MIPS R-format Instructions

ADD and ADDU AND
SUB and SUBU OR
MUL, DIV (will discuss after Exam 1) XOR

NOR
SLL and SRL

Op® Rs® Rt> Rd5 sad funct®

Integer add and subtract

e ADD and SUB cause an exception upon overflow

e ADDU and SUBU (U for unsigned) will ignore overflow

e An overflow is a condition that can happen when a calculation produces a result
that is greater in magnitude than the storage location can hold

e Two kinds of overflow:

o Acarry out of the storage unit
o Acarry into the MSB so that the result does not have the sign we expect

e Overflow is a common cause of program bugs

Carry and Overflow

The term carry refers to unsigned operations. There has been a carry out of the
storage unit.

The term overflow refers to signed operations. There has been a carry into the
sign bit. The result does not have the sign we expect.

Note;:

e when adding numbers of opposite sign, you cannot have an overflow
e when subtracting numbers of the same sign, you cannot have an overflow

Two's Complement representation using 4 bit binary strings

-1 o000 1

1111 0001
n -2 2
4'b|t World 1110 0010
-3 3
1101 0011
-4 4
1100 0100
-5 5
1011 0101
-6 6
1010 0110
-7 -8

1001 0111

000

Let’s imagine 4-bit operands with bit 3 indicating the sign.

e Add 0111 + 0111.

o If the operands are unsigned, do we have carry, overflow, or neither?
o If the operands are signed?

e Add 1111 + 0001

o If the operands are unsigned, do we have carry, overflow, or neither?
o If the operands are signed?

Overflow Example

e Example: 1996 Ariane 5 Rocket (unmanned)
e link: https://www.youtube.com/watch?v=gp D8r-2hwk

e Explanation by SE Professor lan Sommerville
e link: https://www.youtube.com/watch?v=W3YJeoYqgozw

https://www.youtube.com/watch?v=gp_D8r-2hwk
https://www.youtube.com/watch?v=gp_D8r-2hwk
https://www.youtube.com/watch?v=W3YJeoYgozw
https://www.youtube.com/watch?v=W3YJeoYgozw

Dealing with Overflow

MIPS provides signed and unsigned versions of ADD and SUB

ADDU and SUBU will ignore overflow

Some languages (ex: C) ignore overflow, so a MIPS compiler will use ADDU,
SUBU, etc.

Other languages require raising an exception, so for them the MIPS compiler with
use ADD, SUB, etc.

Demo: overflow exception

The add instruction triggered an exception,
which is handled by coprocessor 0

Changing the add to addu will not trigger an ti ::g' 2x7fffffff # max positive 1integer
exception, instead the result in $t3 will be add $t3' $t0, $t1

0x80000000

v

N - Registers Coproc 1

Name Number Value

38 \vaogr) - A £x20090990

0x00000030
0x0040000C

$14 (epc)

1 # triggering or ignoring overtlow
2 #
3
4 .data
. " 5 a: .word 5
Trigger or ignore overflow s =0 7,
d: .word 3
g g: .wgrd 0
10
11 .text
12 Lw $s1, a # load data from memory
Implement the following C expression: > E e
15 lw $s4, d
16 # compute g f (a -b) + (c - di‘ N p——
(a) Ignoring overflow (use subu, addu) % g™ e -l ot G
. . 19 sub $t2, $s3, $s4
(b) Triggering overflow (shown) 20 adi $5, 511, 502
21 ¥ store result
22 Sw $s5, g
23 # exit progrm
g=(a-b)+(c-d) 2 i sve, 10
25 syscall
26
Address Value (+0) Value (+4) Value (+8) Value (+c) Value (+10) Value(+14) Value (+18)

0x10010000 0x00000005 0x00000007 0x0000000c 0x00000003 0x00000007 0x00000000 0xD0000000
0x10010020 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
8

Shift Instructions

op

rs

rt

rd

shamt

funct

6 bits

5 bits

5 bits

5 bits

shamt - holds the number of bits to shift

SLL - shift left logical

SRL - shift right logical

5 bits

Move all bits right (or left) and fill empty spot with 0

6 bits

SLL shift left logical

Each shift left is the same as multiplying by 2

i $t2, 2
sll $t3, $t2, 1

$t2 10 0x00000002
s 1 0x00000004

A 4

sll - 32-bit value

shift-out «<«<«f<< -+ <l <f<f<f< shiftin0

Shift instruction format

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Instruction: sll $t3, $t2, 1 # hex machine code 0x000a5840
000000 00000 01010 01011 00001 000000
opcode=function=000000

Rs is unused:; rt is source; rd is destination; shamt = 00001

SLL as NOP

Some ISAs have a no-op instruction, an instruction that does nothing
Why? Useful for various situations such as creating time delays
MIPS uses SLL for a NOP: sl $0, $0, 0

This instruction does nothing; no side effects. Shifting $zero by 0 does nothing and
$zero cannot be a destination register anyway.

What do you think the machine code for this instruction is?

12

SRL shift right logical

Each srl divides by 2 with truncation

For positive integers only

srl

shift-in 0 —

- —

— shift-out

13

Shift and rotate instructions

MIPS also has:
SRA - shift right arithmetic to preserve sign

Many ISAs have rotate instructions that bring the “dropped” bit around to fill the
vacant spot. MIPS implements rotate instructions with pseudo-instructions.

How are these instructions used?

Encryption and compression algorithms; fast mul/div

14

Register $zero aka $0

Read-only
Other use-cases:
As a move:

add $t2, $s1, $zero # $t2 = $s1

15

Pseudo-instructions

There is a MOV pseudo-instruction

Pseudo-instructions get translated to real instructions by the assembler.
These instructions have the same result:

add $t2, $s1, $zero # $t2 = $s1

move $t2, $s1 # $12 = $s1
Address Code Basic Source
0x00400000 0x02205020 add $10,%17,3%0 25 add $t2, $s1, %$zero

0x00400004 0x00115021 addu $10,%0,$17 3: move $t2, $s1

More pseudo-instructions

li - load immediate

la - load address

These two pseudo instructions let us use 32-bit operands in a 16-bit space by
translating the pseudo instruction into 2 real instructions.

Pseudo-instructions are included to make coding a little easier.

17

Load immediate and load upper immediate

li is translated into lui (load upper immediate) and ori if the operand is larger than
16 bits; otherwise it is translated into addiu $0

i $t0, 0x12345678 # 32-bit operand
Becomes:
lui $1, 0x00001234

ori $8, $1, 0x00005678 # $1 is the at assembler temporary register (reserved)

Bkpt Address Code Basic Source
0x00400000 0x3c011234 lui $1,0x00001234 22 |61 $t0, 0x12345678
0x00400004 0x34285678 ori $8,%1,0x00005678 18

Load address

Addresses are 32-bits

Instruction la is also translated into lui and ori

Bkgt Address Code Basic Source
0x00400000 0x3c011001 lui $1,0x00001001 4: la $t0, a
0x00400004 0x342800000r1 $8,%1,0x00000000

Logical instructions

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
Same format as arithmetic instructions

The logical operation is performed bit-by-bit.

x and y

AND

- -0 0| X
- 0O =0 |IXx
- 0O OO0

$t1 | 0000 0000 0000 0000 0000 1101 1100 0000

$t2 | 0000 0000 0000 0000 0011 1100 0000 0000 —_—
AND

$t0

An AND vyields a 1 in the result only if both bits of the operands are 1.

21

>
o
=
<

OR

A destination bit will be 1 if at least 1 of the source bits is 1.

- 0O =0 |IXx

- 2 00| X%
S o |

$t1 | 0000 0000 0000 0000 0000 1101 1100 0000

$t2 | 0000 0000 0000 0000 0011 1100 0000 0000

$t0

22

XOR
A destination bit will be 1 if one of the the source bits is 1,
but not both.

$t1 | 0000 0000 0000 0000 0000 1101 1100 0000

$t2

$t0

X|y|xxory
0(0 0
01 1
110 1
1|1 0

0000 0000 0000 0000 0011 1100 0000 0000

23

X|y|xnory
0|0 1

NOR 0|1 O

A destination bit will be 1 if both source operand bits are 0. 111 0

$t1 | 0000 0000 0000 0000 0000 1101 1100 0000

$t2 | 0000 0000 0000 0000 0011 1100 0000 0000

$t0

24

NOT?

MIPS does not implement a NOT instruction since NOR could be used:

nor $t0, $t1, $zero

First $t1 and $zero are ORed and then inverted.

. aNORb==NOT(aORb)
o

nor $t0, $tl, $zero . — — [Regeteroiam

$t1 | 0000 0000 0000 0000 0011 1100 0000 0000

$t0 | 1111 1111 1111 1111 1100 0011 1111 1111

Immediate arithmetic/logic instructions

addi, andi, ori, slli, etc., use the |-format:

op rs rt constant or address

6 bits S bits 5 bits 16 bits
rt is the destination operand; rs is the source operand

The constant can be -2*15 to -2*15-1, that is, -32,768 to +32,767

Assemble by hand:

addi $t0, $t0, 1

0x21080001 addi $8,$8,0x00000001 10:

001000 01000 01000 0000000000000001
Opcode = 001000 = 8
Rs and Rt (destination) = 01000 $t0

Constant = 000000000000001

addi $t0, $to, 1

27

Immediate operands

Let's say our constant is 5.
16 bits 0000000000000101
2 bytes 00000000 00000101

4 hex digits 0005

28

ANDI example

To force bits to be 0, use an AND instruction.

ANDing by Oxffffffa forces bits 0 and 2 to be 0, leaving all other bits unchanged.

i £ Sto , 0x55555555)

éndi Sta ; Sto , OXfffffffa
0 8/ 0x55555555
\%Ej | 9 000000000
St2 10 0x55555550

ORI example

To force bits to be 1, use OR.

The following code forces bits 1 and 3 to be 1, leaving all others unchanged.

11 $t0, 0
ori $t2, $t0, Oxa
$t0 8 0x00000000

$tl 0x00000000

30

Bitwise operations

We do have bitwise operators in higher-level languages as well
&& is often used for logical operations
& is often used for bit-wise operations

Why do we need bit-wise operations?

e Manipulate flag registers in embedded systems
e Any time bit-manipulation is needed such as encryption algorithms

31

Arithmetic/Logic/Shift Instruction

We will cover MUL, DIV and floating-point arithmetic after exam 1.

All arithmetic/logic/shift instructions use the R format.

(1344
I

If the opcode ends in “i” it is the immediate version which uses the | format.

Trick question: What instruction format does li use?

32

Integer arithmetic/logic/shift functions

Overview of the MIPS Processor

4 bytes per word Memory
Up to 2% bytes = 27 words
EIU so | Execution& FPU SFO Fleating
32 General $1 | IntegerUnit $F1 Point Unit
Purpose ---f---semeeeees $2_| (Main proc) $F2 | (Coproc1) | 32 Floating-Point
Registers j, 1 — J, R P Registers
2 . $31 1 $F31
Arthmetic& || o | F % Integer FP F
Logic Unit ‘mulldiv Arith = . ;
| T 1 --...._| Floating-Point
: i = Arithmetic Unit
I TMU [gadvadar] Trap &
: Status |Memory Unit

j Cause | (Coproc0)
Integer EPC
Multiplier/Divider

XOR swap
algorithm

- use XOR bitwise operation to

swap the contents of 2 registers

- X=XXory
- y=XXory

- X=XXOry

- proof:

https://en.wikipedia.org/wiki/’XOR_swap _algorithm

X y
1040 & 0011 = 1001 - x
100N$ 40011 = 1010-y
100142N1010 = 0011 - x
00711 1010

34

https://en.wikipedia.org/wiki/XOR_swap_algorithm

XOR cypher

Encrypt a string by xor-ing each character with a 'key'; read more here:
https://en.wikipedia.org/wiki/’XOR_cipher

Using cypher key 7 = 0111 on char 'a' = 0x61 = 0110 0001

'a' 0110 0001

7 0111 0111

XOr 0001 0110 encrypted char
0001 0110 encrypted char

7 0111 0111

XOr 0110 0001 decrypted char

https://en.wikipedia.org/wiki/XOR_cipher

