Numbering and coding systems

- Binary
- Hex
- Conversions binary/hex/decimal
- ASCII coding

Counting in binary

How many unique numbers can be represented by 4 bits?

Decimal	Binary
0	0000
1	0001
2	0010
3	0011
1 2 3 4 5 6 7 8 9	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Convert decimal to binary

Method 1: Use the weight of each position

Solution:						
Weight:	32	16	8	4	2	1
-	1	0	0	1	1	1
	32 +	0 +	0 +	4 +	2 +	1 = 39

Practice

Convert 43 to binary

Convert from binary to decimal

Using place value

1101012	=			Decimal	Binary
1×2^{0}	=	1 × 1	=	1	1
0×2^{1}	=	0 × 2	=	0	00
1×2^{2}	=	1×4	=	4	100
0×2^{3}	=	0 × 8	=	0	0000
1×2^{4}	=	1 × 16	=	16	10000
1×2^{5}	=	1 × 32	=	32	100000
				53	110101

Practice

Convert 1010101 to decimal

Convert from decimal to binary

Method 2: Repeated division by 2

		Quotient	Rem	ainder		
25/2	=	12	1	LSB	(least	significant bit
12/2	=	6	0			
6/2	=	3	0			
3/2	=	1	1			
1/2	=	0	1	MSB	(most	significant bit)

Practice

Convert 36 to binary by repeated division by 2

Hex <--> Binary

Decimal	Binary	Hex
0	0000	0
$ \begin{array}{r} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \end{array} $	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	B
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Signed v. unsigned integers

Unsigned integers: use all bits for data

Signed integers: use 2's complement

2's complement

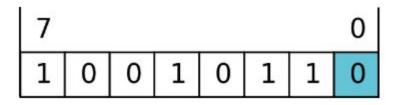
- 1. Write the number as a positive in binary
- 2. Invert each bit (1's complement)
- 3. Add 1

Observe the following steps.

1.	0000	0101	5 in 8-bit binary
2.	1111	1010	invert each bit
3	1111	1011	add 1 (which becomes FB in hex)

Therefore, -5 =\$FB, the signed number representation in 2's complement for -5. D7 = N = 1 indicates that the number is negative.

2's complement shortcut


Write the positive number in binary

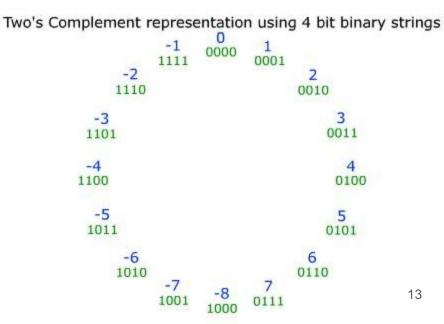
5 = 0000 0101

Starting at the LSB (least significant bit), copy each bit through the first one, then flip the remaining bits

-5 = 1111 1011

2's complement

How many unsigned numbers can we represent with n bits?


What is the range?

```
How many signed numbers?
```

What is the range?

Can tell +/- by MSB (most significant bit)

Terms to know: LSB and MSB

Why is it called 2's complement?

Let's look at 2 and -2 in 4 bits:

0010 and 1110

Adding these gives 10000 or 2⁴

So the negation of x is $2^n - x$

Signed extension

When moving to a larger memory unit, extend the sign to the left.

Example:

•+2: 0000 0010 => 0000 0000 0000 0010 •-2: 1111 1110 => 1111 1111 1110

Adding binary numbers

• -11 + 8

Adding binary numbers

- 1. 10 + 24
- 2. 5 + -6

What about characters?

ASCII (American Standard Code for Information Interchange)

Uses 7 bits per character (uses one byte)

MIPS uses ASCII

Unicode - used in Java, C++

ASCII

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	(NULL)	32	20	[SPACE]	64	40	0	96	60	2
1	1	[START OF HEADING]	33	21	1 24	65	41	A	97	61	а
2	2	[START OF TEXT]	34	22		66	42	B	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	с	99	63	c
4	4	[END OF TRANSMISSION]	36	24	5	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	(ACKNOWLEDGE)	38	26	5.	70	46	F	102	66	f
7	7	(BELL)	39	27		71	47	G	103	67	q
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	h
9	9	[HORIZONTAL TAB]	41	29	1	73	49	1	105	69	I.
10	A	(LINE FEED)	42	ZA	*	74	4A	J	106	6A	i
11	в	(VERTICAL TAB)	43	2B	+	75	4B	ĸ	107	6B	k
12	C	(FORM FEED)	44	ZC		76	4C	L	108	6C	1
13	D	ICARRIAGE RETURNI	45	2D		77	4D	M	109	6D	m
14	E	(SHIFT OUT)	46	2E		78	4E	N	110	6E	n
15	F	ISHIFT INT	47	2F	1	79	4F	0	111	6F	0
16	10	(DATA LINK ESCAPE)	48	30	0	80	50	P	112	70	p
17	11	(DEVICE CONTROL 11	49	31	1	81	51	0	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	s
20	14	(DEVICE CONTROL 4)	52	34	4	84	54	т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	SYNCHRONOUS IDLE	54	36	6	86	56	V	118	76	v
23	17	(ENG OF TRANS, BLOCK)	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	(END OF MEDIUM)	57	39	9	89	59	Y	121	79	y
26	1A	(SUBSTITUTE)	58	3A		90	5A	Z	122	7A	z
27	18	(ESCAPE)	59	3B	;	91	5B	I	123	7B	5
28	1C	(FILE SEPARATOR)	60	3C	<	92	5C	Ň	124	7C	Ĩ.
29	1D	(GROUP SEPARATOR)	61	3D	=	93	5D	1	125	7D	3
30	1E	(RECORD SEPARATOR)	62	3E	>	94	5E	-	126	7E	2
31	1F	(UNIT SEPARATOR)	63	3F	?	95	5F		127	7F	[DEL]

Need to know ...

- How to convert between decimal and binary
- How to convert between hex and binary
- How to represent unsigned or signed integers
- How to add binary numbers

For next time

Download MARS

http://courses.missouristate.edu/KenVollmar/mars/

Windows 10 users with high resolution devices, try upgrading to Java 9

See Homework 1 in Class Discussion Forum