1145/3526241.3530330

and edges as connections. Each operator is then mapped to a spe-
cific gate-level circuit structure. The resulting gate-level netlist can
be further optimized during which different operator logic may mix
with each other until a final gate-level netlist is produced.

In this paper, we focus on the problem of recovering the op-
erations in the original HDL/RTL, i.e. the original DFG, from a
gate-level netlist. This problem has important applications. The
first is in “reverse-engineering for trust”. Here, an end-user is given
a gate-level netlist design by an untrusted party that may include
malicious off-spec functionality, i.e. a hardware Trojan. Recovering
a DFG for such a gate-level netlist can help assist the end-user in
verifying that the design is non-malicious.

Second, understanding the limits of operator detection can help
in assessing the security of circuit obfuscation schemes. Circuit
obfuscation schemes are techniques that aim to deliberately ob-
scure the structure or functionality of the circuit which in turn can
hamper successful malicious tampering of the design. If operator
detection is possible in an obfuscated netlist, then the obfuscation
scheme is leaking important information about the functionality of
the design and maybe insecure.

Formal techniques such as equivalence checking or NPN match-
ing [7] can be used to provably find a given operator in a netlist.
However, their complexity is super-polynomial as they require NP-
hard problem solving such as SAT and QBF. Hence, heuristic and
statistical techniques have been used as a less accurate but faster
alternative. Recent work [2] has shown how graph neural networks
(GNNs) trained on labeled netlist examples can detect common
operators with high accuracy (above 80%).

Since the GNN in this approach is only given the graph structure
and node gate types, there is the question of whether it can ac-
curately classify functionally-equivalent yet structurally-different
subcircuits. In this paper, we study this question. Specifically:

• We generate a dataset of operator circuits subject to rewriting,
i.e. replacing circuit subgraphs with functionally equivalent al-
ternatives. We demonstrate how this rewriting can drastically
diminish the accuracy of GNN-based operator detection.
• We in response add a set of functionality-aware features to the
model and show how this improves the detection accuracy of the
model. We also demonstrate how training on synthetic rewritten
data can improve accuracy.

The paper is organized as follows: Section 2 presents preliminar-
ies and background. Section 3 presents our technical approach to
the studying the issue. Section 4 presents experimental results and
Section 5 concludes the paper.

https://doi.org/10.1145/3526241.3530330
https://doi.org/10.1145/3526241.3530330
https://doi.org/10.1145/3526241.3530330

2 PRELIMINARIES
Graph Neural Network (GNN). Traditional neural networks re-
ceive vector/matrix data. Hence they cannot directly operate on
compact representations of graphs. Graph Neural Networks (GNNs)
are models built for this task from the ground up.

A Graph Convolutional Network (GCN) [6] is one of the most
prominent GNN structures. The layer performs the following oper-
ation on node encodings 𝐻 (𝑙) updating them to 𝐻 (𝑙+1) :

𝐻 (𝑙+1) = 𝜎 (�̃�−
1
2𝐴�̂�−

1
2 𝐻 (𝑙)𝑊 (𝑙))

Here �̃� = 𝐴+𝐼𝑛 is the adjacencymatrix of the graph𝐴 plus 𝐼𝑛 self-
connections. �̃� is the degree matrix of the graph,𝑊 is the layer’s
weights, with 𝜎 as the activation function of the layer. Therefore,
the previous node encodings are updated via combining them with
weights and information from their neighbors through the matrix
𝐴. This corresponds to passing data around in the graph, without
the need for operating on the explicit full-rank adjacency matrix 𝐴.
𝐿 GCN layers correspond to each node sensing information from 𝐿

hops away in the graph. After the 𝐿 rounds, one can use the node
encodings𝐻 (𝑙) for node-level regression/classification. Graph-level
prediction can be done by aggregating the final node encodings
𝐻 (𝑙) using various aggregation techniques.

GNN-RE: GNN-based Reverse Engineering (Operator De-
tection). As first introduced in [2], one can take a set of RTL exam-
ples with known operations, synthesize them down to the gate-level
netlist while maintaining what operator each gate belongs to. Then
the operator membership of each gate is used as a node-level label
that a GNN will be trained to predict. On datasets consisting of sev-
eral operations (multiplication, addition, multiplexing, etc.) GNNs
were shown to achieve higher than 80% accuracy.

In GNN-RE, the circuit is encoded as a graph with gates as nodes
and connections between the gates as edges. The initial node en-
codings in GNN-RE consist of several fields. These fields include
the count of gates with specific functionalities in the ℎ-hop neigh-
borhood of the node. So the initial encoding in GNN-RE already
includes some form of neighborhood information. The GraphSAGE
library was used in GNN-RE which samples fixed-length walks of
the graph rather than applying a GCN directly. The authors argued
that this would assist in reducing the runtime complexity, by al-
lowing the user to train on a sampled subset of the graphs in the
circuits. Since the goal here is classification, a softmax layer at the
output of the model was used to classify each node to one of the
available operator categories.

3 OPERATOR-DETECTION UNDER CIRCUIT
REWRITING

3.1 Circuit Rewriting
Circuit rewrites are used extensively in logic synthesis and DFG
optimization. Consider the fact that 𝑎 + 𝑏 − 𝑎 = 𝑏. This means that
if we search the DFG of a program/circuit and are able to find an
expression matching 𝑎 + 𝑏 − 𝑎, we can simply replace it with 𝑏.
Such a rewrite will reduce the complexity/size of the graph. The
same can be done for Boolean logic circuits. ABC for instance, as
one of the fastest yet most effective logic minimization tools, uses
an And-Inverter-Graph (AIG) rewriting algorithm [8]. Here the
circuit is first converted to an AIG. Then the algorithm attempts to

replace 4-input subcircuits in the AIG with a set of pre-compiled
optimal alternative structures and see which replacement produces
the most area/delay savings.

It is possible to generalize and formalize the notion of rewriting
for Boolean circuits. Here, given a circuit 𝐶 (𝑥) = 𝑦 with primary
inputs 𝑥 and outputs 𝑦 consisting of gates 𝑔𝑖 that can take on
functions from a basis 𝐵 (i.e. 𝐵 = {AND/OR/NAND/NOR/BUF}), a
rewriting procedure 𝑅 is a (probabilistic) algorithm that alters the
structure of 𝐶 while maintaining its functionality. i.e. 𝐶 ′ ← 𝑅(𝐶)
where ∀𝑥 ∈ 𝑋, 𝐶 (𝑥) = 𝐶 ′(𝑥).

3.2 Theoretical Limits
Consider a synthesis flow in which the DFG of the HDL is converted
to a gate-level netlist by a one-for-one simple replacement of the
operators in the DFG with cells from a pre-compiled public circuit
library. Here a reverse-engineer with knowledge of the library can
in theory recover the precise DFG. In the worst-case, the reverse-
engineer may use subgraph-isomorphism (SGI), which is an NP-
complete algorithm, against the circuit library. A trained GNN
while not as complete as the SGI approach, will learn the library
structures over time and hopefully predict the right operators.

Both the SGI and GNN approach however can fail as soon as even
simple rewriting is applied. Consider the case of a bit-wise XOR
operation applied to two 8-bit words 𝑦 = 𝑎 ⊕ 𝑏. One can randomly
pick 4 of the bits in the operation, replace the XOR gate with an
XNOR gate plus an inverter at one of its inputs. SGI will no longer
match this as an 8-bit XOR. Instead, it may detect it as a 4-bit XOR
and a 4-bit XNOR. If the inverter on one of the bits is pushed into
neighboring logic it can hamper SGI’s matching of that logic as
well. A GNN that is trained on recognizing 8-bit XORs, may run
into issues here too. Although the statistical nature can make it
more robust than the SGI approach.

If an equivalence-checking (EQ) approach is used instead, it may
be able to detect that the functionality of the circuit has been pre-
served despite the rewritings introduced. The broader question of
whether rewriting can in an information-theoretic manner hide
the original DFG remains. One can envision cases where a DFG
is rewritten in a manner where no algorithm can successfully dis-
tinguish between alternative choices of original DFGs. Finding a
rewriting procedure 𝑅 that can with provable security hide maxi-
mally that which is “hide-able” in the circuit in the first place will
be an indistinguishability-obfuscator 𝑖𝑂 . Developing 𝑖𝑂 has been
a holy grail in cryptography for more than a decade [5]. 𝑖𝑂 with
low-overhead has been quite elusive. Hence, there are some practi-
cal limits to how much rewriting/structural-obfuscation can hide
high-level functionality.

In this paper, we show that practical simple rewriting does hurt
the accuracy of GNN-based prediction. Secondly, we show that
as intuited here incorporating features that capture functionality
rather than mere structure do indeed improve model accuracy in
the presence of rewrites.

3.3 Dataset Generation
Operator-DAGs. In order to train and evaluate our models in this
paper, we need training datasets of circuits. The circuit gates need
to be labeled according to the operator that they belong to. In [2] au-
thors created several handcrafted HDL circuits and synthesized and

(a) The behavior-level operator DAG

0

37 165or0.5_

1

or0.6_

2

166 167

3

49

mu3.1_

4

45 47mu3.2_

5

42 43mu3.3_

6

5354mu3.4_

7

164

mu3.5_

8

147

910

146

11

12

144 145

1314

129

15 16

17 18

130

19

20

136

2122

23

109

24

110

25

26

27 28

29

30

131

3132

33

118

34

119

35

36

38

39

40

41

44

46

48

5051

52

55

170

171

175 179 183 187 191 221

225

56

169

57

an7.6_

58

59

xo6.6_

60

or0.7_

6162

mu3.7_

63

64 65

66

67

68

6970

71

72

73

74

75

76

77

78

79

80

81

82

8384

85

86

87

219

pl4.0_88

189pl4.1_89

185pl4.2_

90

181pl4.3_

91

177pl4.4_

92

173pl4.5_

93

pl4.6_

94

223pl4.7_

95 96

97

98 99

100

101 102

103

104

105

134135

106

107

108

111112

113

114 115

116

117

120

121

122

or0.4_

123

or0.3_

124

125

or0.2_

126

or0.1_

127

128

or0.0_

142143

132133

140141

138

139

137

mu3.6_

148

149

150

151

163

152

160

153

157

154

155

156

159

158

162

161

168

co5

an8.6_

172

xo6.5_

174

an7.5_ an8.5_

176

xo6.4_

178

an7.4_

an8.4_

180

xo6.3_

182

an7.3_

an8.3_

184

xo6.2_

186

an7.2_

an8.2_

188

xo6.1_

190

an7.1_

an8.1_

192

216

193

202

194

200

195 196

198

197

201

199

205

203

204

208

206

207

211

209

210

215

212

214

213

218co2

217

xo1.0_

xo6.0_

220

an7.0_an8.0_

222

xo6.7_

224

an7.7_ an8.7_

226

xo1.6_

227

xo1.5_

228

xo1.4_

229

xo1.3_

230

xo1.2_

231

xo1.1_

232

xo1.7_

233

234

235

236

237 238239

240

241

249

242243

250260

244

245

253

mu3.0_

246

252

247 248

261

256

251

254

268

255

266 267274

264265

257

263

258259

281282

277

262

269

291

270 290

289

271

275

272273

276

287 288

285286

278

284

279 280

283

293

292

in0.0_mu in0.1_muin0.2_muin0.3_mu in0.4_mu in0.5_mu in0.6_muin0.7_mu in1.0_an

in1.1_or

in1.2_an

in1.3_or

in1.4_an

in1.5_or

in1.6_an

in1.7_an

in2.0_co in2.1_coin2.2_co

in2.3_co

in2.4_co in2.5_co

in2.6_coin2.7_co

in3.0_xo

in3.1_xo

in3.2_xo

in3.3_xo

in3.4_xo

in3.5_xo

in3.6_xo

in3.7_xo

in4.0_mu in4.1_muin4.2_muin4.3_mu in4.4_mu

in4.5_mu

in4.6_mu

in4.7_mu

in5.0_pl

in5.1_pl

in5.2_pl

in5.3_pl

in5.4_pl

in5.5_pl

in5.6_pl

in5.7_pl

in6.0_xo

in6.1_xo

in6.2_xo

in6.3_xo

in6.4_xo

in6.5_xo

in6.6_xo

in6.7_xo

in7.0_an

in7.1_or

in7.2_an

in7.3_or

in7.4_an

in7.5_or

in7.6_an

in7.7_an

in8.0_pl

in8.1_pl

in8.2_pl

in8.3_pl

in8.4_pl

in8.5_pl

in8.6_pl

in8.7_pl

in9.0_co in9.1_coin9.2_co

in9.3_co in9.4_co

in9.5_coin9.6_coin9.7_co

(b) The gate-level operator DAG

Figure 1: An example of a random generated operator DAG with
10 inputs and 9 operations. The operators (&:and, ∧:xor, |:or,
>=:comparison, +: add, ∗: multiply) are colored in the DAG the same
color as gates that belong to them in the netlist.

labeled their gate-level netlists. In our work, we automatically gen-
erate HDL (Verilog) designs. These are built via a DAG construction
algorithm.

The algorithm is as follows. The user selects the number of input
words 𝑥𝑖 and their width |𝑥𝑖 |. A list 𝐿 = {𝑥0, ..., 𝑥𝑛} is constructed
first that includes these words. At random two elements of 𝐿 are
picked, and a binary operator is applied between them. The oper-
ators are picked at random from a set of possible operators with
user-specified selection likelihood weights. We use the following in
our experiments: {multiplication:0.3, addition:1, xor:1, or:1, and:1,
comparison:1}.

Each time an operator is applied its resulting word is added
back into the list 𝐿. To ensure the connectedness of the inputs,
intermediate DAG nodes are not picked until all input words have
been picked at least once. The user can specify how many nodes to
add. In our experiments, we stop once 𝑛 − 1 operators have been
created with 𝑛 being the number of input words. The resulting HDL
is then synthesized to gate-level.

In order to label the gate-level design we first use a directive
to keep the word wires alive during the synthesis process. Then,
given a binary operator 𝑦 = 𝑜𝑝𝑡 (𝑥𝑖 , 𝑥 𝑗), starting from the wires in
𝑦, backward BFS exploration until we reach 𝑥𝑖 and 𝑥 𝑗 , will help
identify all the gates that belong to the operator 𝑜𝑝𝑡 .

An example of an operator DAG and its gate-level synthesized
and labeled netlist can be seen in Fig. 1.

Rewriting. As for rewriting, while the space of possible rewrite
transforms is prohibitively large, in this paper, we use a simple
set of rewrite rules revolving around inverter introduction and
absorption. The rules operate on individual gates rather than 𝑘-
cuts as done in AIG-rewriting. We leave the exploration of more
complex rewriting rules to future work.

Our first category of rewrite rules consists of DeMorgan’s law
applied to AND/NAND or OR/NOR gates. Per Fig.2a an AND gate
may be converted to a NOR gate with two inverters introduced

at its inputs: i.e. 𝑎 + 𝑏 = (𝑎 + 𝑏). A similar rule can be applied to
OR/NOR gates. The second rewrite rule is for XOR/XNOR gates.
Here, one can take an XOR gate and convert it to an XNOR gate
with a single inverter added to one of its inputs. i.e. 𝑎 ⊕ 𝑏 = (𝑎 ⊕ 𝑏),
or convert an XNOR to an XOR.

While the above rules primarily introduce inverters into the
design, our third rule category tries to absorb them. Here we replace
an even number of back-to-back inverters with none or absorb an
inverter that follows a gate into the gate (e.g. changing AND+NOT
to NAND) per Fig. 2b.

The above rules are applied by first randomly selecting a subset
of the circuit gates. This subset is sized as an 𝑅𝑝 (rewrite percent-
age) portion of the gates in the circuit. The first and second rules
(inverter introduction) are applied to these gates. Then, the third
rule (inverter absorption) is applied to the entire circuit eating up
extra inverters.

Since we do not outsource the rewriting to ABC or another
synthesis tool we are able to keep track of the node (gate) labels
through the rewriting process. An example rewriting of an operator
DAG with different 𝑅𝑝 values can be seen in Fig. 3.

(a) Rewrite rule one/two (Inverter introduction)

(b) Rewrite rule three (Inverter Absorption)

Figure 2: Simple Rewriting Rules

3.4 Functional Features
As we will demonstrate in Section 4, the above simple rewrite rules
can reduce the GNN’s accuracy significantly. In order to improve
upon the model’s accuracy in the face of rewriting we experiment
with adding functional features to the model in this paper. We
assume the baseline node feature to simply be (a one-hot encoding
of) the functionality of the individual gate itself. We denote this
node encoding/feature with gf. We may append to this baseline
vector additional features as discussed here.

GNN-RE features. We adopt a set of features from GNN-RE [2]
which we denote with gnnre. This includes a 12-dimensional vector.
The first two fields capture the number of PIs and POs that the gate
is immediately connected to. The last two fields capture the input
and output degree of the gate in the circuit graph. The intervening
8 fields document the number of different functions/cell-types in
the 1-hop neighborhood of the gate (given that we have 8 different
functions/cells in our cell library). The gnnre features described
above are still considered structural features as they do not directly
equate to functionality.

0

148293or0.5_

1

or0.6_

2

149 150

3

43

mu3.1_

4

3941mu3.2_

5

36 37mu3.3_

6

47327mu3.4_7

147

mu3.5_8

132

9

10

131

11

129 130

12

288

13

118

1415

16

17

119

18

19

124

2021

22

98

23

99

24

25

2627

28

29

324

30

107

31

108

325

32

33

34

294

35

326

38

40

42

4445

46

48

153 156160 166 195

199

260

275302

49

152

50

an7.6_

51

259

52

xo6.6_

53

or0.7_

54

mu3.7_

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

7475

76

77

78

164pl4.2_

79

296pl4.3_

80

158pl4.4_

81

154pl4.5_

82

pl4.6_

83

197 pl4.7_

84 85

86

8788

89

9091

92

93

94

122 123

95

96

97

100 101

102

103104

105

106

109

110

111

or0.4_

112

or0.3_

113

114

or0.2_

115

or0.1_

116

117

or0.0_

128 272

120

121

126 127

125

328

263

mu3.6_

133

134

135

146

136

143

137

140

138

139

322

142

141

145

144

151

261

276303

co5

155

an7.5_an8.5_

157

xo6.4_

159

an7.4_

an8.4_

161

297 xo6.3_

162

an7.3_

163

xo6.2_

165

an7.2_

an8.2_

167

168 xo6.1_

169

304

an7.1_

170

191

171

177

172 173

175

174

176

180

178

179

183

181

182

186

184

185

190

187

189

188

193co2

192

xo1.0_

300 xo6.0_

194

an7.0_

an8.0_

196

xo6.7_

198

an7.7_an8.7_

200

xo1.6_

201

xo1.5_

202

xo1.4_

203

xo1.3_

204

xo1.2_

205

xo1.1_

206

xo1.7_

207

208

209

210

211

330

212

323

213

214

215

265 216

217

223230 218

219

225

mu3.0_

220

268

221222

231 266

224

227

271

226

235

241

290

234 312

228229

247 320

244

232

233

313

291236

237 255

254

238

242

239240

243

252

253

250 251

245

249

246

248

258

287 256

257

262

an8.6_

264

267

269

270

273

274

278

277

an8.3_

279

281

280

282

283

299pl4.0_

284

286

285

289

292

295 298

301

305

an8.1_

306

308

307

309

311

310

314

315

316

xo6.5_

317

319

318

321

pl4.1_

329

in0.0_mu in0.1_muin0.2_muin0.3_muin0.4_muin0.5_muin0.6_mu

in0.7_mu in1.0_an

in1.1_or

in1.2_an

in1.3_or

in1.4_an

in1.5_or

in1.6_anin1.7_an

in2.0_coin2.1_co in2.2_co

in2.3_co

in2.4_coin2.5_co

in2.6_co in2.7_co

in3.0_xo

in3.1_xo

in3.2_xo

in3.3_xo

in3.4_xo

in3.5_xo

in3.6_xo

in3.7_xo

in4.0_mu

in4.1_muin4.2_mu in4.3_muin4.4_mu

in4.5_mu

in4.6_mu

in4.7_mu

in5.0_pl

in5.1_pl

in5.2_pl

in5.3_pl

in5.4_pl

in5.5_pl

in5.6_pl

in5.7_pl

in6.0_xo

in6.1_xo

in6.2_xo

in6.3_xo

in6.4_xo

in6.5_xo

in6.6_xo

in6.7_xo

in7.0_an

in7.1_or

in7.2_an

in7.3_or

in7.4_an

in7.5_or

in7.6_anin7.7_an

in8.0_pl

in8.1_pl

in8.2_pl

in8.3_pl

in8.4_pl

in8.5_pl

in8.6_pl

in8.7_pl

in9.0_coin9.1_co in9.2_co

in9.3_coin9.4_co

in9.5_co in9.6_co in9.7_co

(a) 10% rewritten

0

or0.6_

1

126 127

2

367

mu3.1_

3

34 36mu3.2_

4

3839mu3.4_

5

124

mu3.5_

6

294

7

113

8

9

112

244

10

102

11

256

12

258

13

103

14

15

366

16

86

17

18

19

20

240

21

104

22 23

24

9225

26

27

125

28

29

30

31 32

33

35

37

237 303

40

129

41

an7.6_

42

131

43

xo6.6_

44

or0.7_

45

246

46

347

47

48

49

50

5152

53

54

55

56

57

58

59

60

61

62

63

307

64

65

348

66

170

pl4.0_

67

144 pl4.1_68

140 pl4.2_

69

296pl4.3_

70

134 pl4.4_

71

pl4.6_

72

266 73

267

74

7576

77

78

361

79

360

80

81

82

269

305

83

84

85

371

87

282

88

89 90

91

254

93

94

95

96

or0.4_

97

or0.3_

98

99

or0.2_

100

101

or0.0_

111 373

304

105

106

108107

340

109110

243

114

mu3.6_

115

116

117

122

118

120

119

252

121

374

123

128

130136 142 146172

176

278330

co5an8.6_

132

291 xo6.5_

133

an7.5_

135

an7.4_

an8.4_

137

297xo6.3_

138

an7.3_

139

xo6.2_

141

an7.2_

an8.2_

143

xo6.1_

145

an7.1_

an8.1_

147

168

148

152

149

154

150

151

153

157

155

156

160

158

159

163

161

162

167

164

166

165

249co2

169

248 xo1.0_

171

an7.0_ an8.0_

173

174xo6.7_

175

an7.7_ an8.7_

177

xo1.6_

178

xo1.5_

179

xo1.4_

180

xo1.3_

181

xo1.2_

182

xo1.7_

183

184

185

186

234

187

188

288309189

190

191

319

192193

198 207

194

201

324mu3.0_

195

200

196197

320358

199

204

202

318

214

203

212 213271

210211

205

359

206

225362

222

208209

215

317

231

216 230

229

217

220

218 219

241

272

221

228 364

227 326

223

226

224

363

327

232

293

233

235

236

238239

365

242

245

247

277329

xo6.0_

250

253

251

255

257

259

260

261

263

262

302 or0.1_

264

265

xo1.1_

pl4.7_

268

270

273

274

276

275

280

279

an8.3_

281

283

284

286

285

287

289

290

292

331

295298

299

301

300

or0.5_

368

306

308

310

311

313

312

314

316

315

mu3.3_

321

322

325

323

369

328

332

an8.5_

333

370

334

335

336

337

338

339

xo6.4_

341

343

342

344

346

345

mu3.7_

349

372

350

351

353

352

354

355

357

356

pl4.5_

in0.0_mu in0.1_mu

in0.2_mu

in0.3_mu in0.4_mu

in0.5_mu

in0.6_mu in0.7_mu in1.0_an in1.1_or

in1.2_an

in1.3_or

in1.4_an

in1.5_or

in1.6_an

in1.7_an

in2.0_co

in2.1_co

in2.2_co

in2.3_co

in2.4_coin2.5_co

in2.6_coin2.7_co

in3.0_xo

in3.1_xo

in3.2_xo

in3.3_xo

in3.4_xo

in3.5_xo

in3.6_xo

in3.7_xo

in4.0_mu

in4.1_mu

in4.2_muin4.3_mu

in4.4_mu

in4.5_mu

in4.6_mu

in4.7_mu

in5.0_pl

in5.1_pl

in5.2_pl

in5.3_pl

in5.4_pl

in5.5_pl

in5.6_pl

in5.7_pl

in6.0_xo

in6.1_xo

in6.2_xo

in6.3_xo

in6.4_xo

in6.5_xo

in6.6_xo

in6.7_xo

in7.0_anin7.1_or

in7.2_an

in7.3_or

in7.4_an

in7.5_or

in7.6_an

in7.7_an

in8.0_pl

in8.1_pl

in8.2_pl

in8.3_pl

in8.4_pl

in8.5_pl

in8.6_pl

in8.7_pl

in9.0_co

in9.1_co

in9.2_co

in9.3_co

in9.4_co

in9.5_coin9.6_coin9.7_co

(b) 20% rewritten

0

or0.6_

1

88381

2

25 348mu3.2_

3

24

297

mu3.3_

4

79

5

399

6

78

242

303

7

69

8

341

9

10

11

322

12

72

13 14

15

16

443

17

431

18

169

19

20

86

21

87

22

23

434

26

an7.6_

27

288

28

or0.7_

29

335

368

30

170

31

32

33

278

34

418

35

36

248

37

38

39

40

41

42

43

44

120 pl4.0_

45

102pl4.1_

46

264pl4.2_

47

184 pl4.4_

48

pl4.6_

49

124 pl4.7_

50

51

52

53

261 286

54

285

55

56

374

57

392

58

59

279

60

61

62

375

63

64

190

235

65

66199 307

or0.4_

67

or0.2_

68

or0.0_

76 77

70 71

74 75

73

317

241304

382

mu3.6_

80

81

85

82

447

83

84 232

328

89

90

94 98101122

126

214223

290

301

91

92xo6.5_

93

an7.5_an8.5_

95

185 xo6.4_

96

an7.4_

97

an7.3_

an8.3_

99

265 xo6.2_

100

an7.2_

an8.2_

103

224

an7.1_

104

113

105

111

106 107

109

108

112

110

115

114

421

116

117

118

119

319 co2

121

an7.0_

an8.0_

123

xo6.7_

125

an7.7_an8.7_

127

xo1.5_

128

xo1.3_

129

xo1.2_

130

xo1.7_

131

272372

132

357

133

422

134

135 136 137

138

219 423

139

175 350

140

144

208403mu3.0_

141

143

142

148 176

145

152

146

327

147

315

326

149

153

150

151388

166

283

154

165

164

155

157

156

342

158

163

351

159

162 255

160

292

161

218417

352

428

284

167

400

240

168

228309

171

334

367

mu3.7_

172

174

173

429

177

179

178

180

181

xo6.6_

182

183

xo1.0_

186

215

187

188

xo1.4_

189

191

192

430

193 194

196

195

230

433

197

198

200 201

202

329

203

205

204

206

209

207

210

212

211

253or0.3_

213

216

an8.4_

217

427

221

220

222

225

an8.1_

226

229

227231

432

233

250pl4.3_

234

236

237

239

238

243

244

245

247

246

249

252

251

254

257

256

258

260

259

406436 or0.1_

262

pl4.5_ 263

266

267

437

268

269

438

270

271

426

439

273

274

276

275

277

419

280

282

281

306mu3.4_

440

287

291

289

an8.6_

293

294

296

295

441

298

299

300

302

co5

305

308

310

311

442

312

313

316

314

318

320

xo6.0_

321

323

325

324

or0.5_ 330

331

333

332

336

337

444

338

339

340

xo1.6_

343

345

344

346

347

xo6.1_

445

349

435

mu3.1_

353

354

356

355

387

359

358

360

362

361

404

363

365

364

366

369

370

371

448

449

373

376

378

377

379

380

xo6.3_

383

384

386

385

389

390

393

391

394

395

396

398

397

mu3.5_

401

402

xo1.1_

405

407

408

409

411

410

416

412

414

413

415

420

424 425

446

in0.0_mu

in0.1_mu

in0.2_mu

in0.3_mu

in0.4_muin0.5_muin0.6_mu

in0.7_mu

in1.0_an

in1.1_or

in1.2_an

in1.3_or

in1.4_an

in1.5_or

in1.6_an

in1.7_an

in2.0_coin2.1_coin2.2_co

in2.3_co

in2.4_co

in2.5_co

in2.6_co

in2.7_co

in3.0_xo

in3.1_xo

in3.2_xo

in3.3_xo

in3.4_xo

in3.5_xo

in3.6_xo

in3.7_xo

in4.0_mu

in4.1_mu

in4.2_mu

in4.3_muin4.4_mu

in4.5_mu

in4.6_mu

in4.7_mu

in5.0_pl

in5.1_pl

in5.2_pl

in5.3_pl

in5.4_pl

in5.5_pl

in5.6_pl

in5.7_pl

in6.0_xo

in6.1_xo in6.2_xo

in6.3_xo

in6.4_xo

in6.5_xo

in6.6_xo

in6.7_xo

in7.0_an

in7.1_or

in7.2_an

in7.3_or

in7.4_an

in7.5_or

in7.6_an

in7.7_an

in8.0_pl

in8.1_pl

in8.2_pl

in8.3_pl

in8.4_pl

in8.5_pl

in8.6_pl

in8.7_pl

in9.0_coin9.1_coin9.2_co

in9.3_co

in9.4_co

in9.5_co

in9.6_co

in9.7_co

(c) 40% rewritten

Figure 3: An operator DAG of 10 inputs and 9 operations rewritten with multiple percentages (𝑅𝑝s).

Truth Table. The truth table is an explicit representation of
the functionality of a circuit. Hence, it may serve as a candidate
functional feature. Note that for an individual gate, its functionality
as defined by the gf feature is simply a representation of its truth
table. So a truth table here would be useful only if it is capturing a
larger subcircuit. In this paper, we experiment with taking the truth
table of multiple subcircuits rooted at a target node as tt features.

This is done by first performing a 𝑘-cut-enumeration on the
target gate 𝑔𝑖 . A 𝑘-cut of 𝑔𝑖 is a connected subcircuit rooted at 𝑔𝑖
with precisely 𝑘 inputs (𝑘-input logic cone). 𝑘-cut-enumeration is a
procedure that finds all the 𝑘-cuts rooted at 𝑔𝑖 with 𝑘 ≤ 𝑠 with 𝑠 as
a user-given parameter. This is done by recursively constructing
new cuts from the existing cut set by replacing a given cut’s 𝑖th
input with the gate that is connected to it, and stopping the process
once the 𝑠 size limit is reached. The tt feature consists of the truth
table of the smallest 3 cuts in the cut-enumeration with 𝑠 = 4. The
table is extracted by simulating the cut for every possible input
pattern, with the nodes being ordered according to their node ID in
the graph. The truth table is represented as an integer that captures
the index of the given truth table in a set of all seen truth tables in
the current circuit database. One can alternatively use the binary
truth table as an integer or as a binary vector.

0.1 0.2 0.4 0.6 0.8 0.9
Rewriting percentage

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

O
ve

rh
ea

d
in

cr
ea

si
ng

pe
rc

en
ta

ge

Figure 4: Overhead statistics on each rewriting percentage. The or-
ange line in each box represents the average value.

NPN Class. The set of all circuits that can be made functionally
equivalent to one another by permuting or negating their inputs and
outputs belong to the same Negation-Permutation-Negation (NPN)-
class. For 4-input single-output circuits, there are 224

= 65536 dif-
ferent truth tables, but only 255 NPN classes. NPN classes are used
in AIG-rewriting [8] to replace 4-input structures with alternative
ones. NPN-matching is the problem of finding an NPN-equivalent
subcircuit in a larger circuit and has been used traditionally for
operator detection [10].

Truth table features are sensitive to the ordering of the input
wires. However, the NPN class of a cut is not. Hence we experiment

with including NPN classes in the node feature vector. The npn
features in our experiments consist of the NPN class of the smallest
3 cuts in the cut set rooted at gate 𝑔𝑖 . The classes are represented
simply by their index in the set of all seen NPN classes in the dataset
which is extracted beforehand using the testnpn ABC command.
This command given the set of all cut truth tables seen in the dataset
will find their NPN class. A map is pre-compiled from truth tables
to NPN classes which is then used during feature construction.

Signal Probability. Interestingly our most successful feature
appeared to be signal probability (SP). This is defined simply as
the probability of a given net being 1. In a given circuit the signal
probability of internal wires depends on the signal probability of
the inputs themselves. One typically assumes the primary inputs
to be independent random variables with 0.5 signal probabilities.
Given this, computing the precise signal probability of an inter-
nal wire is a #P-complete problem which is believed to be harder
than NP-complete problems [3]. However, it is possible to estimate
with somewhat good accuracy the signal probability of Boolean
circuit nets by simply simulating the circuit for a large number
of input patterns, or by assuming that the input nodes for each
gate are independent variables (not true for convergent paths) and
propagating input probabilities to the output. e.g. the probability
of the output of an AND gate 𝑦 = 𝐴𝑁𝐷 (𝑎, 𝑏) would be calculated
as 𝑠𝑝 (𝑦) = 𝑠𝑝 (𝑎) × 𝑠𝑝 (𝑏).

In our work, we incorporate signal probability into the feature
vector in different ways. These are denoted as 1) gsp: Global SP
uses the probability of an internal node 𝑔𝑖 as seen from the PIs, 2)
csp: Cut SP consists of the signal probability of 𝑔𝑖 as seen from the
smallest 3 non-trivial cuts of the gate, and 3) lsp: Local SP consisting
of the signal probability of 𝑔𝑖 as obtained by backward BFS chunk
of the circuit starting from node 𝑔𝑖 .

Note that tt and npn features are inexpensive to acquire when
the cut size is small ≤ 4, but as it increases, the input space of a cut
to obtain a truth table or NPN class becomes unmanageable. The
global or local signal probability features do not have this issue.
In addition, the input ordering sensitivity that tt features suffer
from is not an issue here since the signal probability of all inputs is
assumed to be 0.5 for the circuit or cut. The probability propagation
also takes less time than truth table or NPN-class extraction. Signal
probability features perform surprisingly well in our experiments.

4 EXPERIMENTS
Experiments were run on an AMD 5900 CPU with 24 threads, 32GB
of memory, running Ubuntu 20.04, with an RTX 3070 TI GPU. We
use spektral [4] for graph learning and implement our rewriting
and feature collection in Python using the pyneos framework [9].

Method gf gf+gsp gf+tt gf+lsp gf+csp gf+npn gf+gnnre gf+gnnre+gsp gf+gnnre+tt gf+gnnre+lsp gf+gnnre+csp gf+gnnre+npn gf+gnnre+tt+npnRewrite
origin 0.8089 0.8305 0.8024 0.8403 0.8143 0.8179 0.9016 0.8708 0.8791 0.8949 0.8936 0.8960 0.8781
10% 0.7008 0.8460 0.5760 0.7655 0.7037 0.6438 0.8079 0.8660 0.7548 0.8207 0.8062 0.6448 0.7190
20% 0.6045 0.7554 0.4047 0.6769 0.5878 0.2667 0.7060 0.7830 0.5550 0.7315 0.6979 0.6932 0.5804
40% 0.4786 0.6258 0.3452 0.5565 0.4520 0.3808 0.5709 0.6539 0.4870 0.6132 0.5577 0.4993 0.4923
60% 0.4091 0.5415 0.3515 0.4853 0.3828 0.2249 0.4911 0.5684 0.4497 0.5445 0.4778 0.4227 0.4302
80% 0.3699 0.4875 0.3146 0.4432 0.3387 0.2941 0.4418 0.5107 0.3899 0.5054 0.4309 0.3851 0.3796
90% 0.3600 0.4680 0.2844 0.4302 0.3248 0.2952 0.4246 0.4893 0.3592 0.4933 0.4158 0.3727 0.3774

Table 1: Prediction accuracy on original dataset and rewriting datasets

gf
gf+gsp gf+lsp gf+csp gf+tt

gf+npn
gf+gnnre

gf+gnnre+gsp
gf+gnnre+lsp

gf+gnnre+csp
gf+gnnre+tt

gf+gnnre+npn

gf+gnnre+tt+npn

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ed

ic
ti

on
A

cc
ur

ac
y

origin
0.1
0.2
0.4
0.6
0.8
0.9

(a) Prediction accuracy trend under features’ combinations. Legends in the rightmost represent the rewriting percentage.

origin 0.1 0.2 0.4 0.6 0.8 0.9
Rewriting Percentage

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ed

ic
ti

on
A

cc
ur

ac
y

gf+gnnre+gsp
gf+gnnre+lsp
gf+gsp
gf+gnnre

gf+gnnre+csp
gf+lsp
gf+gnnre+npn

gf+gnnre+tt
gf+gnnre+tt+npn
gf

gf+csp
gf+tt
gf+npn

(b) Prediction accuracy rankings under a different rewriting percentage

Figure 5: Prediction accuracy on original dataset and rewriting datasets

Rewriting % Avg Overhead % Best Pred Acc Unlearn/Overhead
10% 0.1129 0.8660 0.3153
20% 0.2402 0.7830 0.4938
40% 0.4940 0.6539 0.5014
60% 0.7465 0.5684 0.4463
80% 0.9999 0.5107 0.3909
90% 1.1253 0.4933 0.3628

Table 2: Unlearnability per overhead for different rewriting percent-
age

Dataset Generation. We use the operator-DAG generation pro-
cedure discussed in Section 3 to generate a pristine/original dataset.
In our original dataset, there are 2590 operator-DAGs, with input
word counts ranging from 4 to 16 and input bit widths ranging
from 2 to 8.

We use Yosys [?] to create gate-level netlists from the generated
Verilog DAGs. We use the “keep” directive in Yosys to keep word
wires alive and label node operators by scanning the logic between
words as described in Section 3.

We generate rewritten datasets by taking the 2590 DAGs in the
original dataset and rewriting each with a number of different
rewriting percentages (𝑅𝑝): 10%, 20%, 40%, 60%, 80%, and 90% (see
3.3). The area overhead as measured by gate count inflation can be
seen in Fig. 4.

GNN Model. We use a GCN with 3 layers as our GNN with
the first layer having 256 units and the other two having 128 units

followed by a softmax layer with 6 classes for our operators. We
trained the models with the Adam optimizer for 300 epochs and a
batch size of 20. We use 20/80 test/train cross-validation. Accuracy
is reported as the number of correct node label guesses divided by
all guesses. This means that for our 6-class classification random
guessing will achieve a 16.6% accuracy. A model that performs
worse than this threshold obviously has no predictive power.

Training on Pristine and Evaluating on Rewritten Circuits.
We first trained the GNN model on the pristine dataset and used
the trained model to predict the rewritten datasets. In this scenario,
the model will not have encountered any rewritten circuits. The
prediction accuracy of different node feature encodings under this
approach is reported in Figures 5a, 5b, and Table 1.

First, we note that the inclusion of gnnre features dramatically
improves the model accuracy. This suggests that authors in [2]
made a clearly advantageous choice in engineering these features
as compared to just individual gate functions (gf). With respect to
rewriting, as can be seen from this data, the prediction accuracy
drops significantly as more nodes in the circuit are rewritten re-
gardless of the feature encoding scheme. However, if we compare
gf (purely structural) to gf+(g/l)sp (structural + functional) we see
that the signal probability feature improves the prediction accu-
racy against rewritten circuits despite not having seen them during

gf gf+gsp gf+lsp gf+csp gf+tt gf+npn gf+gnnre
gf+gnnre+gsp

gf+gnnre+lsp
gf+gnnre+csp

gf+gnnre+tt
gf+gnnre+npn

gf+gnnre+tt+npn
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ed

ic
ti

on
A

cc
ur

ac
y

origin
0.1
0.2
0.4
0.6
0.8
0.9

(a) Prediction accuracy for training GNN models on rewriting datasets individually

gf gf+gsp gf+lsp gf+csp gf+tt gf+npn gf+gnnre
gf+gnnre+gsp

gf+gnnre+lsp
gf+gnnre+csp

gf+gnnre+tt
gf+gnnre+npn

gf+gnnre+tt+npn
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ed

ic
ti

on
A

cc
ur

ac
y

origin
0.1
0.2
0.4
0.6
0.8
0.9

(b) Prediction accuracy for training GNN models on rewriting datasets cumulatively

Figure 6: Train and Predictions on rewriting datasets. Legends in the rightmost represent the rewriting percentage.

training at all. This confirms that functional features increase the
resilience of the model against rewriting.

To our surprise, cut-based features, such as tt, npn, or csp per-
formed quite poorly. This could be due to the fact that the order of
the cuts in the feature vector is somewhat arbitrary. This can hurt
the performance of neural networks that expect fixed data ordering.
We aim to explore this further in our future work.

Training and Predicting on Rewritten Circuits. We then
performed both training and prediction on the datasets that include
rewritten circuits. Fig. 6a shows accuracy for when the model is
trained and evaluated on individual datasets (pristine, 10% rewrit-
ten, 20% rewritten, ...). The U-shape profile here suggests that when
the model is shown rewritten circuits, it is hardest for it to accu-
rately predict those circuits that are rewritten with mid 𝑅𝑝s. i.e.
if every gate in the circuit is rewritten with the same rule, the
model may perform better than when half of the gates have been
rewritten. This could be because half-rewriting may produce more
irregular circuits than either no-rewriting or full-rewriting. Table 2
also suggests that rewriting half of the gates may produce optimal
overhead/unlearnability ratios. Unlearnability here is measured as
the distance between the best prediction accuracy for that overhead
and the pristine prediction accuracy.

Fig. 6b shows models trained on accumulated data, e.g. on {pres-
tine+10%+20%} datasets. These produce the highest accuracy values
showing the effectiveness of training on synthetic rewritten cir-
cuits. Also, it can be seen that purely structural features like gf even
when shown rewritten circuits during training still perform poorly
as the rewriting level increases. This is as opposed to functional
features such as sp where training on more rewritten circuits seems
to improve their accuracy.

5 CONCLUSION
In this paper, we showed how simple circuit rewriting can diminish
the accuracy of GNN-based operator detection in gate-level netlists.
We demonstrated then how including functional features or training
on synthetic rewritten datasets can overcome some of this. We aim
to explore more complex rewriting rules and machine learning
techniques in our future work.

REFERENCES
[1]]yosys [n. d.]. Yosys verilog synthesis framework. https://github.com/YosysHQ/

yosys.
[2] Lilas Alrahis, Abhrajit Sengupta, Johann Knechtel, Satwik Patnaik, Hani Saleh,

Baker Mohammad, Mahmoud Al-Qutayri, and Ozgur Sinanoglu. 2021. GNN-RE:
Graph Neural Networks for Reverse Engineering of Gate-Level Netlists. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (2021).

[3] S Ercolani, M Favalli, M Damiani, P Olivo, and B Ricco. 1989. Estimate of signal
probability in combinational logic networks. In Proceedings of the 1st European
test conference. IEEE Computer Society, 132–133.

[4] Daniele Grattarola and Cesare Alippi. 2021. Graph neural networks in tensorflow
and keras with spektral [application notes]. IEEE Computational Intelligence
Magazine 16, 1 (2021), 99–106.

[5] Máté Horváth and Levente Buttyán. 2020. Cryptographic Obfuscation: A Survey.
Springer.

[6] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[7] Wenchao Li, A. Gascon, P. Subramanyan, Wei Yang Tan, A. Tiwari, S. Malik, N.
Shankar, and S.A. Seshia. 2013. WordRev: Finding word-level structures in a sea
of bit-level gates. In Proc. IEEE Int. Symp. on Hardware Oriented Security and Trust.
67–74.

[8] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. 2006. DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis. In Design Automation
Conference, 2006 43rd ACM/IEEE. IEEE, 532–535.

[9] Kaveh Shamsi, Meng Li, David Z Pan, and Yier Jin. 2019. KC2: Key-Condition
Crunching for Fast Sequential Circuit Deobfuscation. In 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 534–539.

[10] Pramod Subramanyan, Nestan Tsiskaridze, Wenchao Li, Adria Gascón, Wei Yang
Tan, Ashish Tiwari, Natarajan Shankar, Sanjit A Seshia, and Sharad Malik. 2013.
Reverse engineering digital circuits using structural and functional analyses.
IEEE Transactions on Emerging Topics in Computing 2, 1 (2013), 63–80.

https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/yosys

	Abstract
	1 Introduction
	2 Preliminaries
	3 Operator-Detection Under Circuit Rewriting
	3.1 Circuit Rewriting
	3.2 Theoretical Limits
	3.3 Dataset Generation
	3.4 Functional Features

	4 Experiments
	5 Conclusion
	References

