
I/O syscall demo

1

Coding Practice
Write a program to:

- get the user's name
- get the user's age
- get a neighbor's name
- get the neighbor's age
- print a message echoing both names and the combined years of wisdom
- print a message with the difference in ages

2

Extended Hello World

3

Assembler directive ".align 2" forces the next
item to begin on a word boundary

Sample run:

Memory after run:

MIPS and 32

- 32 registers, 32 bits each
- 32-bit words in memory
- Instructions are 32 bits
- Addresses are 32 bits

4

Assembler directives

5

Assembler directives

6

Static data
Format:
Name: storage type values(s)

Examples:
.data
array1: .byte ‘a’,’b’
 .align 2
array2: .space 24
str1: .asciiz “hello”

7

MIPS operands
1. Registers
2. Memory locations
3. Constant (immediate)

Each opcode type works with a specific set of operand types

8

MIPS machine code
- Each MIPS instruction assembles in to a 32-bit word of machine code

- Opcode represented as a 6-bit binary number
- See opcodes in MIPS card in Piazza
- Registers are represented as 5 bits, 2^5 = 32
- $t0 – $t7 are reg’s 8 – 15
- $t8 – $t9 are reg’s 24 – 25
- $s0 – $s7 are reg’s 16 – 23

9

arithmetic/logic instructions
R format:

Caution: instruction is rd, rs, rt but machine code is rs, rt, rd

10

arithmetic/logic instructions
R format:

Practice: Translate sub $s0, $t3, $t4 into machine code binary/hex.

11

load/store instructions
la - load address (pseudo)

lb - load byte

lbu - load byte unsigned

lw - load word

sb - store byte

sw - store word

12

Load/Store use I-format
- Rt is the destination
- Rs is the source
- Address = constant + rs
- Constant can be positive or negative

13

Load/Store byte example

14

Word = 32 bits = 4 bytes
Bytes are stored big-endian

High address byte stored at low address within a word.

“Hiya”

Stored as:

a y i H

Note that this doesn't apply to storing a word like integer 5.
15

Practice
Hand assemble the following instruction into machine code:

lw $t0, 8($t1)

16

Practice
The “addi” instruction uses the I-format because it needs a constant.

Hand assemble the following instruction into machine code:

addi $t1, $t2, 5

17

Writing a MIPS program
One approach:

1. Write pseudocode or code in your favorite higher-level language
2. Think about what data you need and reserve space in the .data section
3. Break the problem into pieces, like: input data, process, output data
4. Code and test each section at a time

18

Debugging MIPS
Makes you appreciate HLL and IDEs.

- Take advantage of breakpoints in MARS
- Stop and look at registers/memory to see if the program is doing what you

thought it would do
- Stop after a few lines of coding to inspect and see if it’s working, don’t wait

until you finish the program

19

Summary
You know how to:

- Write simple MIPS programs
- Reserve static memory in a MIPS program for integers, text
- Hand assemble MIPS instructions
- Run/debug MIPS programs

20

Debug Practice
What's wrong with this program?

21

