
CS 6363.003 Homework 1

Due Friday, February 16 on eLearning

Please solve the following 4 problems, some of which have multiple parts.

Some important homework policies
• Groups of one or two students may work together. They should submit a single copy

of their assignment using one of their eLearning accounts. Everybody in the group will
receive the same grade.

• Each group must write their solutions in their own words. Clearly print your name(s), the
homework number (Homework 1), and the problem number at the top of every page in
case we print anything. Start each numbered homework problem on a new page.

• Unless the problem states otherwise, you must justify (prove) (argue) that your solution
is correct.

• Any illegible solutions will be considered incorrect. It is not required, but you might
consider using LATEX to typeset your solutions. There is a template provided on the course
website to help you get started.

• If you use outside sources or write solutions in close collaboration with others outside
your group, then you may cite that source or person and still receive full credit for the
solution. Material from the lecture, the textbook, lecture notes, or prerequisite courses
need not be cited. Failure to cite other sources or failure to provide solutions in your own
words, even if quoting a source, is considered an act of academic dishonesty.

• The homework is assigned to give you the opportunity to learn where your understanding
is lacking and to practice what is taught in class. Its primary purpose is not for Kyle to
grade how well you paid attention in class. Read through the questions early. Do not
expect to know the answers right away. Questions are not necessarily given in order of
difficulty. Please, please, please attend office hours or email Kyle so he can help you better
understand the questions and class material. Seriously, Kyle enjoys busy office hours.

• You may assume that any reasonable operation involving a constant number of objects of
constant complexity can be done in O(1) time. Clearly state your assumptions if they are
not something we already used in lecture.

See https://personal.utdallas.edu/~kyle.fox/courses/cs6363.003.23s/about/
and https://personal.utdallas.edu/~kyle.fox/courses/cs6363.003.23s/writing/ for more detailed
policies before you begin. If you have any questions about these policies, please do not hesitate
to ask during lecture, in office hours, or through email.

1

https://personal.utdallas.edu/~kyle.fox/courses/cs6363.003.23s/about/
https://personal.utdallas.edu/~kyle.fox/courses/cs6363.003.23s/writing/

CS 6363.003 Homework 1 (due February 16) Spring 2023

1. (a) Truthfully write the phrase “I have read and understand the policies on the course
website.”

(b) Consider the following algorithm: Procedure STUDY(topics[1 .. n], exams[1 .. t])
gives instructions on how one might study during a single course with n lectures
and t exams. Parameter topics[1 ..n] is an array of lecture topics where topics[i]
is the topic covered during the ith lecture of the course. Parameter exams[1 .. t] is
an array of distinct integers between 1 and n sorted in increasing order. For all k be-
tween 1 and t, there is a cumulative exam held immediately after lecture exams[k].
University regulations limit the total number of exams t to be at most n/4.

STUDY(topics[1 .. n], exams[1 ..t]):
nex tExam← 1
for i← 1 to n

Study topics[i]. 〈〈Prepare for class.〉〉
if nex tExam≤ t

if exams[nex tExam] = i
for j← 1 to i 〈〈Prepare for an exam!〉〉

Study topics[j].
nex tExam← nex tExam+ 1

Rest and try not to forget everything.

Suppose studying any single topic topics[i] takes Θ(1) time. Using Θ-notation in
terms of n only, give a tight asymptotic bound on the maximum amount of time
spent studying while following the instructions given by STUDY(topics[1 .. n], exams[1 .. t]).
You should justify your solution by arguing 1) you cannot spend any more time than
you claim (i.e., argue for a big-Oh bound) and 2) there exists an array exams that
results in your claimed total study time (i.e., argue for a Ω-bound).

(c) Sort the functions of n listed below from asymptotically smallest to asymptotically
largest, indicating ties if there are any. Do not submit proofs for this problem. To
simplify your answers, write f (n)� g(n) to mean f (n) = o(g(n)), write f (n)≡ g(n)
to mean f (n) = Θ(g(n)), and list all the functions in a sequence of these inequalities.
For example, if the given functions were n2, n,

�n
2

�
, and n3 then the only correct

answers would be “n� n2 ≡ �n2�� n3” and “n� �n2�≡ n2� n3”.

2n n2 n log9 n
p

n
4n ln3 n 17n n+ 500 3− cos n
24 lg n lg(7n) 250 lg0.6 n n log n

Advice: You should be able to solve this problem using only what is written for Lecture 2
along with basic algebraic rules for manipulating logs, polynomials, and exponentials.

2

CS 6363.003 Homework 1 (due February 16) Spring 2023

2. A binomial tree of order k is defined recursively as follows:

• A binomial tree of order 0 is a single node.

• For all k > 0, a binomial tree of order k consists of two binomial trees of order k−1,
with the root of one tree connected as a new child of the root of the other. See the
figure below.

Prove the following claims:

(a) For all non-negative integers k, a binomial tree of order k has exactly 2k nodes.

(b) For all positive integers k, attaching a new leaf to every node in a binomial tree of
order k− 1 results in a binomial tree of order k.

(c) For all non-negative integers k and d, a binomial tree of order k has exactly
�k

d

�
nodes

with depth d. (Hence the name!)
Advice: You may recall

�k
d

�
=
�k−1

d−1

�
+
�k−1

d

�
whenever k is positive.

Binomial trees of order 0 through 5.
Top row: The recursive definition. Bottom row: The property claimed in part (b).

Advice: You may find the following template useful for part (a). You can modify it as
necessary for parts (b) and (c).

Let k be an arbitrary non-negative integer.
Assume that for any non-negative integer k′ < k, a binomial tree of order k′ has
exactly 2k′ nodes. There are several cases to consider:

• Suppose k is. . .

• Suppose k is. . .

• . . .

• Suppose k is. . .
The induction hypothesis implies that. . .

In each case, we conclude a binomial tree of order k has exactly 2k nodes.

3

CS 6363.003 Homework 1 (due February 16) Spring 2023

3. Using Θ-notation, provide asymptotically tight bounds in terms of n for the solution to
each of the following recurrences. Assume each recurrence T (n) has a non-trivial base
case of T (n) = Θ(1) for all n < n0 where n0 is a suitably large constant. For example, if
asked to solve T (n) = 2T (n/2) + n, then your answer should be Θ(n log n). Give a brief
explanation for each solution.

(a) A(n) = 2A(n/2) + n2

(b) B(n) = 8B(n/2) + n3

(c) C(n) = 5C(n/3) + n

(d) D(n) = D(n/3) + D(2n/3) + n

(e) E(n) = 4E(n/4) + n lg n

Advice: One of the three common cases discussed in Lecture 4 still applies for part D, even
though the subproblem sizes are not equal. For part E, solve it without the lg n factor at the
end and then see what the lg n factor does to each of the recursion tree level sums.

4. An inversion in an array A[1 .. n] is a pair of indices (i, j) such that i < j and A[i]> A[j].
The number of inversions in an n-element array is between 0 (if the array is sorted) and�n

2

�
(if the array is sorted backward). Describe and analyze an algorithm to count the

number of inversions in an n-element array in an O(n log n) time.

Your analysis on this and future algorithm design problems need only argue for a good
big-Oh bound unless we say otherwise. Don’t forget to justify why your algorithm correctly
counts the inversions!

Advice: Modify mergesort and its merge procedure so they not only sort the array but
also return the number of inversions it contained before sorting. Be sure to update your
count correctly as you discover inversions during the merge procedure.

4

