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Neurons exhibit a wide range of properties in addition to postsynaptic potential (PSP)
summation and spike generation. Although other neuronal properties such as paired-
pulse facilitation (PPF) and slow PSPs are well characterized, their role in information
processing remains unclear. It is possible that these properties contribute to temporal
processing in the range of hundreds of milliseconds, a range relevant to most complex
sensory processing. A continuous-time neural network model based on integrate-and-
fire elements that incorporate PPF and slow inhibitory postsynaptic potentials (IPSPs)
was developed here. The time constants of the PPF and IPSPs were estimated from
empirical data and were identical and constant for all elements in the circuit. When these
elements were incorporated into a circuit inspired by neocortical connectivity, the
network was able to discriminate different temporal patterns. Generalization emerged
spontaneously. These results demonstrate that known time-dependent neuronal prop-
erties enable a network to transform temporal information into a spatial code in a
self-organizing manner-that is, with no need to assume a spectrum of time delays or
to custom-design the circuit.

The elements in most neural network mod-
els consist of simple interconnected units
that take the weighted sum of their inputs
and generate an output by means of an ac-
tivation function (1). These elements are
meant to represent the summation of fast
excitatory and inhibitory PSPs (EPSPs and
IPSPs, respectively) and spike generation.
Indeed, these models have been effective in
performing complex computations and have
provided many insights into how the ner-
vous system processes information. Neurons,
however, exhibit many additional properties,
such as PPF, paired-pulse depression, volt-
age-dependent excitatory currents, rebound
facilitation, bursting, and slow IPSPs and
EPSPs (2). To date, few models have incor-
porated these properties, in part because the
role of these properties in information pro-
cessing is unclear. One possibility is that
these properties contribute to the processing
of temporal information in the range of tens
to hundreds of milliseconds. Most network
models have dealt primarily with tasks in
which information is encoded in the spatial
patterns of the inputs (1, 3); yet, the nervous
system must also extract information from
the temporal features of input patterns.
Speech recognition, frequency discrimina-
tion, music perception, and motion process-
ing are a few tasks in which information is
encoded in the temporal domain (4). It is
not known how even a simple task such as
discriminating between taps or tones pre-
sented at different intervals is solved, be-
cause such a solution cannot be based on
spatial information from the inputs.
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To address whether time-dependent
neuronal properties may underlie temporal
processing, we used a neural network com-
posed of integrate-and-fire elements that
incorporated PPF and slow IPSPs in addi-
tion to fast EPSPs and IPSPs (5) (Fig. 1).
We focused on PPF and slow IPSPs be-
cause they have been described in some
detail in cortical neurons (6-8) and can
be incorporated efficiently into integrate-
and-fire units. Furthermore, PPF may be
particularly relevant to temporal process-
ing because EPSP amplitude provides tem-
poral information about recent spike oc-
currence. The time constants of the slow
IPSPs and PPF were based on empirical
data (6, 7) and were the same for all
elements. Excitatory (Ex) and inhibitory
(Inh) elements were incorporated into a
randomly connected circuit representing
cortical layers 4 and 3 (9).

The simplest task studied was interval
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discrimination: two pulses were presented
on the same input channels, with different
intervals between them (Fig. 2). Each pulse
represented a brief input such as a tap, tone,
or flash. The first pulse of a stimulus initi-
ated a set of excitatory and inhibitory in-
teractions in the network (Fig. 2). Because
of time-dependent changes imposed by PPF
and slow IPSPs, the network is in a different
state at the arrival of the second pulse.
Thus, even if the second pulse is identical
to the first some units will have different
probabilities of firing depending on the in-
terpulse interval. Indeed, between 25 to
50% of the Ex3 units exhibited interval-
sensitive responses. These units can be used
to encode temporal information. To dem-
onstrate this in a more quantitative man-
ner, we added an output layer to the net-
work and trained it to recognize interval-
specific patterns produced in layer 3 by five
different stimuli (80-, 130-, 180-, 230-, and
280-ms intervals). All Ex3 units were con-
nected to a number of output units equal to
the number of stimuli being discriminated.
A supervised learning rule was used to train
each output unit to respond to a given
stimulus (10). The output layer and the
supervised learning rule are not meant to be
part of a realistic simulation of temporal
processing but a method to determine
whether the activity pattern in the network
can discriminate between different inter-
vals. With the exception of changes in con-
nection weights between the Ex3 and out-
put units during training, there was no plas-
ticity in the connection weights or time
constants at any level of the network. After
training, output units spiked (spikes are rep-
resented in yellow in Fig. 2) in response to
the appropriate stimulus, which demon-
strates that activity patterns produced in
the Ex3 units contain sufficient informa-
tion to code for temporal intervals (Fig. 2).

In addition to performing temporal dis-
criminations, a biologically plausible model

Fig. 1. Integrate-and-fire elements that incorpo-
rate slow IPSPs and PPF. Traces represent the
voltages of the simulated integrate-and-fire ele-
ments. (A) Slow IPSP. By triggering a spike in the
lower excitatory unit (Ex), a suprathreshold EPSP
is elicited in the inhibitory unit (inh), producing a
fast EPSP followed by a slow IPSP in the upper Ex
unit. For illustrative purposes, the connection
strengths were increased. (B) PPF. The second of
two consecutive spikes in an Ex unit will produce a
larger EPSP in the postsynaptic unit. (C) PPF func-
tion. The time course and magnitude of the facili-
tation were estimated from empirical data from
CA1 pyramidal neurons (5). For control experi-
ments, the time-varying profiles of the slow IPSP
and PPF were transformed into a step function
from 30 to 300 ms, as shown by the dashed lines
in (A) and (C).
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interval. With these tuning curves, the net-

work can represent any given interval be-
tween 30 and 300 ms by using a population
code-that is, by using a combination of
these units. Note that output unit 5, trained
at the 280-ms interval, was significantly
worse because a 280-ms interval approaches
the limit of the time constants of the net-
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Fig. 2. Activity plot of the network in response to three different double-pulse stimuli. The four main blocks
(Ex4, Inh4, Ex3, and Inh3) represent a sample of the units of the specified layer and unit type. Each
horizontal line within each block represents the voltage of a given unit in time. Spikes are represented in
yellow. Each stimulus consists of two pulses in which the second pulse was given at either 80,130, or 180
ms. Each pulse consisted of a 5-ms burst of spikes in 50 of the input fibers. The plots of the shorter stimuli
are overlaid on top of those of the longer stimuli. The output layer shows the response of three output
units after they were trained to discriminate activity patterns of the Ex3 units elicited by the 80-, 130-, and
180-ms intervals.
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Fig. 3. Discrimination and generalization of temporal patterns. (A) To analyze the ability of the network to
generalize, we tested it with double-pulse stimuli for intervals between 30 and 330 ms (1 0-ms steps), and
interpulse interval tuning curves were then constructed. (B) The same network was also trained to
discriminate between four stimuli consisting of 400-ms trains of pulses at frequencies of 5, 10, 20, and 40
Hz. After training the output units to recognize frequency-specific patterns, we tested the network with 20
frequencies (3 to 80 Hz). Tuning curves were constructed from 100 and 50 presentations of each stimulus
for (A) and (B), respectively.

work. To demonstrate that the ability of the
network to perform temporal discrimina-
tions was a result of the time dependency of
the PPF and the slow IPSPs, we performed
a control experiment in which PPF and
slow IPSPs followed a step function (dashed
lines in Fig. 1). In these control simulations,
the output units were unable to discrimi-
nate among any of the trained intervals.

To examine the ability of the network to

discriminate complex temporal patterns, we

tested it with three tasks: frequency, random
pattern, and phoneme discriminations. In
the frequency discrimination task, each out-
put unit was trained to one of four frequen-
cies (5, 10, 20, and 40 Hz). After training,
the network was tested with a range of fre-
quencies. Each output unit exhibited a tun-
ing curve centered around the frequency on

which it was trained (Fig. 3B). The second
task consisted of training the network to
discriminate between four stimuli, each con-

sisting of four pulses with randomly assigned
interpulse intervals. Again, each output unit
responded preferentially to the stimulus it
was trained on (Fig. 4A); thus, each output
unit was driven by a population of stimulus-
specific Ex3 units. The third task consisted
of using synthetic phonemes. Speech percep-

tion is a preeminent example of a task that
relies on temporal cues. An important cue

for discriminating voiced and unvoiced pho-
nemes (that is, /ba/ and /pa/) is the voice-
onset time (VOT; the time between air re-

lease and vocal cord vibration). /Ba/ tends to
have a VOT of less than 30 ms, whereas /pa/
has a VOT of more than 30 ms (11). We
trained a network with two outputs to dis-
criminate /ba/ and /pa/ by training it with the
two shortest (10 and 20 ms) and the two
longest (70 and 80 ms) VOTs, and then we

tested it with intermediate values ( 12). After
training, the output units exhibited a re-

sponse curve qualitatively similar to that ob-
served psychophysically (1 1) (Fig. 4B).
We have shown that by using elements

with realistic neuronal properties, temporal
processing emerges as a result of state-depen-
dent changes imposed on network dynamics.
Without the need to change any model
parameters, the network was able to perform
interval, frequency, and complex pattern
discrimination and to generalize to similar
temporal patterns. We expect that increas-
ing the complexity of the elements by in-
cluding other neuronal properties and incor-
porating plasticity will further improve per-
formance. A common form of associative
plasticity, known as Hebbian plasticity, es-

tablishes that synaptic strength increases if
both the pre- and postsynaptic elements are

coactive. However, simulations that incor-
porated Hebbian plasticity made clear the
difficulties of generalizing Hebb's rule to
continuous-time networks with time-vary-
ing inputs. Hebbian plasticity leads units
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must exhibit generalization in the temporal
dimension. The network was therefore test-
ed with intervals varying from 30 to 330 ms,
and interval tuning curves were constructed
for the output units (Fig. 3A). Although
each output unit had been trained to re-

spond to one of five stimuli, each exhibited
a tuning curve centered around its trained
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Fig. 4. (A) Discrimination of a random sequence of pulses. The network was trained to discriminate
between four stimuli, each composed of four 5-ms pulses (arrows) with randomly chosen interpulse
intervals between 50 and 250 ms. (B) Phoneme discrimination. The two output units were trained to
discriminate 10- and 20-ms VOTs (perceived as /bal) from 70- and 80-ms VOTs (perceived as /pa/). The
network was then tested at all VOTs. Tuning curves were constructed from 100 presentations of each
stimulus.

to respond to the most frequent synchro-
nous input patterns, which in our tasks
corresponded to the first pulse, which was

common to all stimuli. Thus, the network
became more responsive to the first pulse
and less to the later pulses that contained
temporal information. Hebb's rule is well
suited to reinforce simultaneous activity
coming from spatially distinct inputs, but
it remains to be determined how well it
will generalize to continuous-time net-

works that need to extract temporal as

well as spatial information.
Previous models that have dealt with

temporal processing have often assumed
the existence of delay lines or elements
with a spectrum of different time con-

stants ( 13) or thresholds ( 14). These mod-
els often require an ad hoc architecture or

do not generalize well to more complex
temporal stimuli. Our simulations suggest
that known time-dependent neuronal
properties (not limited to PPF and slow
IPSPs) with fixed and equal time con-

stants permit a randomly connected net-
work to transform temporal information
into a spatial code (a place code). This
transformation will occur at each layer of a

network and will thus be amplified
throughout layers. The general framework
that emerges is that temporal combina-
tion-sensitive neurons (15) may arise as a

result of time-dependent changes in net-
work state that is, if stimulus "A" then
"B" is presented to an animal, "A" will
produce a change in cortical network
states as a result of time-dependent neu-

ronal properties and stimulus "B" will
then produce a pattern of activity that

1030

codes for "B" preceded by "A," rather
than simply "B."
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