
MIPS assembly language
Pioneered RISC (reduced instruction set architecture) in the 1980s

The most widely taught assembly language

Easy to transition from MIPS to ARMv8

Recently acquired by Wave Computing, will be aligned with RISC-V

1

Hello World in MIPS

Two sections:

.data - for static data

.text - for code

- Program ends with a
syscall to end the
program

- Think of this like
return(0) in C

- Syscalls need the call
number in $v0

2

registers
- In a higher-level language we use variables to hold data
- In assembly language we use registers to hold data

3

Registers in the Pentium

4

registers
- Used to hold data
- Used to hold addresses

5

registers
- Registers hold data for operations

Generic processor:

add R1, R2, R3

MIPS:

add $t0, $t1, $t2 # t0 = t1 + t2

6

MIPS instruction format
- All arithmetic/logic instructions have this format:

Opcode operand, operand, operand

- the first operand is the destination

- the last two are source operands

- opcode specifies what action needs to happen

add $t0, $t1, $t2

7

MIPS registers
- MIPS has 32 registers
- Each register is 32-bits (1 word, 4 bytes)
- For operands, we most often use:
- The “temporary” registers $t0 - $t9
- The “saved” registers $s0 - $s7
- The “zero” register $zero which always contains 0 and is read-only

8

.data

We defined and initialized 4 words (integers)

This is somewhat like declaring a variable, but there is
no “type”

A memory location can contain integers, floats,
characters, it’s up to you to remember what it is

9

MIPS program form

- Labels end with :
- Later we’ll use these for jumps

- Program ends with a syscall to end the program
- Think of this like return(0) in C
- Syscalls need the call number in $v0

10

Load-Store (data transfer) instructions

.text

“lw” loads (copies) a word from memory into a register

“sw” stores (copies) a word from a register into memory

MIPS is a load-store architecture

- Cannot “add c, a, b”
- Cannot “sw c, a”

11

Load-Store (data transfer) instructions

.text

- Array version of previous program
- “la” loads address

Load/store instruction format:

lw $t0, 8($t1)

Load memory location $t1+8 into $t0

12

MARS (MIPS Assembler and Runtime Simulator)

- Registers on the right
- Toggle Edit/Execute
- Drop-down buttons on bottom

left to expand window
- Edit file, save with .asm
- Assemble icon on top

13

After the run

14

Practice
Modify program to swap the contents of a and b

15

ADD and SUB instructions
add rd, rs, rt # rd = rs + rt

sub rd, rs, rt # rd = rs - rt

addi rd, rs, constant # rd = rs + constant

16

Simple addi example

17

Practice
Write a program to load 3 integers, stored as var1, var2, and var3, into registers
$t1, $t2, and $t3. Reserve a word for 'result' and initialize it to 9.

compute $t1 + $t2 - $t3, this will take 2 instructions

Store the result in 'result'

18

More practice
Convert this C expression into MIPS code

result = (var2 - var1) + (var3 - var1)

19

syscalls
The syscall instruction calls the operating system to perform some task that a
program would not have permission to do, such as I/O.

Supported syscalls in MIPS:

•http://courses.missouristate.edu/KenVollmar/mars/
Help/SyscallHelp.html

20

http://courses.missouristate.edu/KenVollmar/mars/Help/SyscallHelp.html
http://courses.missouristate.edu/KenVollmar/mars/Help/SyscallHelp.html

Program termination syscall

21

I/O syscall demo

22

summary
- What are registers?
- Name a MIPS register and describe it.
- What kind of data can it contain? Integer? Characters? Address?
- What are opcodes?
- What are operands?
- What kinds of operands have we seen?

23

Coding Practice
For next class, write a program to:

- get the user's name
- get the user's age
- get a neighbor's name
- get the neighbor's age
- print a message echoing both names and the combined years of wisdom
- print a message with the difference in ages

24

