MIPS assembly language

Pioneered RISC (reduced instruction set architecture) in the 1980s
The most widely taught assembly language
Easy to transition from MIPS to ARMv8

Recently acquired by Wave Computing, will be aligned with RISC-V

Hello World in MIPS

Two sections:
.data - for static data
.text - for code

- Program ends with a
syscall to end the
program

- Think of this like
return(0) in C

- Syscalls need the call
number in $v0

S W N =

0 Jd & O

11
12
13
L4
15

.data

.asciiz

li $vO, 4
la $a0, msg
syscall

1i $vO, 10
syscall

registers

- In a higher-level language we use variables to hold data
- In assembly language we use registers to hold data

Processor Memaory

addr
- Programs

data out

[
Lt

Data
data in

registers

inst. in

Registers in the Pentium

Instruction Decode and Prefetch Unit
Branch Predictor
Integer ALU

Registers

Code Cache

Data
Bus Interface Level 1 Cache cacpe

registers

Used to hold data
Used to hold addresses

4 Data

-1 Register #

Registers

‘| Register #

| Register #

|

ALU

registers

- Registers hold data for operations

Generic processor:
add R1, R2, R3

MIPS:

4 Data

-1 Register #

Registers

| Register #

-+ Register #

add $t0, $tl, $t2 # tO0 = tl + t2

ALU

MIPS instruction format

- All arithmetic/logic instructions have this format:
Opcode operand, operand, operand
- the first operand is the destination
- the last two are source operands
- opcode specifies what action needs to happen

add $t0, Stl, St2

MIPS registers

- MIPS has 32 registers

- Each register is 32-bits (1 word, 4 bytes)

- For operands, we most often use:

- The “temporary” registers $t0 - $t9

- The “saved” registers $s0 - $s7

- The “zero” register $zero which always contains 0 and is read-only

.data

We defined and initialized 4 words (integers)

This is somewhat like declaring a variable, but there is
no “type”

A memory location can contain integers, floats,
characters, it's up to you to remember what it is

LCONOOUEWNP

example 1 load a and b, store into ¢ and d

.data
a: .word 3
b: .word 4
c: .word 9
d: .word 9
text
main:
w $t1, a # load
w $t2, b
sw $tl, C # store
sw $t2, d
exit:
i $vo, 10 # terminate program

syscall

MIPS program form

Labels end with :
Later we'll use these for jumps

Program ends with a syscall to end the program
Think of this like return(0) in C
Syscalls need the call number in $v0

LCOoONOOULEWNW-

example 1 load a and b, store into ¢ and d

.data

a: .word 3

b: .word 4

c: word 9

d: .word 9
text

main:
w $t1, a # load
w $t2, b
sw $t1, c # store
sw $t2, d

exit:
i $vo, 10 # terminate program
syscall

10

Load-Store (data transfer) instructions

text
“Iw” loads (copies) a word from memory into a register ; # example 1 load a and b, store into ¢ and d
3 .data
« »” . . . 4 a: word 3
sw” stores (copies) a word from a register into memory s b: et
6 C: word 9
. . 7 d: .word 9
MIPS is a load-store architecture 8
9 text
10 main:
- Cannot“add c, a, b” 1 lw $t1, a # load
. i 12 W $t2, b
- Cannot“swc, a 13 sw $t1,
14 sw $t2, d
15
16 exit:
17 i $vo, 10 # terminate program

18 syscall

Load-Store (data transfer) instructions

text

- Array version of previous program
- “la” loads address

Load/store instruction format:
1w $t0, 8(S$tl)

Load memory location $t1+8 into $t0

[
S WU & WN -
WO WU & WN =

[
b
ot
[~

1211
1312
1413
1514
1615

1716
17

arrl:
arr2:

main:

exit:

.data
.data
.word
.word

« text

la
la
lw
Sw
lw
Sw

i
syscall

arrl
arr2
($t1)
($t2)
4(5t1)
4($t2)

10

12

MARS (MIPS Assembler and Runtime Simulator)

—
o fdt Rus Sermeg Tosk e
Ban (omedt @ mae 1 PR TOne

- Registers on the right e
- Toggle Edit/Execute
- Drop-down buttons on bottom
left to expand window
- Edit file, save with .asm
- Assemble icon on top

18

R

o - -

‘;i‘.!iiit‘.i'

(R SINERRE R EZEERzE3EcE

After the run

O Data Segment
Address Value (+0) Value (+4) Value (+8) Value (+c¢) Value (+10)
0x10010000 0x00000003 0x00000004 0x00000003 0x00000004 0x000000
0x10010020 0x00000000 0x00000000 0x00000000 0x00000000 0x000000
0x10010040 0x00000000 0x00000000 0x00000000 0x00000000 0x000000
0x10010060 0x00000000 0x00000000 0x00000000 0x00000000 0x000000
0x10010080 0x00000000 0x00000000 0x00000000 0x00000000 0x000000

A 1TART AR

A AN

s AADAAAAANA

A AN

A AN

A AN

14

P " 1 # example 1 load a and b, store into ¢ and d
2
ractice L
4 a: .word 3
5 b: .word 4
. 6 c: .word 9
Modify program to swap the contents of a and b 1WA
9 . text
10 main:
11 w $t1, a # load
12 w $t2, b
13 sw $tl, C # store
14 sw $t2, d
15
16 exit:
17 i $vo, 10 # terminate program
18 syscall

15

ADD and SUB instructions

add rd, rs, rt # rd
sub rd, rs, rt # rd

addi rd, rs, constant # rd

rs + rt

rs — rt

rs + constant

16

Simple addi example

simple addi example

.data
varl:
text
main:

.word 4

: B $t1,
addi $t1,
addi $t1,
Sw $t1,
exit

i $vo, 10

syscall

$t1, 3
$t1, 4
varl

%+

#H H B R

variable varl = 4

$tl = 2

now $tl 2 + 3
now $tl1 =2 + 3 + 4
store $tl1 1in varl

17

Practice

Write a program to load 3 integers, stored as var1, var2, and var3, into registers
$t1, $t2, and $t3. Reserve a word for 'result' and initialize it to 9.

compute $t1 + $t2 - $t3, this will take 2 instructions

Store the result in 'result’

18

More practice

Convert this C expression into MIPS code

result = (var2 - varl) + (var3 - varl)

19

syscalls

The syscall instruction calls the operating system to perform some task that a
program would not have permission to do, such as I/O.

Supported syscalls in MIPS:

*http://courses.missouristate.edu/KenVollmar/mars/
Help/SyscallHelp.html

20

http://courses.missouristate.edu/KenVollmar/mars/Help/SyscallHelp.html
http://courses.missouristate.edu/KenVollmar/mars/Help/SyscallHelp.html

Program termination syscall

1i §v0, 10 # ¢

syscall

21

1 # MARS syscalls
/O syscall demo 2
3 .data
4 age: .word @
5 msgl: .asciiz "Please enter your age:
6 msg2: .asciiz "Your age is: "
7
8 .text
9 main:
10 # prompt user Tor age
11 la $ad, msgl
12 i svo, 4
[Mars Messages [Ruullo~| 14 # get int from user
Please enter your age: 24 15 L sve, 5
Your age is: 24 16 syscall
-« program ia finished running -~ i; ™ $vo, age
19 # echo data to user
20 la $a@d, msg2
21 i $ve, 4
22 syscall
23 lw $al, age
24 i $vo, 1
25 syscall
26
27 exit: 11 $vo, 10

28 syscall

summary

- What are registers?

- Name a MIPS register and describe it.

- What kind of data can it contain? Integer? Characters? Address?
- What are opcodes?

- What are operands?

- What kinds of operands have we seen?

23

Coding Practice

For next class, write a program to:

get the user's name

get the user's age

get a neighbor's name

get the neighbor's age

print a message echoing both names and the combined years of wisdom
print a message with the difference in ages

24

