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Abstract: Key-based circuit obfuscation or logic-locking is a technique that can be used to hide the
full design of an integrated circuit from an untrusted foundry or end-user. The technique is based on
creating ambiguity in the original circuit by inserting “key” input bits into the circuit such that the
circuit is unintelligible absent a correct secret key. Clock signals have traditionally been avoided in
locking in order to not corrupt the timing behavior of the locked circuit. In this paper, we explore the
case where the clock signal itself may be obfuscated by ambiguating its frequency or pattern. Along
with discussing formal notions of security in this context, we present practical ways to deobfuscate
such designs using techniques from multi-rate model-checking. We present experimental data on
deobfuscation runtime on a set of sequential benchmark circuits. Our results show that naive random
clock obfuscation may not provide more security per overhead than traditional random keyed-gate
insertion. We discuss how clock obfuscation may be a more attractive choice for special circuit designs
that are inherently multi-clock/asynchronous.

Keywords: circuit obfuscation; logic locking; model-checking

1. Introduction

Security concerns regarding the integrity and privacy of Integrated Circuits (IC) de-
signs are becoming more and more prominent as the IC supply chain becomes globalized
and designers outsource fabrication to potentially untrusted foundries. In this process,
the threat of the design being revealed to the untrusted parties, insertion of hardware
Trojans [1], or overproduction of the IC are possible. Reverse engineering by end-users
using ever-improving IC delayering and imaging techniques [2] is a growing concern
as well.

Logic locking, first introduced in [3], is based on making the design semi-programmable
by inserting additional key inputs into the logic before sending it to the untrusted foundry.
Post-fabrication, the circuit will be inoperable and unintelligible without the correct config-
uration of the key inputs. Besides logic locking, IC camouflaging and split-manufacturing are
two other ways to partially hide the design of an IC from untrusted end-users or foundries,
respectively. IC camouflaging is based on inserting nanodevice structures into the chip that
are difficult to disambiguate using conventional microscopy-based reverse engineering by
end-users. In split manufacturing, the upper metal layers are fabricated in a trusted facility
to hide the design from the foundry. Both methods introduce ambiguity into the design
from an attacker’s perspective.

The task of retrieving the original circuit given the ambiguous view by an attacker
is typically referred to as circuit deobfuscation/learning in this context. In many real-world
scenarios, it is possible for an attacker to access a functional/unlocked instance of the
obfuscated circuit and use it as an oracle to obtain correct input-output pairs. Deobfuscation
in the presence of such an oracle is referred to as oracle-guided deobfuscation.

In 2015, a generic powerful oracle-guided attack, since termed the SAT attack, was
proposed. In the attack, a satisfiability (SAT) solver is used to iteratively mine for input
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patterns on which to query the oracle, while simultaneously searching for a key that satisfies
the observed input-output behavior of the oracle [4,5]. The original SAT attack was limited
to combinational circuit deobfuscation. If the oracle circuit has uncontrollable flip-flops,
a sequential oracle-guided attack is needed. Such attacks were later developed in [6,7]
using bounded-model-checking (BMC) techniques. Here, the query location and the correct
key are mined using a model-checker instead of a SAT solver. This is typically a more
computationally intensive process than the combinational case.

Existing oracle-guided sequential attacks assume that there is a single clock signal
that is shared by all flip-flops in the obfuscated circuit. Some existing work has targeted
timing ambiguous circuits. In [8] authors introduce timing ambiguous elements into
combinational logic leading incorrect keys to create timing violations in fabricated chips.
In [9] incorrect keys lead to much slower sequential performance. Both works, however,
remain consistent with the sequential-oracle-guided single-clock threat model and as such
can be fed to existing SAT or BMC attacks (even though instances of them might overwhelm
said attacks). However, an important case that to the best of our knowledge has not been
studied in prior work and does not fit directly into existing attack models, is when the clock
signal itself is ambiguous (key-dependent) in some way. In this paper, we explore this case.
We present the following contributions:

• We discuss several generic schemes for clock obfuscation. These include obfuscating
the choice of clock frequency for a flip-flop among a set of multiples of a known or
unknown base frequency, plus using dummy clock-ambiguous flip-flops.

• We discuss the security of these clock obfuscation schemes in the context of formal
notions of functional security.

• We discuss how clock obfuscation can take advantage of the inherent clock uncertainty
in some asynchronous circuit designs.

• We present generic techniques for deobfuscating clock-obfuscated circuits using tech-
niques derived from multi-rate model-checking.

• We present experimental deobfuscation runtime data on the ISCAS [10] sequential
benchmark circuits and compare it to traditional XOR/XNOR-based locking.

The paper is organized as follows: Section 2 presents preliminaries and background.
Section 3 explains different methods of clock obfuscation, and Section 4 explains how to
model and attack clock obfuscated circuits. In the Section 5, we present the experimental
data and discuss our findings. Finally, in Section 6, we conclude our paper.

2. Preliminaries

Circuit Locking [11]. Formally we can define circuit locking as an algorithm that
transforms an original circuit co(i) : I → O where I and O are the input and output space
respectively, to a locked/obfuscated circuit ce(i, k) : I × K → O with l added key inputs
and key space K. There must exist a correct key k∗ ∈ K∗ ⊂ K, that when loaded into ce
will make it functionally equivalent to co: ∀x ∈ X ce(k∗, x) = co(x). The original circuit is
chosen from a distribution/family of circuits Co, known to the attacker which can be used
to capture the attacker’s a priori knowledge of the original circuit co. Changing the key
induces a possible obfuscated circuit function space Ce = {ce(k, .)|k ∈ K}. The basic goal
here is to make it hard for an attacker to recover the unseen original circuit co from the
obfuscated circuit ce which the attacker can see.

Oracle-Guided (OG) Attacks. In an oracle-guided (OG) attack (or attack model), the
attacker, in addition to access to the structure of the obfuscated circuit ce, has access to a
black-box that implements the original circuit co, which is called the oracle. The attacker
can query this oracle adaptively on chosen points to help identify a correct key for ce. An
attacker with no oracle-access is called an oracle-less attacker (or attack model).

Sequential Oracle-Guided (SOG) Attacks. In the case of a sequential obfuscated
circuit, if the attacker has an original functional circuit (oracle), but he for any reason cannot
control or observe all the internal state elements (flip-flops or latches) of the oracle [12,13]
this we refer to as the sequential oracle-guided attack model. The attacker only controls
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primary inputs and observes primary outputs and has a way to reset the oracle to its known
reset state. An unknown reset state of s bits here can be modeled by s extra (virtual) key
inputs, an extra flip-flop, and some multiplexer logic.

Security Definitions. Formal definitions of security are routinely used in modern
cryptography to reason about the security of protocols. A long-overdue effort to use a
similar approach in circuit obfuscation has been initiated [11,14,15] . We state the security
properties from [11], as they are used later on in the context of clock obfuscation:

Approximate Functional Secrecy (AFS). A locking scheme is said to be (t, q, ε, σ)-
AFS-OG secure if the success probability (advantage) of any adversary A that has the locked
circuit ce, and can make up to q chosen adaptive input queries to the oracle of co, who has to
return an ε-approximation of co, is no more than σ better than an adversary A′ that makes
q queries to the original circuit co and randomly guesses the remaining 2n − q truth-table
entries of co.

Exact Functional Secrecy (EFS). (t, q, σ)-EFS-OG ≡ (t, q, 0, σ)-AFS-OG. i.e., EFS is
satisfied as soon as the attacker is not able to recover the precise functionality of the original
circuit. It turns out that for many families of circuits, an OG attacker can disregard the
obfuscated circuit ce and try to “black-box-learn/approximate” the oracle circuit co with
the circuit family Co as the a priori function space, making AFS-OG impossible for such
families. More relaxed notions of approximation resiliency can avoid this result [11]. EFS
with exponential query complexity on the other hand is satisfiable with comparator logic
for many circuit families [11].

Clock Domain. If a circuit has state elements such as latches or flip-flops then it may
have one or more clock signals (see Figures 1 and 2). The input and output of the circuit are
related to the incoming sequence of the clock signal. The elements of the circuit, which are
dependent on a particular clock signal, are in the domain of that clock. Hence a circuit with
multiple clock signals will typically have multiple clock domains.

DFF

Clock1

DFF DFF

Combinational LogicInput Output

S3
Ns3

S2

Ns2

S1

Ns1

Figure 1. Single clock domain sequential circuit.

DFF

Clock1

S NS

DFF DFF

Clock 2

SS NSNS

Figure 2. Multi-clock sequential circuit.

Clock Sources. A clock signal may come from outside the chip via dedicated clock
pins, or be generated internally using an on-chip oscillator. An LC (inductor-capacitor) cir-
cuit along with an amplifier can be used to generate periodic signals. Such an on-chip oscil-
lator is constrained by the available device technology (inaccurate R/C (resistor/capacitor)
values available, while L components can take up a large on-chip area), whereas an external
clock-source can use discrete crystals that produce higher accuracy clock waves.

Setup Time. The input data to a flip-flop needs to be stable for more than a certain
amount of time before a clock edge arrives. This time is known as setup time.



Cryptography 2022, 6, 43 4 of 19

Hold Time. The input data to a flip-flop needs to be stable for more than a certain
amount of time after a clock edge has arrived. This time is known as hold time.

Combinational SAT Attack. The combinational SAT attack, as presented in [4,16] is a
generic oracle-guided attack. Given an arbitrary keyed circuit ce(k, x) and an oracle co(x), it
begins by formulating a miter circuit M = [ce(k1, x) 6= ce(k2, x)]. This circuit is converted to
a conjunctive normal form (CNF) formula through the Tseitin transform and asserted using
a SAT-solver to obtain x̂, k̂1, k̂2. x̂ is called a discriminating-input-pattern (DIP), as it leads
to different outputs under two different keys k̂1, k̂2 (uncertainty sampling). The oracle is
queried on this DIP ŷ = co(x̂). This input-output (IO) observation will be inconsistent with
at least one of k̂1 or k̂2 and is hence guaranteed to prune the key space. This IO condition
Fi is added back to M as a constraint and the process is repeated until M ∧ Fi is no longer
satisfiable. At this point solving Fi alone is guaranteed to return a functionally correct key
as long as co ∈ Ce.

Model-Checking Sequential Oracle-Guided Attack. The above SAT-attack cannot be
formulated directly for a stateful circuit. However, a solver-based sequential oracle-guided
deobfuscation attack can be built with the same paradigm as above [6,12]. We first extend
the locking model to sequential circuits by defining sequential locking as transforming
the sequential original circuit co(x, so) : I × S→ O× NS with S and NS being the current
and next state spaces respectively, and so is an |so|-bit state register, to the obfuscated
circuit ce(k, x, se) : I × S → O× NS for which se is an |se| ≥ |so|- bit state register where
a correct key k∗ ∈ K∗ exists such that for all sequential traces x̂ = 〈x̂0, x̂1. . ., x̂u〉 ∈ I∞ we
have ce(k∗, si

e, x̂i) = ŷe, ˆnse and co(x̂i, si
o) = ŷo, ˆnso and ŷe = ŷo. We can assume that ce is

initialized to zero s0
e = 00. . .0. An unknown reset state for co can be modeled with extra

virtual key-bits. This allows modeling finite-state-machine (FSM) obfuscation [17] with the
above scheme as well.

Under the above model, the sequential attack can proceed by unrolling the obfuscated
sequential circuit ce up to a given clock cycle bound u. From this we get cu

e which takes u
inputs and produces u outputs. Since such an unrolled circuit is going to be combinational,
it can be directly passed to a combinational SAT attack. The DIP extracted from this unrolled
miter will now contain a sequence of input patterns and hence is called a discriminating-
input-sequence (DIS). The DIS can be queried on the sequential oracle. An unrolled
input-output constraint can then be extracted and appended to the unrolled miter and the
process can be repeated.

Once the above process concludes (miter unsatisfiable) for a particular bound u, the
recovered key will be a functionally correct key for up to this round. The attack can
terminate early by checking for certain termination conditions, such as the combinational
equivalence of the next-state functions, or checking whether the miter is unsatisfiable for
an unconstrained reset state. The attack can in fact be modeled entirely using the model-
checking problem. Model-checking is the task of (dis)proving properties over sequential
transition systems represented by FSMs or stateful circuits. Unrolling a circuit and passing
it to a SAT solver is a common fast approach to solving model-checking problems called
bounded-model-checking (BMC). Algorithm 1 shows the overall flow of the BMC-based
sequential oracle-guided attack.
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Algorithm 1 Given oracle access to sequential circuit co and structure of sequential obfus-
cated circuit ce return a correct key k∗

1: function SEQDECRYPT(ce, co as black-box)
2: j← 0, b← 1
3: M← ce(k1, s0

e , x) 6= ce(k2, s0
e , x)

4: Fj ← true
5: while !TERMINATION(Fj) do
6: if BMC(Fj ∧M, b) is SAT then
7: Îj ← SATISFYINGTRACE(Fj)

8: Ôj ← cb
o(Îj)

9: cb
e ← b-round-unrolled ce

10: Fj+1 ← Fj ∧ (cb
e (k1, s0

e , Îj) = Ôj) ∧ (cb
e (k2, s0

e , Îj) = Ôj)
11: j← j + 1
12: else
13: b← b + 1
14: end if
15: end while
16: satisfy Fj with k̂1 and k̂2

17: return k̂1
18: end function

3. Clock Obfuscation

In this section we discuss how an ambiguous clock may be created in the view of an
oracle-guided attacker. The baseline threat model here is similar to SOG where the attacker
lacks full scan-chain access, and additionally is uncertain about the frequency of some the
clocks in the designs. Note that a non-SOG/OG/combinational attacker (one with full and
immediate state observability) can easily recover clock frequencies by simply observing
changes in the state and hence not the focus of our discussion.

We will discuss various technical aspect of this clock obfuscation process ranging from
clock sourcing and key-dependent programming to state-element selection, and finally
designs that are inherently multi-clock as prime candidates for this form of obfuscation.

3.1. External Clock Sources

In the conventional locking-enhanced supply chain, the key is never shared with an
untrusted party as such a party can collaborate with the untrusted foundry to learn the
functionality of the original circuit. Instead, the secret key is programmed onto the chip by
a trusted party in a trusted facility, and then one has to ensure that the programmed key
is nonvolatile/persistent and tamper-resistant. For instance, if the state of key-bits can be
recovered via optical/electrical probing the security of locking obviously falls apart [18].

This also means that placing the key outside the chip is difficult. An off-chip key
will need to be transmitted securely to the locked chip. This itself may require encryption
and hence another encryption secret key with exactly the same key management issues.
Similarly, in the case of clock obfuscation, securing an external source will be very difficult.
An attacker can easily probe an external clock signal and record its frequency. Hence except
for the case of trusted end-users, clock obfuscation should focus primarily on ambiguating
internal clock sources.

Note that regardless of the origin of the clock the attacker can try to bound its upper-
frequency limit. The attacker can study the layout and transistor technology of the locked
circuit and use timing analysis to get an estimate of the maximum clock frequencies as
dictated by setup/hold-time constraints. Finding a minimum clock frequency bound that
is larger than zero will be harder if not impossible.
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3.2. Internal Key-Programmable Clock Sources

Given that external clocks are hard to obfuscate, the defender has to produce clock
ambiguity on-chip which we discuss herein.

The first approach is to use internal key-programmable oscillators. There are a myriad
of ways to implement frequency controllable on-chip oscillators. Modern processors require
such oscillators to implement dynamic voltage/frequency scaling (DVFS) to reduce power
consumption during low-intensity computational periods. For instance, ref. [8] implements
a programmable clock source via a ring oscillator with variable/controllable capacitors
inserted in the ring to tune its oscillation frequency.

Since the frequency needs to be programmed on-chip there are some limitations.
Typically, digital bits are used to tune such oscillators. This will make it such that for l key
bits there will exist at most 2l different possible frequencies. For the purposes of locking,
however, it is possible to imagine a chip that has programmable continuous RLC elements
that are configured using an external analog voltage/current. In such a setting, it may seem
that the number of possible frequencies can become infinite. However, the attacker can use
a bounded number of frequency “bins” to place the continuous variable into, capturing
the inevitable imprecision in the defender’s configuration process. There is obviously a
limit here on the number of different frequency possibilities in the attacker’s view that the
defender can create. On-chip oscillators cannot be tuned with infinite precision. Moreover,
the infinite precision may not translate into infinite Boolean function possibilities for ce.

Another approach is to use an external fast master clock, the frequency of which will
be known to the attacker (represented by the smallest period T). This fast clock can be
slowed down by integer multiples by adding a programmable digital clock divider. A
counter circuit can be used to count the number of positive edges on the clock. The value of
the counter d is compared to a key vector kd and a tick is generated in case of a match. The
attacker can produce a kd × T clock period in addition to the T-period master clock using
such logic. The overhead here will be a function of the bit width of kd and will consist of
comparator and counter logic. The maximum possible period (slowest frequency) above
zero will be 2|kd |T.

3.3. Frequency Fractions

Using the above various clock generation approaches, given the assumption that the
number of different clock frequencies in the design is finite, we can model this with t differ-
ent possible clock frequencies/periods T = {T1, . . ., Tt}. The relationship between these
clocks can vary creating different scenarios that lead to somewhat different threat models:

Integer Multiples of a Single Base Period. The somewhat simplest case here is
when T includes a single base minimum period T, plus integer multiples of it. e.g.,
T = {T, 2T, 3T, 7T}. For instance given a clock-divider with a programmable n-bit division-
factor controlled by the n-bit key kd, we will have T = {T, 2T, 3T, . . ., 2nT}.

Integer Multiples of Multiple Base Periods. The more complicated case is when
there are multiple base frequencies and their integer multiples. This corresponds to the
case where one uses several on-chip controllable oscillators to produce more than one base
period T1 ∈ T and T2 ∈ T , where T1 and T2 are completely independent. Multiples of
these periods can then appear in T as well. In this work, we do not directly present a
generic deobfuscation algorithm for this case. Such cases will have to be modeled with a
single base period alternative.

To transform the multiple base period case to a single base period, one can pick a small
single base period Tb and use it to express both T1 and T2. i.e., T1 = n1Tb and T2 = n2Tb.
In a real-world scenario, absent external unknown clock frequencies, T1 and T2 can take a
finite number of different values. One can extend this to more than two base periods.

Note that in model checking research, when dealing with multi-rate transition systems,
a similar approach is often used [19]. i.e., a single global minimum step size is used to
express the different rates. However, it is possible to imagine truly independent clock rates.
Take the case of asynchronous transmitter and receiver logic. Here the frequencies on both
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sides can be completely independent and the system must perform correctly regardless.
Unrolling the circuit to capture its behavior, in this case, is not straightforward. Formal
analysis of such fully asynchronous circuits is a topic of ongoing research [20] and outside
the scope of this paper.

Rational Multiples of a Single Base Period. Here T can include non-integer multi-
ples of the base period. i.e., T = {T, 1.3T, . . ., 2.4T}. In this paper, we avoid deobfuscating
such cases directly. As for the deobfuscation, we will model obfuscated circuits with the
multi-rate model-checking [19] method, we need to convert this non-integer multiples to
the case of integer multiples by finding a Tb that is small enough to express all the periods in
T . For instance Tb = 0.1T, can be used to express 1.3T = 13Tb and 2.4T = 24T. As for the
defender he can implement such a setting by using a fast master clock of Tb and dividing
the frequency down to the other periods, or by using |T | different tunable oscillators that
can be tuned in steps of size Tb.

We will explore these scenarios further in Section 4.

3.4. State Element Clock Ambiguation

Clock signals are primarily routed to state elements in digital logic. Hence, subsequent
to the generation of different clock frequencies, the defender has to create in the view of the
attacker an ambiguity in which clock frequency is used for a particular state element.

We can assume that the previous step results in the generation of t different clock
frequencies/periods T = {T1, . . ., Tt}. These frequencies can be implemented on a single
wire. For instance, a single-ended programmable oscillator or clock-divider will have a
single clock signal output that can be programmed to oscillate at different frequencies. By
routing this signal to a state element, an ambiguity is immediately created in the attacker’s
view on the clock frequency of that particular element. Different clock frequencies can
also be implemented on different wires. One can build a fixed (key-independent) clock
frequency divider that generates a 3T-period clock in addition to the T-period master
clock. Then, a key-controlled MUX-gate can be used to select one of the two known
frequencies as the clock source of a particular DFF. This is shown in Figure 3. While this is
functionally equivalent to the single-wire case, the hardware overhead may be different.
The MUX approach requires both clock signals to be routed to the state element. The
single-ended programmable clock on the other hand can take on only a single frequency,
meaning that if routed to multiple DFFs, they will all take on the same frequency post-
configuration and hence does not lead to DFF-specific ambiguity (captured by virtual keys)
in the attacker’s view.

DFF
Clock1

S NS
DFF

S NS

DFF

Clock 1

S NS

Clock 2

M
ux

key

Clock 1 

Clock 2

Figure 3. 2-choice clock obfuscation using a key-controlled MUX gate.

In the functional secrecy paradigm of logic locking, one can model a given ambiguity
in the locked circuit with alternative key structures. Given a precise locked circuit netlist
ce(k, x), a functional attacker can replace it with c′e(k′, x) as long as the possible function set
of c′e is a superset of the possible function set of ce. We use this approach by introducing
virtual key-bits that model the attacker’s ambiguity over the behavior of the circuit in our
attacks later on.
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3.5. State Element Selection

Once a set of different frequencies is generated one has to select which state elements
in the design to obfuscate with what subset of frequencies. The space of possible ways to
select state elements here would be prohibitively large. In our experiments on benchmark
circuits, we select a random subset of flip-flops and obfuscate them with a choice of
different frequencies. However, one can perform the selection to optimize metrics such as
area/timing/routing/congestion or security metrics.

One important issue that needs addressing here is that of Oracle-Less (OL) attacks [21].
An OL attacker has to determine the frequency of a particular flip-flop by studying the
structure of the obfuscated circuit alone. For instance, if the transistor technology and DFF
structure dictate a certain setup/hold-time requirement, that can be discerned from the
obfuscated circuit layout itself, then the attacker can discard frequency values that are high
enough to violate setup/hold-time requirements. i.e., a clock frequency where the period
T < min(st, ht) where st is the setup time and ht is the hold time can be removed from
the set of possible frequencies for that particular clock. Note that hold-time requirements
that are satisfied by adding delay to timing paths do not help in determining the clock
frequency beyond the above-discussed point.

Another potential oracle-less vulnerability is the fact that the flip-flops that are closer
to one another in the physical layout or the netlist graph are more likely to have the
same frequency. The defender can try to alleviate this by ensuring that clusters of nearby
flip-flops are clock-obfuscated simultaneously.

One more OL vulnerability in clock obfuscation is the fact that given the distribution
of real-world original circuits modules, those with fine-grained multiple clock rates per
DFF are less common. This bias in the original circuit space Co, means that an attacker will
have a non-negligible advantage in correctly recovering the circuit by just assuming that all
clocks run at the same frequency. It is better therefore to target clock obfuscation towards
circuits that inherently exhibit some sort of clock gating or frequency control. We discuss
some of these special cases in Section 3.7.

3.6. Dummy (Constant-Clock) State Elements

One can insert a flip-flop in the circuit that has a constant clock signal: An edge-
sensitive D-flip-flop with a zero clock signal will remain forever in its reset state. This can
serve as a constant in the circuit. Constants can be mixed with AND/OR/XOR gates to
create “phantom” sequential behavior in the attacker’s view of the circuit. A level-sensitive
latch with an always-on/off clock signal can serve as a buffer/constant. This can be inserted on
wires or replace existing buffers/inverters. The above cases can be seen in Figure 4.

Clock=0

Input
Q

Constant
Clock =1

D Output Input=1 D Q
Output

Latch
X buffer

Figure 4. Dummy flip-flop (left) as constant and latch (right) as buffer.

Implication for EFS. Achieving EFS with exponential security is possible for many
combinational circuit classes by inserting for instance detachable comparator logic to the
circuit [11]. A detachable comparator/point-function P(x, k) = (x =? k)∧ kact can convince
the attacker that there may be an activating pattern k in the input space of the circuit. Since
such a comparator can be disabled by setting kact = 0, the attacker will have to explore a
significant proportion of the input space of the circuit in order to be able to rule out the
existence of this activating pattern with high confidence.

A similar phenomenon can happen with dummy clock obfuscated state elements.
The attacker suspects that the dummy state element is going to make a transition at some
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point, ruling out of which requires querying and waiting for a time Tmax that is the longest
non-infinite potential period of a clock signal in the circuit. Generating a Tmax = 2nTb with
a clock-divider from a base clock period of Tb will require a comparator of size n but can
create EFS with O(2nTb) time complexity.

3.7. Inherently Asynchronous Circuits

The attacker’s a priori knowledge of the original circuit is captured in Co: the original
circuit distribution. It is not straight-forward to precisely describe Co. This is similar to
the plaintext distribution problem in cryptography. English text has a distribution, but
describing the distribution is not easy. Modern ciphers are designed to not lose their security
as the distribution of the plaintext changes. This is not the case unfortunately for circuit
locking. A locking scheme can go from information theoretically secure to completely
broken by just changing Co. In the case of clock obfuscation, applying the obfuscation to
original circuits that are inherently multi-clocked will ensure that an attacker that simply
decides that all state elements are running at the same frequency will be wrong in at least
some instances, i.e., instances where the original circuit itself was multi-clocked rather than
the clock ambiguity being exclusively artificially introduced via the locking scheme.

We discuss two common asynchronous circuit examples below that can be locked
manually with clock obfuscation. This can be extended to other asynchronous circuits.

Digital PLL. Phase-locked loops (PLL) are feedback control systems that adjust the
phase of a locally generated signal to match the phase of an input periodic signal auto-
matically. This is done by detecting the difference in phase between the two signals and
adjusting the local oscillator based on this difference.

A common PLL design paradigm is to use the following stages: a phase detector
measures phase differences between the internal and external signal. A low-pass loop filter
filters this difference signal producing a voltage that tunes a voltage-controlled oscillator
(VCO). The output of the VCO is then fed back to the phase detector after going through a
feedback divider. One can implement the above with analog or mixed-signal components.
One common mixed-signal way to design the phase detector is to feed the input and
oscillator signals to the clock port on a pair of DFFs. This can allow for clock obfuscation.

In a Digital PLL (DPLL), these blocks can be converted to digital blocks (see Figure 5).
The loop filter is converted to digital loop filter, the phase detector to a time-to-digital
converter (TDC), and the VCO to a digitally-controlled oscillator (DCO) [22].

A TDC block design is shown in Figure 6. As can be seen, the re f timed signal is passed
as the clock signal to a series of DFFs capturing a series of consecutively delayed signals.
Since this re f signal is not the common master clock in the system, it can be obfuscated via
key-controlled MUX gates. One has to ensure that the precision of the TDC is not harmed
by trying to reduce the mismatch induces by the insertion of MUX gates.

Phase
Detector

Analog 
Filter

Divider

VCO TDC Digital 
Filter

Divider

DCO

div(t)

Out(t)ref(t) Out(t) ref(t)

Figure 5. PLL and DPLL block diagrams.

Oracle-less resiliency may be harder to maintain as the TDC block has a very particu-
lar structure without additional interconnect and structural obfuscation. Oracle-guided
resiliency will depend heavily on the controllability/observability of its input/output in a
larger design.

Digital Counter. A digital n-bit counter can be built with a sequence of DFFs. The
frequency of the rising edges on the clock signal that is shared among these DFFs will reduce
by half after each stage of DFFs creating a binary counter function at the Qi outputs. One
can use MUX gates here to confuse the attacker in the choice of clocks as seen in Figure 7. It
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is also possible to take any sequence of n DFFs in a design, and use key-controlled MUX
gates to create a “potential digital counter” in the attacker’s view among them by creating
a scenario where there will exist a key under which the DFFs will act as a counter.

ref(t)

QD D Q D Q

+

Delay
div(t)

e(k)

..........

D Q

..........

..........

ref(t) ref(t) ref(t)

Delay Delay DelayDelay Delay Delay

Figure 6. Time-to-Digital Converter.

The oracle-less resiliency here will depend on how undiscernible the counter logic
can become from the rest of the circuit which will depend on the density and topology
of inserted MUX gates. The oracle-guided EFS resiliency for counter logic can increase
exponentially, as the last bit (most significant bit) of the counter has exponentially small
observability, which can lead to exponentially high query counts or wait times.

Clk
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Q'

QD

Q'

QD

Q'
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Clk1
Clk2

K K K

.........
Clk
Clk1
Clk2

Clk
Clk1
Clk2

K

Clk
Clk1
Clk2

Figure 7. A possible 3-choice clock obfuscation of an asynchronous up counter.

4. Clock Deobfuscation

Up until now, we have discussed clock-based obfuscation techniques and their possible
implementation in circuit designs. Sequential circuits are considered to be harder than the
combinational circuit in the deobfuscation process. As mentioned in preliminaries, the
deobfuscation of sequential circuits is possible with the sequential oracle-guided attack
with bounded model checking. Here we show that it is possible to adapt these attacks to
the case of deobfuscating clock-ambiguous circuits.We use a common technique used in
multi-rate model-checking [19]. The idea here is to try to model the multi-rate semantics
with a single-rate model with the same functionality that can then simply be passed to a
traditional single-rate model-checking attack.

4.1. Clocks with Known Integer Multiples of a Base Period

The first and simplest case here is when the attacker is faced with a set of DFFs, where
for each DFF the clock signal is a choice among a subset of known multiples of a base
period T. For instance, some DFFs will be connected to a clock signal clk1, while for another
DFF in the circuit the clock signal is picked using key-controlled MUXs among clk1 and
clk2. If clk2 is generated by a clock-divider from clk1 with a public division ratio of 2, then
the attacker knows that the DFF can be running at either T or 2T.

Formally speaking, the attacker is given ce, where ce will include |se| DFFs, each
driven by a clock running at a period given by a key-controlled choice of a subset of
T = {T, a1T, . . ., atT}, where the ai are known integers. We begin describing the modeling
process by imagining two DFFs running at two different known clock rates. If one DFF
is running at a period of 2T while the other DFF is running at a period of T, this simply
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means that the one running at a faster clock rate (T) will be getting updated twice as
often. One can capture this behavior by simply inserting a second “virtual” DFF in the
path of the slow DFF. i.e., Given a DFF nsT = DFF1(s, clkT), nsT will get updated on
each tick of clkT which occurs every T seconds. By adding a second DFF we create
ns2T = DFF2(nsT , clkT) = DFF2(DFF1(s, clkT), clkT). Now for the value at s to reach the
output at ns2T it will take not one but two ticks of clkT . Effectively, ns2T ends up getting
updated with s at half the rate, i.e., as if it were driven by a clock with half the frequency
(twice the period), i.e., clk2T .

It is possible to extend this to the case of clocks running at aiT for ai > 2. For a clock
running with a period of aT, a many back-to-back flip-flops can be inserted to slow down
the fast data moving at a period of T, to the data that moves with the a-times slower aT.
These signals can then be used as functional equivalents of a DFF next-state signal that is
running at a slower clock.

If the above model is passed to a model checker, it will get unrolled into a combina-
tional circuit in which the state to next-state connections may effectively end up skipping
some intermediate unrolled frames. This also means that instead of modifying the sequen-
tial circuit by adding slowdown DFFs, one can implement the same behavior as part of
the unrolling subroutine of the model-checker. In our experiments however, we avoid
this as modifying the internals of the BMC engine is somewhat more difficult than simply
inserting slowdown flip-flops in ce.

With the above technique, we can generate a series of next-state signals each being
updated at a fixed integer ratio of the base clock rate. If the clock rate for a particular DFF
is known, we can then just select the next-state signal that corresponds to this. However,
in the case of deobfuscation, this choice may be unknown for some DFFs. Per our usual
arrangement in deobfuscation, we may model this uncertainty/ambiguity using introduced
virtual key bits. We create a key-controlled MUX that will select one of the next-state signals
that are running at different rates. i.e., nso = MUX(k, nsT , nsa1T , . . ., nsaiT). If passed to
a sequential deobfuscation routine, the value of the virtual key k learned from the attack
represents a choice of which clock rate the particular DFF is running at. Figure 8 shows this.

DFF1clk

Input

Output

DFF2

k

clk

M
ux

T domain path

2T domain path

DFF1clk

Input

Output
DFF2

k

M
ux

T domain path

3Tdomain path
DFF2clk clk

Figure 8. The virtual key bit k is added to capture the choice between the DFF operating at T/2T
(upper figure) or T/3T (lower figure).

4.2. Clocks with Unknown Integer Multiples of a Base Period

Now we come to the case where the clock choices are integer multiples of a base period
T = {T, a1T, . . ., atT}, yet the ai can be unknown to the attacker.

Since the ai here are still integers and are all greater than 1 (slower versions of the
base period T), we can use the slowdown DFFs discussed previously. While we know
how many slowdown DFFs to insert for a known multiple of T, for an unknown multiple,
we are uncertain about exactly how many to insert, i.e., by how much to slow down the
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next-state signals. This is a true uncertainty on the side of the attacker. An uncertainty that
nonetheless cannot escape being modeled by added virtual key bits.

For a DFF that may be running at an unknown multiple period aT, we go ahead
and slowdown the next-state signal of the DFF by inserting amax-many slow-down DFFs.
Using key-controlled MUX gates we allow the circuit to pick any of the slowed down
signals {nsaiT} for ai ≤ amax. If we now set amax to an integer value that is higher than
the maximum expected period multiplier in the attacker’s hypothesis, we will effectively
end up modeling clocks that can be arbitrarily slower than the base clock within some
reasonable range.

With the above approach, the overhead in the model of the multi-rate circuit grows
linearly with amax. Hence if the attacker can truly expect some clocks in the circuit to be
running at exponentially slower than the base period, this can create an exponential blow
up in the size of the multi-rate model. This directly ties the slowdown in the multi-rate
obfuscation to the resiliency against our proposed attack. This is somewhat analogous to
the relationship between observability and query complexity. Slower clocks produce less
observable circuits in time.

The attacker can bound the value of amax by studying the clock source. For instance, if
the clock is driven by an n-bit digital clock-divider that can divide the base frequency by
up to 2n, then amax will have to be greater than 2n. If an on-chip LC oscillator is used, the
attacker may be able to use the LC variables limit in the given technology or the digital bits
used to program them to get an idea of how slow of a signal they can produce.

Note that the unrolled version of the above model of the circuit will include possible
updates of next-state in each frame. This can be seen in Figure 9. Note that for constant
dummy DFFs, the possible connection between the next-state in frame u and the reset state
Rs through the key-controlled MUX captures the possibility of some DFFs never changing
from their reset state in u rounds.

K K

K

Rs

In Out In Out In Out In Out

Ns
S

Ns
S

NsS NsS

Figure 9. Unrolling of the circuit given an up-to-nT possible clock period. The next state in each
frame may be updated to the value of its immediate previous state, or any other frame in the past
all the way to the reset state (which captures not getting updated at all). This model can be used
to capture arbitrary clock patterns as well as frequencies as long as they are multiples of a known
base-rate.

A combination of known and up-to-amax clock obfuscation is possible and can be seen
in Figure 10. The single rate equivalent model is seen in Figure 11.

4.3. Non-Integer Multiples of a Base Period

The clock period choices can be non-integer multiples of a base period, e.g., 1.2T,
2.4T, . . .. be As we briefly mentioned in Section 3.3, in this paper we do not directly attack
this case. Instead, such cases have to be converted to an integer multiple period equivalent
model. This can be done by trying to find the smallest period Tb, which can be used to
describe all the non-integer periods in the circuit.

First, we consider the case where the non-integer periods are known. i.e., 1.2T, 2.4T.
We can first multiply both numbers by a decimal factor to turn them into integers
12T = 10× 1.2T, 24T = 10× 2.4T. We can then take the greatest-common-divisor of
12T and 24T which will be 12T here. We then reverse our early transform by dividing 12T
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by 10 obtaining 1.2T. We now take Tb = 1.2T, which allows us to express the other periods
1.2T = Tb, and 2.4T = 2Tb. This returns us to the known integer multiple case and allows
for applying the previous deobfuscation routines.
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Figure 10. Multi clock obfuscation. Two of the DFFs in the circuit on the left are clock obfuscated.
One by inserting an up-to-n potential range. The other by inserting a 2-choice between T and 3T.
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Figure 11. A single clock rate model of the multi-rate circuit in Figure 10. The lower DFF is unchanged.
One DFF is slowed down thrice and key-based selected. The other implements an up-to-n potential
period range.

If the non-integer multiples are unknown, similar to the case of integer multiples we
pick an amax that represents the maximum multiple of the base period that could occur in
the circuit and allow for a choice between all slowed down versions of ns using virtual key
bits and MUX gates.

As for identifying amax one can follow the same procedure as before. If the clock is
generated by a digital clock divider, the maximum amax is visible. If the clock is sourced via
a fine-grained oscillator, per our discussion in Section 3.3 the smallest step in the oscillator
frequency range can still be taken as Tb and the attack can proceed.

4.4. Finding the Base Period

As discussed above, in all cases, in order to deobfuscate the circuit with our proposed
approach one needs to express the potential clock period choices as multiples of a symbolic
base period T.

The oracle-guided attacker, however, needs to have some idea of the concrete value of
this symbolic base period too. This is required for trying to make sense of the sequential
oracle output behavior. Recall that in the conventional sequential OG attack, the clock
period is known to the attacker or the attacker is assumed to have direct control of the clock
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signal. Hence when querying the sequential oracle, the attacker will restart it, pass the
first input pattern to the circuit, tick the clock or wait for period T, read the output, then
repeat the process. Even if an output bit is not changing for several input patterns, the
attacker knows that the unchanging output bits belong to different frames, simply from
knowing/controlling the clock period.

For a clock-ambiguous circuit, however, this may not work. Here, the attacker, not
knowing the base period of the clock, will not know precisely how to attribute the different
outputs observed on the oracle to the unrolling of the different frames in the model-checking
attack. Hence a first step in the attack must be to identify the base period T itself too.

If the locked circuit has an external master clock and there are no frequency boosters
in the circuit, the attacker can assume that the fastest clock in the circuit is the external
clock. If however, the fastest clock in the circuit is generated internally, the attacker may
not directly observe this fast clock’s period T. Instead, the only manifestation of T will be
that at rates of aT where a may be unknown, the output of the circuit may change. The
attacker can hence try to measure the time it takes for an output to exhibit change while the
inputs are kept the same to identify aT.

We can in fact devise a miter condition to capture this. This is shown in Figure 12.
The circuit condition M ≡ ∨

0≤u<t(ct
e(k, rs, x)[u] 6= ct

e(k, rs, x))[u + 1] where ct
e[u] is the

t-round unrolled obfuscated circuit’s output at the uth frame. This condition captures input
patterns x and key patterns k for which a transition in the output may occur if the internal
unknown clock keeps ticking. The attacker can then pass such an input to the oracle and
wait for a change in the output and measure the time as an estimate of some multiple of T.
Note that since the key is unknown, this is not guaranteed to happen on the oracle. Thus,
the attacker must repeat the process in theory for every possible x that can satisfy M. Also
keep in mind that, during the attack, if the attacker observes any change at the outputs
that occurs at a rate faster than 1/T, the attacker can downgrade his measure of the lowest
period T and restart the attack.

S NsRs
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Y1

k
k
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S3 Y3 X Sn Yn
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Figure 12. Mitter condition circuit to capture inputs and keys (X and K) for which a transition at
the output may occur at some point in the future without one changing the input or the key (i.e.,
clock-induced state-dependent changes).

5. Experiments

We present proof-of-concept implementations of the ideas discussed in the paper. We
use the sequential ISCAS benchmarks seen in Table 1. These benchmark circuits are single
clock circuits.

For obfuscation, we do not implement the full-fledged multi-clock tape-out-ready
circuits with oscillators. Instead, we model the multi-clock obfuscation by inserting slow-
down DFFs plus MUX gates following our discussions in Section 4 using Python scripts
to evaluate security. For deobfuscation we pass these multi-rate equivalent model cir-
cuits to the open-source sequential deobfuscation tool neos [23]. neos is written in C++
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and uses the Glucose SAT-solver along with an internal unrolling-based BMC solver for
sequential doebfuscation.

Table 1. Deobfuscation time (in second) for 20% and 30% locking rate of DFF in 2-choice clock
obfuscation. ff(X%) denotes the number of DFFs picked from the circuit with a X% selection rate.

Bench ff ff (20%) T, 2T T, 3T XOR/XNOR ff (30%) T, 2T T, 3T XOR/XNOR

s820 5 1 0.18 0.21 0.27 2 0.26 0.16 2.33
s832 5 1 0.15 0.10 0.27 2 0.14 0.10 0.98
s344 15 3 0.16 0.26 0.20 5 0.28 0.12 17.26

s1238 18 4 0.28 0.40 0.45 6 0.44 0.37 0.43
s641 19 4 0.71 0.33 0.71 6 0.85 0.30 0.77
s713 19 4 0.12 0.30 0.89 6 0.19 - 0.27
s991 19 4 0.31 0.34 0.58 6 0.40 0.35 0.26
s382 21 5 354.14 224.36 325.81 7 194.28 342.13 799.75
s400 21 5 255.41 139.67 4.65 7 167.54 97.25 489.10
s444 21 5 430.14 177.60 340.97 7 126.35 529.70 194.97
s499 22 5 3.10 1.55 0.53 7 3.94 5.19 0.62
s953 29 6 2.04 1.65 6.70 9 1.31 2.27 8.51
s967 29 6 0.50 1.47 7.45 9 2.83 2.10 5.44

s1512 57 12 788.52 1099.67 197.89 18 408.08 207.91 -
s4863 104 21 876.39 824.24 427.73 32 1378.55 764.53 203.66
s3271 116 24 29.61 23.99 82.05 35 46.00 35.84 30.44
s1423 167 34 - - 23.22 51 - - -
s5378 179 36 - - - 54 - 281.90 70.89
s3384 183 37 234.94 245.41 525.44 55 382.69 161.05 511.28

s9234.1 211 43 - - - 64 - - -
s9234 228 46 1543.15 966.85 585.78 69 475.47 384.00 1203.58
s6669 239 48 921.74 840.22 854.88 72 697.62 1054.99 837.75

s15850.1 597 120 - - - 180 - - -
s15850 597 120 - 279.45 - 180 - - -

We primarily report on deobfuscation runtime. Runtime is collected as the wall clock
time for neos excluding the modeling part which is insignificant. Tests are run on a 128-
thread dual-CPU EPYC AMD server with 256 GB. Each process is given 2 GB of memory
and 30 min of time.

Tables 1 and 2 report deobfsucation time for circuits obfuscated with a choice of 2 dif-
ferent known clocks. i.e., a given percentage of the DFFs in the circuit are picked randomly
and obfuscated with the 2-choice clock. The clock choices are known integer multiples of
the base period ({T, 2T} and {T, 3T}). We observe from the data in Tables 1 and 2 for 2-
choice clocks that the majority of benchmarks with less than 240 DFFs can be deobfuscated
in the 30-min time window. We also compare this to random XOR/XNOR insertion with a
key size the same as the number of DFFs that are clock-obfuscated.

Table 2. Deobfuscation time (in second) for 50% and 75% locking rate of DFF in 2-choice obfuscation.

Bench ff ff (50%) T, 2T T, 3T XOR/XNOR ff (75%) T, 2T T, 3T XOR/XNOR

s820 5 3 0.23 0.15 2.14 4 0.30 0.13 2.21
s832 5 3 0.13 0.07 1.00 4 0.16 0.16 1.56
s386 6 3 0.05 0.13 0.06 5 0.08 0.12 0.05
s344 15 8 0.44 0.68 0.15 12 0.90 0.40 0.23

s1238 18 9 0.32 0.37 0.47 14 0.38 0.39 0.28
s641 19 10 313.31 - 0.99 15 512.42 527.99 0.35
s713 19 10 0.41 0.54 0.20 15 - - 0.10
s991 19 10 0.54 0.48 0.56 15 0.31 0.29 1.23
s382 21 11 374.09 381.84 741.34 16 - 51.76 592.64
s400 21 11 190.24 57.48 612.35 16 - 69.96 363.83
s444 21 11 340.02 485.86 310.20 16 - 194.08 334.71
s499 22 11 4.07 4.55 0.81 17 7.59 6.04 0.64
s953 29 15 6.51 4.57 4.94 22 6.35 4.52 9.17
s967 29 15 3.52 3.68 5.63 22 5.49 4.40 5.94
s298 44 22 0.31 0.33 0.43 33 0.49 0.45 0.56

s1512 57 29 162.75 351.25 - 43 - 447.27 -
s4863 104 52 1218.44 1057.72 506.26 78 1178.06 617.62 673.71
s3271 116 58 149.11 53.90 113.79 87 81.22 94.62 193.93
s1423 167 84 - - - 126 - - 89.99
s5378 179 90 - 159.19 - 135 1251.01 1258.13 321.44
s3384 183 92 257.35 159.39 616.34 138 316.50 201.53 334.39
s9234 228 114 - 359.07 - 171 674.00 309.46 -
s6669 239 120 659.23 585.90 1128.91 180 908.38 221.08 177.26

s15850.1 597 299 - - 461.07 448 - - 343.77
s15850 597 299 - - - 448 - - -
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Figure 13 shows the runtime for clock-based obfuscation versus XOR/XNOR, versus
a combination of both with twice the key size. As can be seen the runtime of clock-based
locking can be in the same range as XOR/XNOR locking. We do not observe a clear
winner in terms of SAT-attack time. In both schemes, the runtime tends to increase as the
key width increases. In some instances, it can be observed that increasing the DFF clock
obfuscation rate may not result in a higher runtime. This could be because in one instance
the obfuscated DFFs happened to be inserted in a location that does not produce as much
deobfuscation difficulty.

We can also create cases where there are more than 2 clock signals available in the
circuit. We tested the benchmarks with 3 choice clock obfuscation. Table 3 shows the
runtime for 3-choice clock deobfuscation. We can present similar observations that we
made for the 2-choice obfuscation method.

Table 3. Deobfuscation time (in second) for 3-choice known multiples of the base period with different
obfuscation rates.

Bench ff (30%) T, 3T, 5T T, 4T, 7T ff (50%) T, 3T, 5T T, 4T, 7T ff (75%) T, 3T, 5T T, 4T, 7T

s832 2 0.30 0.92 3 0.64 0.41 4 0.38 0.66
s820 2 0.76 0.70 3 1.09 0.67 4 0.67 0.88
s344 5 0.17 0.39 8 0.34 0.57 12 0.55 0.32

s1238 6 0.60 0.26 9 0.74 0.66 14 0.81 0.78
s991 6 0.58 0.35 10 0.44 0.58 15 0.83 0.93
s713 6 2.12 2.35 10 0.62 0.53 15 341.54 160.30
s641 6 0.21 2.17 10 121.94 1.62 15 - 34.02
s526 7 378.53 513.64 11 236.67 624.50 16 - 237.44
s444 7 760.10 305.84 11 236.86 417.09 16 - 250.40
s400 7 527.86 230.40 11 395.31 320.33 16 - 362.81
s382 7 338.50 354.09 11 141.48 344.63 16 - 144.13
s499 7 8.86 13.47 11 12.47 9.99 17 9.99 12.09
s967 9 3.11 3.22 15 3.80 3.95 22 7.48 7.17
s953 9 2.46 6.12 15 5.42 6.82 22 8.27 8.79
s298 14 0.89 1.74 22 1.85 1.84 33 2.24 4.06

s1512 18 - - 29 329.77 179.84 43 754.51 376.90
s4863 32 1163.40 843.05 52 658.00 885.99 78 787.82 827.76
s3271 35 170.16 136.49 58 190.39 224.73 87 334.86 406.44
s1423 51 - - 84 - - 126 - -
s5378 54 - - 90 164.12 167.89 135 440.41 293.03
s3384 55 383.73 401.23 92 281.68 217.27 138 183.74 327.37
s9234 69 569.82 153.54 114 164.74 178.74 171 - -
s6669 72 925.60 1378.40 120 726.28 627.63 180 369.38 -

s15850.1 180 - - 299 - - 448 - -
s15850 180 - - 299 - - 448 - -

For deobfuscation given unknown multiples of the base period, we present the data in
Figure 14. Here we report the deobfuscation runtime for small circuits that can be attacked
in minutes as a function of increasing amax. amax is the maximum number of rounds that
the attacker has to unroll the circuit to capture the unknown multiple aiT clock behavior
where ai ≤ amax. As can be seen one can increase the runtime somewhat superlinearly as
amax increases. An n-bit clock divider can create an amax ∈ O(2n) and lead to exponential
blow-up of the deobfuscation circuit model. We verified this results against a simple
counter circuit with n bits.

We also performed a test of dummy flip-flop insertion on a few of the benchmark
circuits. As predicted from our theoretical analysis, in these cases, as soon as the sequential
output is dependent on the dummy state element, the attack will continue unrolling
indefinitely and not terminate, as it suspects that the dummy element could awaken at
some unknown clock cycle and input pattern in the future. In some cases, this dependency
can fall apart and termination can be reached earlier. This is primarily a function of where
the dummy state element happens to be inserted.
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based and mixing of both.
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Figure 14. Deobfuscation time(s) of up-to-amax unknown clock period multiples inserted in 30% of
the circuit’s DFFs. amax is represented on the x-axis.

6. Conclusions

In this paper, we presented a security analysis of clock-based obfuscation in sequential
circuits. We discussed some ways that clock ambiguity can be introduced into circuits
and how this relates to formal notions of functional secrecy. To the best of our knowledge,
this is the first time clock obfuscation and deobfuscation have been studied in hardware
security research. We presented experimental data on our (de)obfuscation approach on
ISCAS benchmarks. We observed that the security level is not wildly different than tradi-
tional XOR/XNOR insertion. Nonetheless, clock obfuscation may remain a natural way
to obfuscate some classes of asynchronous circuits as they already may include clock con-
trol/multiplexing infrastucture that can be shared with the locking logic as well as avoiding
all-phantom multi-rate behavior in the attacker’s view. Furthermore, as an addition to tra-
ditional locking it can raise deobfuscation costs for attackers who may now need additional
algorithmic development as the defense landscape is more diverse. Developing more intelli-
gent clock obfuscation schemes that can deliberately complicate multi-rate model-checking
attacks and also resist potential oracle-less attacks while maximally utilizing existing clock
control infrastructure in modern chips is an important future research direction.
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