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Abstract—The problem of inferring the value of internal nets in a
circuit from its power side-channels has been the topic of extensive
research over the past two decades, with several frameworks developed
mostly focusing on cryptographic hardware. In this paper, we focus on
the problem of breaking logic locking, a technique in which an original
circuit is made ambiguous by inserting unknown “key” bits into it, via
power side-channels. We present a pair of attack algorithms we term
PowerSAT attacks, which take in arbitrary keyed circuits and resolve
key information by interacting adaptively with a side-channel “oracle”.
They are based on the query-by-disagreement scheme used in functional
SAT attacks against locking but utilize Psuedo-Boolean constraints to
allow for reasoning about hamming-weight power models. We present a
software implementation of the attacks along with techniques for speeding
them up. We present simulation and FPGA-based experiments as well.
Notably, we demonstrate the extraction of a 32-bit key from a comparator
circuit with a 231 functional query complexity, in ∼64 chosen power side-
channel queries using the PowerSAT attack, where traditional CPA fails
given 1000 random traces. We release a binary of our implementation
along with the FPGA+scope HDL/setup used for the experiments.

Index Terms—Hardware Security, Logic Locking, Side-channel Attacks

I. INTRODUCTION

Given a circuit c(k, x), where inputs x are controllable and a set
of “key” inputs k are set to a secret vector k∗, the problem of
inferring these secret values from chosen/given observations of the
form yi = c(k∗, xi) appears in various contexts. Logic locking [1],
IC camouflaging [2] and split-manufacturing [3] are three categories
of techniques that can be used to partially hide the design of
an integrated circuit (IC) from an untrusted foundry or end-user.
Attacking these schemes given access to a functional IC that can be
used as an input-output pattern oracle, can be formulated as such an
inference problem. In this context, the problem is sometimes referred
to as oracle-guided circuit deobfuscation and has been under study
for some years.

A set of generic algorithms have been proposed to attack the
problem and used extensively to analyze the security of various
design hiding schemes. The most powerful and versatile of these
are SAT-based attacks [4]–[8]. These are based on a common flow of
formulating a SAT problem that captures input patterns that can teach
the attacker useful information about the key, querying these patterns
on the oracle, and then using SAT formulae to capture keys that
conform to these oracle observations. This in fact is in line with the
uncertainty-sampling or query-by-disagreement paradigm in active
learning [9]. Importantly, given that SAT solvers exhaustively search
the solution space of a SAT problem, SAT attacks can return provably
correct keys, which is not possible with statistical attacks.

In this paper, motivated by the power of SAT attacks in circuit de-
obfuscation from functional queries, we explore a similar framework
but using power side-channel observations instead of functional ones.

There are several existing traditional side-channel analysis frame-
works such as correlation power analysis (CPA) [10], differential
power analysis (DPA) [11], mutual-information analysis (MIA) [12]
and template attacks [13]. The majority of the work on power
side-channel attacks has been focused on cryptographic hardware,

with specific cryptographic functions demanding their own specific
adaptations. As for circuit deobfuscation from power side-channels, a
DPA attack against locking was presented in [14] which argued that
functional secrecy through exponential query schemes implies DPA
security. [15] presented a template attack approach against locking.

We show in this paper however, that exponential query schemes can
in fact be broken through power side-channels without the need for
the extensive profiling needed by template attacks, or DPA which is
traditionally geared towards cryptographic hardware and not generic
circuits. Instead through an analog of the SAT attack operating on
side-channel queries rather than functional queries.

Specifically, we deliver the following:

• We show how similar to the way that sparse functions can create
high minimum query counts for functional oracle-guided attacks,
a similar pattern can be seen at first with respect to side-channels.
E.g. comparator logic is harder to break with baseline CPA/DPA
than block-cipher logic. While it has been suggested [14] that
this may thwart side-channel attacks against sparse obfuscation
schemes, we demonstrate that this is not true and that a smarter
querying strategy, which is what baseline CPA/DPA lack, can
easily break comparator (point-function) logic.

• We present a query-by-disagreement framework for circuit deob-
fuscation from side-channels by finding disagreement-producing
side-channel queries and then fitting keys to the side-channel
observations of the equality form tri = h(k∗, xi), h being a
hypothesis power model. We introduce the use of Pseudo-Boolean
(PB) SAT-solving for this in an attack we call PowerSATeq.

• Given that precise equality-conditions can be hard to extract
from noisy side-channel measurements, we develop a much
more practical and powerful attack that finds “query pairs” that
produce key-dependent ambiguity in the comparison direction of
their corresponding trace pairs trf >? trs. These differential
measurements are then used as conditions on the key to be
satisfied using PB SAT in an attack we call PowerSATdiff.

• Given that these PB SAT instances can be much harder to solve
than conventional SAT attack calls, we propose several ways to
speed up the attack including simplifying conditions, slicing and
dicing, and recovering provably correct partial keys.

• We report the performance of the attacks against a simulated
hamming-weight model on ISCAS benchmarks. We also demon-
strate proof-of-concept attacks on an FPGA implementation. We
release a binary of our implementation along with the hard-
ware/software code for an automatic circuit to trace-oracle flow.
This we hope can serve as a platform and benchmark set for
better studying generic adaptive side-channel attacks, compared
to the existing offline block-cipher side-channel challenge traces.

The paper is organized as follows: Section II presents preliminaries,
Section III presents the attacks, Section IV presents experiments, and
Section V concludes the paper.
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Fig. 1: (a) Functional deobfuscation vs. (b) side-channel deobfuscation
threat models. In (b) the attacker can toggle inputs and observe side-
channels but does not need to observe outputs.

II. PRELIMINARIES

Logic Locking Model. Formally, logic/circuit locking can be modeled
as transforming an original circuit co : I → O where I = {0, 1}n
and O = {0, 1}m are the n/m-bit input/output space respectively
to an obfuscated/locked circuit ce : K × I → O, where K =
{0, 1}l is the l-bit added key space. There must exist a correct
key k∗ ∈ K∗ ⊂ K such that ∀x ∈ I, ce(k∗, x) = co(x).
The space of possible functions that ce can take is denoted by
Ce = {ce(k, x)|k ∈ K}. The error rate of the obfuscation can
be defined as the probability of producing incorrect outputs over
the key/input space i.e. Prx∈I,k∈K [co(x) 6= ce(k, x)]. Note that the
attacker has a representation of ce, i.e. the obfuscated circuit’s netlist
is public whereas co’s is private.

SAT Attack. The SAT attack is an oracle-guided attack meaning
the attacker has black-box or oracle access to co, i.e. can make
arbitrary queries of the form co(xi) → yi. The attack begins by
building a miter condition M ≡ (ce(k1, x) 6= ce(k2, x)). Satisfying
M will return some x̂, and k̂1, k̂2, where x̂ is called a discriminating-
input-pattern (DIP). Since the output of ce on x̂ is different for k̂1
vs. k̂2, at least one should produce an output that disagrees with
the oracle’s output on x̂. This allows us to disqualify at least one
wrong key with each DIP query. The queried observation in the
form (co(x̂) = ce(k1, x̂) = ce(k2, x̂)) is ANDed with M , as an
input-output (IO)-constraint and the process repeats until M is no
longer satisfiable. At this point, satisfying the IO-constraints F alone
should return a correct key k∗ ∈ K∗. This is because there exists
no remaining two keys that conform to all oracle observations, and
produce different outputs functionalities. Hence F must capture only
functionally correct keys. Algorithm 1 shows this procedure.

Algorithm 1: Given oracle access to co and the circuit ce returns
a guaranteed correct key k∗ ∈ K∗ if co ∈ Ce.

1 Function SATAttack(ce, co as black-box):
2 F ← true
3 M ← ce(k1, x) 6= ce(k2, x)

4 while F ∧M is solvable do
5 x̂, k̂1, k̂2 ← SAT(F ∧M)
6 ŷ ← co(x̂)
7 F ← F ∧ (ce(k1, x̂) = ŷ) ∧ (ce(k2, x̂) = ŷ)

8 satisfy F with k̂1 and k̂2
9 return k̂1 as a correct key k∗

Thwarting the SAT Attack. The baseline SAT attack is effective in
deobfuscating benchmark circuits with thousands of gates obfuscated
with various traditional locking/camouflaging schemes [4]. One way
to slow down the SAT attack or any oracle-guided attack is to
reduce the disqualifying ability of DIPs/queries. If every possible DIP
disqualifies no more than d bad keys, any oracle-guided attack would

need min(2n, 2l/d) queries to precisely identify the correct key. This
typically occurs in the presence of comparator logic (point-functions).
A comparator P (k∗, x) = (x =? k∗) has to be queried on average
on half of its entire input space to find the point on which it outputs
1, i.e. where xp = k∗. The low activation rate conversely leads to
an exponentially small error rate. This contention between error rate
and query count appears to be unavoidable [16], [17]. Several SAT
attack variants take an error-aware approach to deobfuscation due to
this [6], [18].

Formal Security in Locking. A few formal notions of security for
locking were defined in [19]. Exact-functional-secrecy EFS demands
that the circuit’s precise functionality not be recoverable in less than
time t. Approximate-functional-secrecy AFS demands that the circuit
not be approximable with accuracy better than 1− ε in time t. While
exponential AFS (t > O(2n)) can be impossible to achieve in many
circuits, EFS and a more relaxed notion of approximation-resiliency
(best-possible) BPAFS can be achieved with point-function schemes,
and universal circuits respectively [19].

Side-Channel Attacks. The operation of a physical implementation
of a Boolean circuit ce(k∗, x) will emanate side-channel leakage
through its power-consumption, electromagnetic radiation (EM), its
timing, or a combination of the three. This leakage can be captured
by a function describing the precise value of the emanation at time t:
L(k∗, x, δx)[t] = f(k∗, x, δx)[t] + N [t] where f and N [t] capture
the state-dependent/independent parts of L respectively. δx here is
used to denote a change in the circuit’s input that leads to dynamic
power/EM/timing and is necessary for the non-static attacks discussed
in this paper. If a circuit ce(k∗, x) is functionally hiding k∗ securely,
it is still possible for L to leak k∗. Given T different (xi, δxi) we can
collect T different side-channel “traces”: T = {L(k∗, xi, δxi)}. An
active adaptive attacker can choose on what (x, δx) points to collect
traces, while a passive non-adaptive/offline attacker is given a trace
set for a predetermined (random) (x, δx) collection.

Simple power analysis (SPA) [11] aims to infer secrets by
manual context-specific observation of L at chosen points. Corre-
lation power analysis (CPA) assumes a power hypothesis model
h(k, x, δx), then for all possible hypothesis values of the key kh
computes the (Pearson) correlation between the hypothesis power
vector {h(kh, xi, δxi)} and the actual traces {L(k∗, xi, δxi)}. For
kh = k∗, this correlation should be maximized if h is a good
approximation of L. Mutual information analysis (MIA) uses the
mutual-information function instead of correlation. This allows using
a less precise h, creating a somewhat model-free/blind attack.

Differential power analysis (DPA) uses a binary function
∆(kh, xi, δxi) → {0, 1} to decide which of two bins T0 and T1
to place each trace in. The difference between the average of the two
bins is computed. If ∆ is a simple function of key-dependent bits in
the circuit, for kh 6= k∗, ∆’s trace division becomes decoupled from
the circuit’s state and arbitrary causing the difference to vanish. For
the correct key kh = k∗, the difference of averages tends to spike.
Picking the right ∆ function is critical to DPA’s success.

Deobfuscation from Side-Channels Threat-Model. A depiction of
the attacker’s view in circuit deobfuscation from side-channels is
shown in Fig. 1. An important distinction to note compared to
functional attacks is that the attacker need not observe the functional
output of the oracle circuit. While functional outputs can be combined
with side-channel observations for more powerful attacks, one of the
main appeals of side-channel-based deobfuscation is the elimination
of this requirement. This is especially important against scan-chain-
inaccessible obfuscated circuits. The presence of unobservable state
elements in a circuit will force a functional attacker to resort to
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Fig. 2: CPA correlation per key-hypothesis and trace count with the red trace signifying the correct key, using (a) no-noise simulated hamming-weight
model, (b) spice simulation, (c) FPGA traces. It can be seen that in all three, the SPN which is a much more entropic circuit has a more “outstanding”
correct key correlation line.

sequential deobfuscation such as the model-checking (MC) attack
[8], [20]. MC attacks however have runtimes that can range from
slightly above the combinational SAT attack to orders of magnitude
higher. This is while for deep circuits, the side-channel attacker can
truncate the traces and study the logic that is immediately connected
to controllable inputs, working through the rest of the circuit [15].

III. SAT-BASED DEOBFUSCATION FROM SIDE-CHANNELS

A. Motivation
CPA, DPA, and MIA all run in time exponential to the number of
key-bits, i.e. O(2l) for an l-bit key. This is because each has to
enumerate all key hypotheses and perform computations for each one.
In the context of cryptographic circuits, this is typically managed
by dividing the key vector into smaller partitions based on some
understanding of the circuit’s structure. For instance, for AES-128
which consists of 10-rounds, with each round operating on 16 8-
bit state blocks, it is best to partition the key along these state
blocks. For CPA for instance, {h(kh, x, δx)} is computed for all
28 possibilities for the first of 16 blocks in the key, while assigning
a random fixed value to the rest of the 15 blocks in the key vector,
and computing the correlation. This approach can recover the first
8-bits of the key since the real power consumption tends to correlate
maximally with a hypothesis power when the first 8-bits are correct,
somewhat irrespective of the remainder of the key bits. For DPA,
a similar cipher-dependent key partitioning is performed. A generic
CPA/DPA/MIA attack that can take in arbitrary circuits requires a
generic key partitioning scheme. It is possible to build such generic
partitioning using heuristics on the circuit structure which we do in
our experiments as well.

The baseline CPA/DPA/MIA are also non-adaptive/offline, which
fits well with perhaps the more common real-world scenario where
a cryptographic circuit is being observed but not controlled by an
attacker. In circuit deobfuscation however, an active attacker is the
standard assumption. The attacker in possession of the functional IC
can pick input values x, flip the ones that he intends through δx, and
record traces/timing on different pins indefinitely.

The offline limitation becomes clear when we run CPA with
random input patterns on two very different circuits. Per Fig. 2
we have run baseline CPA on a substitution-permutation network
(SPN) and an 8-bit comparator. The SPN implements two rounds,
each consisting of a key-mixing stage in which the 8-bit input is
XORed with an 8-bit key, a substitution stage, in which the 8-bit
state is sent through a 28 → 28 random look-up-table synthesized to
gates, and a permutation stage, in which the 8 bits are shuffled, i.e.
(spn round(x, k) = p(s(x ⊕ k))). The 8-bit key is shared among
both rounds. The comparator implements P (k, x)← (k =? x).

Since there are only 8-bits in the key, no partitioning is necessary.
The hypothesis power model for CPA is taken to be the number of
flips occurring on the circuit nodes given a δx of hamming-weight

1. This is done using the power model itself as traces in Fig. 2a,
spice simulation using the Nangate15nm library in Fig. 2b, and traces
collected from an FPGA implementation in Fig. 2c.

As can be seen from Fig. 2, the correct key for the SPN is
more distinct than the case for the comparator under all three trace-
collectors. In other words, an incorrect key on the SPN produces
much more divergent power signatures than on the comparator. This
resembles a similar dichotomous pattern that emerges if the two
circuits are placed under a functional oracle-guided attack. On the
SPN, incorrect keys produce wildly incorrect output functionalities.
This high entropy/error allows resolving the SPN with a smaller
number of DIPs, since each DIP is highly likely to disqualify a
substantial portion of the key space. Conversely, the comparator takes
an exponential number of queries ∼ 27 for its output to activate, at
which point the key can be identified. The comparator can also be
approximated with exponentially small accuracy by simply picking a
random key, while a random key for the SPN is likely to produce a
highly inaccurate function relative to the original.

It seems from the above discussion that we should expect
functional-secrecy through exponential minimum query counts for a
locked circuit to translate into a similar kind of security with respect
to side-channel information. In fact, [21] made a similar argument
regarding how functional security should imply DPA security. Note
that DPA will likely perform worse than CPA if the output node
of the comparator is picked as the DPA trace distinguisher. The
skewed statistics of the output net will create heavily unbalanced
trace bins. [21] argued that this forces the attacker to perform the
DPA distinguishing with every internal net/cone and traverse the
exponentially large key space at the input of these cones.

However, if we take a step back and consider the problem of
deobfuscating from side-channels in the more general view: that an
attacker wants to learn the key by querying a side-channel-oracle L on
chosen points (x, δx), we can see that breaking the comparator does
not require exponentially many power queries. In fact, we can devise
an adaptive attack that will extract the key k∗ for an arbitrary n-bit
comparator P (k∗, x) in 2n side-channel queries. While this attack
is not generic, i.e. it cannot be applied to non-comparator circuits, it
does show that EFS does not guarantee side-channel resilience.

Per Fig. 3 the procedure is as follows. The attacker sets an n-bit
arbitrary vector to the input x. Then begins flipping the input x0 (i.e.
δx0 = 1). If w1 which captures the equality of x1 and k1 is 1, then
this flipping will propagate to w4. Otherwise, it will get blocked. If
no other inputs are flipping, the total number of wires flipping in
the circuit and consequently the dynamic power consumption of the
circuit is different in the two cases. Hence, we have found a way to
relate the equality of x1 and k1 to a difference in power consumption.
The attacker can set x1 to 1, and flip x0, and collect trace tr0. Then
set x1 to 0, flip x0, and collect trace tr1. If the expected difference
between these traces is not lost in the noise, then the attacker will
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Fig. 3: Comparator circuits under a side-channel attack. If wire w1 = 1
as per (a), then toggling x0 while keeping all other xi constant, should
produce more bit flips, than the same toggling when w1 = 0 (b). This
allows us to determine whether x1 = k1 or not with two traces.

learn the value of k1, a single key bit, with only 2 traces. For an n-bit
comparator, this procedure can be repeated for every bit and recover
the full key successively with 2n traces. This is while functionally, the
comparator requires an average of 2n−1 queries to fully resolve. This
instance serves as a counterexample proving the following lemma:

LEMMA 1. Exponential EFS security for ce(k∗, x) does not imply
exponential resiliency against exact functional learning of ce(k∗, x)
from chosen queries to its hamming-weight/flip-rate oracle he:

he(k∗, x, δx) =
∑

wi∈wires(ce)

(wi(k∗, x) 6= wi(k∗, x⊕ δx))

The above h assumes that every wire flip contributes equally to the
power consumption. In a real design, however, this is not true since
wire-load varies from net to net and impacts power consumption.

The above attack on the comparator circuit required a meticulous
step-by-step adaptive approach. Traditional CPA/DPA/MIA schemes
that do not optimize for selected input patterns fall short of this.
This serves as a motivation to explore generic adaptive attacks since,
in circuit deobfuscation, unlike breaking cryptographic primitives,
comparator and SPN-like logic can coexist in a general circuit slice
ce. The attack should try to infer a chosen secret with maximum
accuracy and perhaps minimum query count regardless.

B. A Side-Channel SAT Attack with Equality Conditions
The SAT attack for circuit deobfuscation from functional queries
is a generic adaptive attack. Any arbitrary circuit formatted as a
locked netlist ce(k, x) for which each gate can be translated to a
CNF formula can be passed to the SAT attack. Mining for DIPs
that guarantee to disqualify a non-zero number of bad keys falls in
line with the long-standing query-by-disagreement (QBD) strategy in
active learning. Absent an optimal strategy for learning a function f ,
querying on points that maximize the current hypothesis’s uncertainty
tend to achieve faster learning rates relative to random sampling [22].

Side-Channel-based Deobfuscation with QBD. We replicate this
approach for the case of deobfuscation from side-channels. We search
for input patterns that lead to different side-channel patterns under
different key hypotheses. We call such an input pattern a power
discriminating input pattern (PDIP). Note that a PDIP is an input
vector x plus a flip vector δx. Our attack mines for PDIPs, queries
them, appends the observed trace to a set of “thus-far observed
traces”, and repeats the process until no more PDIPs can be found.

To mine for PDIPs, we need to build a power miter condition
PM = (he(k1, x, δx) 6= he(k2, x, δx)). The simplest power-model
he is simply one that counts the number of bit-flips in the circuit as
seen in Lemma 1. A more complicated model includes a weight αi for
each wire to capture relative wire-load differences: he(k∗, x, δx) =∑

wi∈wires(ce)
αi(wi(k∗, x) 6= wi(k∗, x ⊕ δx)). More complicated

models that capture static leakage can be built as well but are outside
the scope of this paper.

Psuedo-Boolean Constraint Solving. Even the simplest he condi-
tion requires bit summation. PM hence is in fact a “Pseudo-Boolean”
(PB) constraint. A PB-constraint captures the comparison of a real-
weighted sum of Booleans with a constant. PB-constraint solving has
been an active area of research for many years [23], [24]. One can
reduce satisfying a PB formula to integer-linear-programming (ILP)
and pass it to an ILP solver such as Gurobi. We in fact tried using
this approach shortly and observed very poor performance.

In many practical PB problems, including the ones here, the PB
part of the problem is dwarfed by the pure Boolean part, in terms of
the number of constraints. Take he. This formula contains two copies
of ce in their entirety which will translate to O(n) clauses after a
Tseitin transform. The PB-constraint in PM is but one statement:
i.e. (w0 + w1 + .... 6= w′0 + w′1 + ....). These problems tend to
get solved more efficiently by so-called “SAT-encodings” [24]. With
SAT-encodings a PB-constraint is converted to a SAT formula and
simply passed on to a SAT solver.

Encoding PB-constraints into CNF has been under study for many
years. Given a PB-constraint of the form α0x0+α1x1+α2x2+ ... ≥
q, first, the formula is preprocessed [25]. Negative coefficients are
made positive, rounded, and minimized by manipulating the con-
straint and variable polarities. The summation with positive integer
coefficients can then be mapped to CNF clauses in several ways.

One is to use a bit-adder network. These can be built by interleav-
ing full-adders and half-adders to create a network with n inputs and
log2(n) outputs computing a binary representation of the sum of the
input bits. Coefficients that are greater than one can be dealt with by
replicating an input wire multiple times.

Another way to encode summation is sorter networks. An odd-
even merge-sort network can be built using a series of 2-bit-to-2-bit
sorter blocks. With n bits fed to its input, at the output all the ones
will accumulate on one side. By probing specific indices in the n-
bit output we can determine the number of ones in the input (sum)
and check for equality/lower/greater conditions. Sorter networks are
significantly larger than adder networks but may have better SAT
performance due to their increased “implicativeness”, i.e. the ease
with which the SAT solver can learn implications in the CNF [25].

Lastly, one can use binary-decision-diagrams (BDDs) to encode
PB-constraints. The dynamic programming procedure in [25] can be
used to build a BDD for a PB-constraint. For instance, a cardinality
constraint, stating that less than 4 bits in a 10-bit vector must be 1,
will produce a BDD in which all paths that go through more than 4
one-edges will land in the 0-terminal of the BDD.

We show some circuit sizes produced by n-bit PB-constraints
translation for the above three techniques in Table I. As can be
seen, the BDD method, while producing compact circuits for the
≥ 1 case, explodes with larger values ≥ m. The adder network
produces smaller circuits than the sorter, both of which, unlike the
BDD encoding, have circuit sizes that are independent of the right-
hand side of the constraint. We use adders in our final experiments
but allow for user configuration in our tool.

PowerSATeq. We can use PB-constraint encoding schemes to build
QBD attacks. Our first attack called PowerSATeq, uses a SAT-
encoding of PM = (he(k1, x, δx) 6= he(k2, x, δx)) to build a CNF
SAT miter. This miter when satisfied will return a PDIP (x̂, δ̂x).
This is queried on the trace-oracle, and the observed power value
t̂ri = pwr(x̂, δ̂x) is appended back to PM as two equality condi-
tions over k1 and k2: (he(k1, x̂, δ̂x) = ti) ∧ (he(k2, x̂, δ̂x) = ti).

Note that satisfying PM will return PDIPs, and satisfying M will
return functional DIPs. The interesting point here is that we can
use these together. i.e. even though we are not making functional



number of input variables
method 4 8 16 32 64 128 256 512 1024 2048
adder 15 35 75 155 315 635 1275 2555 5115 10235
sorter 10 38 126 382 1086 2942 7678 19454 48126 116734
bdd-1 6 14 30 62 126 254 510 1022 2046 4094

bdd-1/4 6 18 60 216 816 3168 12480 49536 - -

TABLE I: PB-constraint circuit sizes (gate-count) for different encoding.
The encoder circuits are generated for a condition with n terms with all
coefficients being 1. “bdd-1” denotes a BDD condition with (≥ 1) and
“bdd-1/4” denotes (≥ n/4) condition as their right-hand-side.

queries, the functional DIP condition can serve as a termination
test to the side-channel attack. If M becomes unsatisfiable during
the PowerSATeq loop, this means that the circuit has been provably
functionally deobfuscated from side-channel queries alone.

On the other hand, if PM becomes unsatisfiable, while M is still
satisfiable, this means that the circuit’s functionality cannot be further
learned from side-channel queries of the above form. i.e. that the flip-
rate of the circuit counted by he cannot identify a functionally correct
key. This for instance can arise if the circuit ce(k, x) is flip-rate-
invariant for a set of keys, some of which are functionally incorrect.
In practice does this mean that such a ce is side-channel-attack-
proof ? The answer is no in most cases. This is because he was
a simple flip-rate counter and not the most precise representation
of the power consumption of the circuit. Even in a circuit with
invariant flip-rates (which some symmetric logic styles can achieve),
the mismatch resulting from process variation or layout asymmetry
means that there usually exists better power hypothesis functions he

under which additional key information can be revealed.
The pseudo-code for PowerSATeq can be seen in Algorithm 2. Our

baseline implementation of PowerSATeq breaks a 32-bit comparator
against a precisely simulated he in 13 PDIPs and 5-20 seconds. The
number of PDIPs is smaller than the 64 traces required in the routine
described in Fig. 3. This is because power equality conditions are
more key-restrictive than power difference conditions from Fig. 3.
Power difference conditions are the basis for our next attack discussed
in the following section.

Algorithm 2: Given power oracle ho ≡ he(k∗, x, δx) and the
circuit ce returns the best-possible key k that can be inferred from
adaptive queries of ho.

1 Function PowerSATeq(ce, he, ho ≡ he(k∗, x, δx)):
2 F ← true
3 M ← ce(k1, xf ) 6= ce(k2, xf )

4 PM ← he(k1, x, δx) 6= he(k2, x, δx)
5 while F ∧M ∧ PM is solvable do
6 (x̂, δ̂x), x̂f , k̂1, k̂2 ← PBSAT(F ∧M ∧ PM)
7 t̂r ← ho(x̂, δ̂x)

8 F ← F ∧ (he(k1, x̂, δ̂x) = t̂r) ∧ (he(k2, x̂, δ̂x) = t̂r)

9 if F is unsatisfiable then
10 return error in trace collection, or no correct key exists.
11 else if M is unsatisfiable then
12 return k∗ ← PBSAT(F) as functionally correct key
13 else

// PM must be unsatisfiable
14 return functionally correct key not identifiable under

current power model. k† ← PBSAT(F) is the current
best key hypothesis.

C. A Side-Channel SAT Attack with Difference Conditions
The main problem with PowerSATeq is that it requires recovering
the precise number of bit-flips occurring in the circuit from a side-
channel trace. While this may be possible in certain cases, this
requires at least some profiling of the device beforehand, as to be
able to map a collected trace to a precise he value in the presence
of noise and uncertainty. This situation can be somewhat improved
by quantizing the trace value into he range bins. This still requires
that the upper/lower bound of each bin be somewhat profiled before
the attack. In fact, we experimented with machine-learning classifiers
for such a mapping of traces to bins with some success but we leave
further exploring this to future work.

An approach that avoids the above issues altogether is to use the
difference in the strength of different traces as the main observable in
the attack. Instead of a miter that aims to find disagreement between
the absolute side-channel value under two different keys, we can
search for pairs of query points, for which the comparison direction
of the two traces is different under different key hypotheses.

Formally we are looking for a pair of query points (x, δx) and
(x′, δx′), where there exists two keys conforming to the current key
condition k1 and k2, for which:

he(k1, x, δx) > he(k1, x
′, δx′)

but for k2 the opposite holds:
he(k2, x, δx) ≤ he(k2, x

′, δx′)

Or vice versa. The miter condition that captures this is:
PDM =

(
[he(k1, x, δx) > he(k1, x

′, δx′)] 6=

[he(k2, x, δx) > he(k2, x
′, δx′)]

)
We call a pair of input/flip-patterns that satisfy this PDM condi-

tion power-differential discriminating-input-patterns (PDDIPs).
Obtaining Reliable PDDIPs. Querying a PDDIP is a much more

straightforward enterprise than querying an equality PDIP. The at-
tacker queries the trace oracle on (x, δx) and on (x′, δx′) obtaining
tr and tr′. Subtracting the two traces from each other to obtain
δtr = tr − tr′ and looking for the presence and direction of a
spike in δtr can be a highly effective method in practice. We deem
a query successful/accurate if he(k∗, x, δx) > he(k∗, x

′, δx′) leads
to tr being stronger than tr′ in the collected traces. This can break
down if a) the added input-independent noise to tr and tr′ is of a
magnitude and direction that it flips the comparison result, or b) If the
power model he is inaccurate enough for trace-comparison results on
a particular point to be out of sync with power model comparisons.
We explore in Section IV the success rate of different PDDIP
query collection techniques on an FPGA hardware implementation
of benchmark circuits. Obviously, for a simulated trace oracle which
we use in part of our experiments, this accuracy is one.

PDDIP IO-constraints. Once a PDDIP query is made and the
result is obtained, it will be added as a PB-constraint to the solver.
The PDDIP IO-condition captures that for a pair of (x, δx) (x′, δx′)
input/flip-patterns the direction of the comparison must be ˆδtr for the
correct key. i.e. ∀k ∈ K∗ [he(x, δx, k) > he(x′, δx′, k)]⊕ ˆδtr = 1.

The attack continues this process in a loop. Similar to the case of
PowerSATeq, an unsatisfiable PDM but still satisfiable M means
that the circuit is not exact-learnable from power-difference queries
with the current power model. Therefore, the power model must be
adjusted to continue learning facts about the key. An unsatisfiable M
on the other hand implies precise functional recovery, at which point
further PDDIP collection is not needed.

The pseudo-code for the above attack that we call PowerSATdiff
can be seen in Algorithm 3.



Algorithm 3: Given flip-count comparison oracle
hod(x, δx, x

′, δx′) ≡ he(k∗, x, δx) >? he(k∗, x′, δx′), and
the circuit ce, returns the best-possible key k that can be inferred
from adaptive queries of the comparison oracle hod.

1 Function PowerSATdiff(ce, he, hod):
2 F ← true

3 M ← ce(k1, xf ) 6= ce(k2, xf )
4 PDM ← [he(k1, x, δx) > he(k1, x′, δx′)] 6=

[he(k2, x, δx) > he(k2, x′, δx′)]
5 while F ∧M ∧ PDM is solvable do
6 {(x̂, δ̂x), (x̂′, δ̂x′)}, x̂f , k̂1, k̂2 ←

PBSAT(F ∧M ∧ PDM)
7 dt← hod(x̂, δ̂x, x̂

′, δ̂x
′
)

8 F ← F ∧ ([he(k1, x̂, δ̂x) > he(k1, x̂′, δ̂x
′
)] = dt)

∧([he(k2, x̂, δ̂x) > he(k2, x̂′, δ̂x
′
)] = dt)

9 if F is unsatisfiable then
10 return error in trace collection, or no correct key exists.
11 else if M is unsatisfiable then
12 return k∗ ← PBSAT(F) as functionally correct key
13 else

// PDM must be unsatisfiable
14 return functionally correct key not identifiable under

current power model. k† ← PBSAT(F) is the current
best key hypothesis.

D. Speeding up PowerSAT Attacks

PB-SAT can be much more computationally intensive in practice
than SAT. Even though SAT is an NP-complete problem, many SAT
instances derived from practical circuits do not end up exploring the
full exponentially-sized space of the problem. For instance take the
c6288 ISCAS benchmark, which is a multiplier circuit. The baseline
SAT attack on c6288 running on RLL [1] locked circuits will produce
DIPs quite efficiently, however, oftentimes near the end of the attack
as the attack has to prove that there remain no more DIPs, the SAT
instance runtime can explode. This is because, while every call to
the SAT solver in a SAT-based attack is an NP-complete call, the
various problems can reduce to simple or hard problems respectively.
A similar behavior but more often is observed with the PowerSAT
attacks, where PDIP/PDDIPs are found efficiently in the beginning
but as the attack nears the end and has to prove the non-existence
of additional queries, runtime explosions occur. In this section, we
discuss several novel techniques to improve runtime or extract partial
information in the case of a failed attack.

Flip Hamming-weight Constraints. We observed an interesting
behavior with respect to the PowerSAT attacks. Adding a constraint
on the number of bit-flips in δx dramatically improved performance.
δx in the normal case can take on any value, i.e. every input
of the circuit can be toggling. However, if we apply a hamming-
weight limit of z to δx, where z starts as 1, this limits the attack
to revealing key information by toggling one input bit at a time.
Our constructed comparator attack discussed with Fig. 3 followed
a similar strategy. This limit can then be increased successively
if the power miter becomes unsatisfiable at the current flip-weight
constraint of z. Adding such a constraint brought down the runtime
of PowerSATdiff against a 32-bit comparator from 100> seconds to
less than 10 seconds.

Flip-capable Wire-Set. Wires in the circuit that are not in the
transitive fanout of toggling input bits (δx[i] = 1) will not be able to
toggle regardless of the key value. This means that we do not need
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Fig. 4: Slicing procedure. In (a) wire w3 is under study. In (b) wire w0.

to include these nets in the PB-constraint, i.e. we can use smaller
adders/sorters. Since the adder/sorter networks are a main source of
size complexity in the PowerSAT attacks, cutting down on their input
size can greatly help the algorithm. The flip-weight constraint helps
increase the number of such non-toggling nets in each query.

Circuit Simplification. Key-condition-crunching (KC2) introduced
in [8] is the usage of circuit simplification techniques to improve
the scalability of SAT attacks. Since PM , PMD, M , and all the
other formulae in the SAT attack are represented with circuits, if one
can simplify circuits, the resulting CNF can be compressed. This
is a major theme used in modern model-checking and SAT-based
verification problems. In fact, circuit rewrites and simplifications can
sometimes prove properties without the need for SAT solving at all.

In our PowerSAT implementations, we follow the KC2 approach
of trying to simplify any condition/circuit that arises in the attack
using ABC with a size-minimal script. The power miter condition for
instance is simplified before the start of the attack. It is not uncommon
to observe compression rates above 50% when doing this.

The key-conditions or IO-constraints are also simplified. However,
our implementation is different than baseline KC2 in an important
way. Rather than performing simplification every d iterations, which
can be time-consuming without immediate performance gains, we
perform an “on-demand” simplification. We use a certain propagation
budget for the SAT solver that grows by some factor (1.5-4), calling
the solver successively and giving it a growing budget each time. If
the budget grows beyond a certain point, this lets the algorithm know
that a hard SAT instance may have been encountered. At this point,
circuit simplification will kick in and simplify the IO-constraints and
miter. The attack is then restarted with the simpler circuits.

Settled-Key/Cone Detection and Slicing. [4] first presented the idea
of using SAT formula backbones, i.e. variables where forcing them
to a particular value renders the formula unsatisfiable, to detect
provably resolved partial keys. [8] used the equivalence between
the two corresponding nodes in the miter (cwe (k1, x) ≡? cwe (k2, x))
to determine functionally resolved nodes in the circuit. Note that
key inputs contained exclusively behind settled cones are provably
settled keys. In our PowerSAT implementations, we use a stronger
novel settled-key/cone detection approach. For a node w in ce(k, x),
denoted by the cone w = cwe (k, x), in conjunction with asking if
cwe is equivalent in the miter, i.e. cwe (k1, x) 6= cwe (k2, x) we ask if a
difference between cwe (k1, x) and cwe (k2, x) can be propagated to the
functional miter’s output M . This can be captured by tying together
all the side nodes on the cone from w to the output in the miter
copies of ce and checking the satisfiability of M .

The above procedure lends itself to a natural slicing strategy. When
analyzing the settlement of wire w, we constrain the attack to operate
only on the transitive fanin and fanout of w. Fig. 4 shows this. Per Fig.
4a, when wire w3 is being studied for settlement only the input wire
set {x3} is marked as active and allowed to flip. The transitive fanout
cone of w3 is marked as flip-capable. The side-wires w2 and w4 are
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bench #ins #outs #gates bench #ins #outs #gates
s298 17 20 119 c880 60 26 383
s386 13 13 159 s1238 32 32 509
c432 36 7 160 c1355 41 32 546
s349 24 26 161 c1908 33 25 880
s400 25 27 164 c2670 157 64 1193
s499 23 44 174 s3271 142 130 1573
c499 41 32 202 c3540 50 22 1669
s510 25 13 211 c5315 178 123 2307
s832 23 24 287 c6288 32 32 2416
s641 54 42 379 c7552 206 107 3512

TABLE II: ISCAS combinational and opened sequential benchmarks used

PicoScope-
3206D XL9 Target

Power SMA 
Connector

Teensy 3.2 
IO-Board

Trigger 
Probe

FPGA Programmer

CW308-UFO 
Board

Fig. 6: Hardware setup for trace collection.

kept invariant between the miter copies. The attack loop then proceeds
during which w3 may become settled. This is reinforced in the solver
and miter. The attack then moves to the next wire w0 per Fig. 4b but
with knowledge of settled w3. Counter-examples discovered during
this process can be simulated to disqualify non-settling wires from the
procedure. This wire-by-wire deobfuscation process besides leading
to higher simplification gains, showed improved runtime. Notably, it
allowed for full recovery of 64-bit comparators in less than a second
with both PowerSATeq and PowerSATdiff, which was the fastest we
observed with these circuits. On larger circuits, there seemed to be
some diminishing returns. This is a topic of our future work.

IV. EXPERIMENTS

Benchmarks. We use a set of ISCAS combinational and sequential
benchmark circuits shown in Table II.

Simulated Trace Oracle. We implemented PowerSATeq, and Pow-
erSATdiff along with CPA in a C++ framework and ran them on
benchmark circuits locked with RLL or AntiSAT+RLL [26] of dif-
ferent overhead levels against a simulated trace oracle (i.e. computing
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average of the subtraction of the traces which can be a better measure
for detecting direction

tr = he(k∗, x, δx)). The tests were run in parallel (120 threads) on
an AMD ThreadRipper 3990X 128-thread machine with 256GB of
memory with each process getting 2GB of memory. No memory
explosion was encountered. It was observed that the PowerSAT
attacks once they hit hard SAT instances, giving them excessive extra
time did not seem to produce obvious improvements. Hence the attack
times were limited to 30 minutes, with provably settled keys and
the key error rate recovered at the end. A generic CPA attack with
a cone-based key-partitioning to 8-bit blocks with 500 traces was
run as well. Table III and IV show the results. It can be seen that
PowerSAT attacks can find provably correct (partial) keys with a
small number of PDIP/PDDIPs. Also, the success of baseline CPA
against simulated traces shows that locking is not automatically more
secure than cryptographic hardware against side-channel attacks.

Hardware Trace Oracle. We use the chip-whisperer CW308-UFO
board along with its XL9 Spartan-6 FPGA target. A Teensy 3.2
72Mhz board was used to shift into the FPGA input and flip pattern.
A flip-clock is generated by the Teensy board that is XORed with
inputs with δx[i] = 1. The keep synthesis directive was used to
keep every net in the circuit alive on the FPGA. The flip-clock also
serves as the trigger to a USB3.0 PicoScope 3206D oscilloscope.
Using the batch collection function of the 3206D API, a set of 125
traces are read at once from the scope and averaged to produce a
single low-noise reading. This framework on Ubuntu 20.04 achieved



params RLL-5% RLL-10% RLL-15%
method #keys CPA PowerSATeq PowerSATdiff #keys CPA PowerSATeq PowerSATdiff #keys CPA PowerSATeq PowerSATdiff
bench time kerr time #pdi kerr #pkb time #pdi kerr #pkb time kerr time #pdi kerr #pkb time #pdi kerr #pkb time kerr time #pdi kerr #pkb time #pdi kerr #pkb
s298 6 0.81 E 4.5 5 E 6 330 5 E 6 12 6 0.05 to 7 E 12 to 10 E 12 18 12 0.15 to 8 0.1 15 to 27 0.1 15
s386 8 6 0.15 to 4 E 8 to 5 E 8 16 16 0.08 to 6 E 16 to 11 0.08 11 24 26 0.61 to 10 0.31 16 to 25 0.15 16
c432 9 6 E 0.42 4 E 9 3.9 11 E 9 17 15 E to 6 E 17 7 19 E 17 25 24 0.19 61 9 E 25 14 31 E 25
s349 9 6 0.12 to 3 0.04 6 to 4 0.08 6 17 16 0.04 to 13 E 17 to 16 0.04 16 25 24 0.12 to 9 0.04 22 to 20 0.12 22
s400 9 7 0.07 to 5 0.04 6 to 4 0.04 6 17 18 0.19 to 7 0.07 10 to 9 0.15 10 25 25 0.21 to 12 0.04 20 to 27 0.04 20
s499 9 8 0.09 to 7 E 9 to 7 E 9 18 17 0.16 to 13 0.02 16 to 26 0.04 16 27 29 0.27 to 22 0.02 24 to 25 0.07 24
c499 11 9 0.16 to 5 E 11 to 4 0.06 6 21 20 0.22 to 7 0.06 14 to 18 0.16 14 31 37 0.25 to 7 0.12 21 to 26 0.12 21
s510 11 10 0.08 to 4 0.08 10 to 17 0.08 10 22 26 0.31 to 9 0.08 18 to 25 0.23 18 32 40 0.11 to 10 E 32 to 54 0.08 31
s832 15 21 E 230 9 E 15 860 21 E 15 29 45 0.14 to 14 0.04 27 to 44 0.08 27 44 82 0.17 to 16 0.04 40 to 55 0.04 40
s641 19 35 0.1 to 10 0.07 15 to 17 0.1 15 38 73 0.36 to 11 0.19 21 to 31 0.26 21 57 128 0.21 to 23 0.14 43 to 50 0.12 43
c880 20 35 0.15 to 8 0.08 16 to 20 0.12 16 39 84 0.22 to 18 0.12 32 to 37 0.08 32 58 134 0.37 to 20 0.15 47 to 16 0.29 1
s1238 26 68 0.03 to 15 E 26 to 29 E 26 51 145 0.11 to 16 E 51 to 77 0.03 50 77 238 0.39 to 23 0.12 68 to 27 0.25 5
c1355 28 64 0.16 to 10 0.09 23 to 22 0.12 23 55 134 0.41 to 21 0.25 46 to 14 0.41 0 82 236 0.28 to 23 0.14 77 to 12 0.24 0
c1908 45 200 0.16 to 20 0.04 42 to 26 0.26 1 89 541 0.42 to 4 0.26 0 to 17 0.23 0 133 697 0.47 to 4 0.26 0 to 10 0.33 0
c2670 60 453 0.06 to 27 0.05 57 to 35 0.04 9 120 896 0.17 to 15 0.1 0 to 21 0.18 2 179 1459 0.16 to 4 0.18 0 to 8 0.21 0
s3271 79 659 0.11 to 37 0.05 67 to 98 0.06 67 158 1607 0.25 to 50 0.12 132 to 164 0.14 0 236 to 0.28 to 55 0.09 210 to 43 0.21 3
c3540 84 791 0.22 to 3 0.33 0 to 10 0.34 0 167 1704 0.4 to 2 0.38 0 to 9 0.41 1 251 to 0.39 to 1 0.49 0 to 3 0.46 0
c5315 116 1705 0.08 to 24 0.06 0 to 24 0.16 4 231 to 0.3 to 3 0.26 0 to 2 0.2 0 347 to 0.25 to 1 0.27 0 to 6 0.21 0
c6288 121 1567 0.4 to 2 0.48 0 to 4 0.48 0 242 to 0.5 to 1 0.44 0 to 2 0.49 0 363 to 0.46 to 1 0.44 0 to 1 0.48 0
c7552 176 to 0.15 to 1 0.14 0 to 3 0.19 0 352 to 0.25 to 2 0.25 0 to 1 0.28 0 527 to 0.24 to 1 0.28 0 to 1 0.25 0
s9234 280 to 0.19 to 36 0.17 9 to 19 0.23 0 560 to 0.35 to 4 0.33 139 to 4 0.34 0 840 to 0.42 to 12 0.4 0 to 3 0.43 1

TABLE III: CPA with 500 traces vs PowerSAT attacks run on a precise simulated trace oracle against RLL. The runtime for each attack was set to
30 minutes. #key denotes the number of keys in the particular locked circuit after overhead-based obfuscation. #pdi is the number of queries made.
kerr is the error rate (0-1) of the best key hypothesis at the end of the attack. An “E” in this column denotes that the recovered key was proven
functionally correct by equivalence checking. #pkb is the number of key bits that were provably resolved through settled-key detection.

params AntiSAT-20 AntiSAT-20+RLL-5% AntiSAT-30+RLL-10%
method #keys CPA PowerSATeq PowerSATdiff #keys CPA PowerSATeq PowerSATdiff #keys CPA PowerSATeq PowerSATdiff
bench time kerr time #pdi kerr #pkb time #pdi kerr #pkb time kerr time #pdi kerr #pkb time #pdi kerr #pkb time kerr time #pdi kerr #pkb time #pdi kerr #pkb
s298 40 44 E 0.55 5 E 40 47 30 E 40 46 44 E 1.6 12 E 46 380 57 E 46 72 102 0.05 to 21 0.05 71 to 32 0.14 0
s386 40 53 E 1.3 7 E 40 to 21 E 40 48 66 0.23 to 14 0.23 43 to 57 0.15 43 76 122 0.31 to 20 0.15 70 to 42 0.28 2
c432 40 56 E 2.5 18 E 40 37 127 E 40 49 64 E 3.1 21 E 49 47 81 E 49 77 122 E 7 28 E 77 660 117 E 77
s349 40 50 E 1.3 6 E 40 65 29 E 40 49 68 E 22 12 E 49 to 21 0.01 2 77 127 0.15 to 23 0.15 71 to 42 0.03 11
s400 40 58 E 0.56 4 E 40 19 30 E 40 49 72 E 4.7 16 E 49 to 53 0.02 46 77 131 0.19 to 22 0.07 72 to 53 0.14 6
s499 40 61 E 2.6 21 E 40 24 108 E 40 49 72 0.09 to 27 0.02 48 to 74 0.02 48 78 129 0.16 to 32 0.07 75 to 72 0.07 75
c499 40 57 E 34 20 E 40 23 76 E 40 51 74 0.09 to 21 E 51 to 164 0.09 48 81 136 0.27 to 26 0.09 73 to 110 0.22 73
s510 40 67 E 3.2 23 E 40 21 74 E 40 51 81 0.08 to 20 E 51 to 92 0.08 50 82 162 0.08 to 18 E 82 to 23 0.12 0
s832 40 86 E 3.2 18 E 40 56 141 E 40 55 112 0.04 to 23 0.04 54 to 69 0.04 54 89 223 0.21 to 26 0.17 84 to 32 0.2 0
s641 40 87 E 4.0 19 E 40 to 164 E 40 59 138 0.07 to 26 E 59 to 135 0.02 56 38 73 0.19 to 18 0.14 26 to 29 0.14 26
c880 40 98 E 13 14 E 40 310 136 E 40 60 143 0.08 to 28 E 60 to 71 0.08 58 99 260 0.28 to 34 0.12 88 to 148 0.27 0
s1238 40 127 E 6 19 E 40 to 59 E 40 66 209 0.06 to 25 0.03 64 to 85 0.03 64 51 123 0.06 to 22 0.06 49 to 79 0.03 49
c1355 40 111 E 77 23 E 40 to 111 E 40 68 192 0.16 to 24 0.06 66 to 35 0.14 1 115 412 0.33 to 25 0.17 110 to 20 0.37 0
c1908 40 211 E to 23 E 40 to 74 E 40 85 399 0.27 to 28 E 85 to 19 0.22 0 149 815 0.34 to 9 0.14 0 to 11 0.24 0
c2670 40 258 E 47 18 E 40 to 262 E 40 100 730 0.06 to 74 0.02 96 to 42 0.03 9 180 1653 0.21 to 3 0.14 0 to 15 0.22 2
s3271 40 350 E to 18 E 40 390 116 E 40 119 1202 0.1 to 53 0.03 108 to 148 0.08 108 158 1534 0.27 to 50 0.12 132 to 186 0.13 0
c3540 40 364 E 15 6 E 40 to 107 E 40 124 1202 0.1 to 6 0.22 0 to 9 0.3 0 227 to 0.23 to 2 0.36 0 to 7 0.4 0
c5315 40 543 E 220 22 E 40 to 83 0.0 8 156 to 0.12 to 67 0.06 144 to 10 0.17 0 291 to 0.2 to 1 0.17 0 to 6 0.2 0
c6288 40 to U to 15 U 40 to 18 0.0 0 161 to 0.38 to 1 0.34 0 to 4 0.42 0 302 to 0.47 to 1 0.45 0 to 1 0.47 0
c7552 40 849 E to 21 E 40 to 7 0.0 6 216 to 0.15 to 5 0.17 0 to 3 0.21 0 412 to 0.26 to 2 0.21 0 to 3 0.27 0
s9234 40 1325 E 1800 17 E 40 to 44 0.0 8 320 to 0.23 to 12 0.19 0 to 74 0.21 1 620 to 0.39 to 25 0.36 44 to 5 0.38 2

TABLE IV: This is an extension of Table III, with AntiSAT used in addition to RLL.

a close to 100 traces-per-second performance. An image of the setup
can be seen in Fig. r6. The hardware/software for this platform is
released at [27].

We tested the viability of differential queries (PDDIPs) on real
hardware traces. Fig. 5 shows the success rate of trace comparison
matching the power-model comparison for different model distances
(threshold) on different benchmark circuits using either a) the raw
difference or b) a moving average of it with a 20 point window
(an example of which can be seen in Fig. 7), or c) moving average
scaled by the value of the trace itself to dampen the effects of
non-switching time points in the difference trace. As the distance
between two power-model he values (threshold) grows, so does
the trace difference, and the PDDIP success rate. Many circuits
achieve 100% accuracy. This means that for the circuits with high
difference accuracy, the PowerSATdiff attack on a simulated oracle
can achieve the same results when run on the hardware, especially
if a high threshold is set as long as this does not render the
circuit unlearnable from PDDIPs. We placed the circuits from Fig.
5 with 100% difference accuracy in a hardware-in-the-loop setting

and confirmed this. Note that the attack can be repeated multiple
times with a different solver seed to improve accuracy. The 32-bit
comparator was deobfuscated using 64 collected traces in less than
a second using slicing.

V. CONCLUSION

We presented in this paper a pair of algorithms for circuit deob-
fuscation from power side-channels utilizing Pseudo-Boolean SAT
solving. We demonstrated their performance against simulated and
real hardware traces and provide a binary of the tool and the
trace collection platform to the research community. Such algorithms
besides showcasing that existing locking schemes do not automati-
cally achieve side-channel resiliency, can be used in benign reverse
engineering and hardware integrity checking. Improving the runtime
and reliability of the PowerSAT attacks is an important topic of our
future research.
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