
MIPS R-format Instructions
Arithmetic (integer) Instructions:

ADD and ADDU

SUB and SUBU

MUL, DIV (will discuss after Exam 1)

Shift Instructions:

SLL and SRL

Logic Bitwise Instructions:

AND

OR

XOR

NOR

1

Integer add and subtract

● ADD and SUB cause an exception upon overflow
● ADDU and SUBU (U for unsigned) will ignore overflow
● An overflow is a condition that can happen when a calculation produces a result

that is greater in magnitude than the storage location can hold
● Two kinds of overflow:

○ A carry out of the storage unit
○ A carry into the MSB so that the result does not have the sign we expect

● Overflow is a common cause of program bugs

2

Carry and Overflow
The term carry refers to unsigned operations. There has been a carry out of the
storage unit.

The term overflow refers to signed operations. There has been a carry into the
sign bit. The result does not have the sign we expect.

Note:

● when adding numbers of opposite sign, you cannot have an overflow
● when subtracting numbers of the same sign, you cannot have an overflow

3

4-bit world

Let’s imagine 4-bit operands with bit 3 indicating the sign.

● Add 0111 + 0111.
○ If the operands are unsigned, do we have carry, overflow, or neither?
○ If the operands are signed?

● Add 1111 + 0001
○ If the operands are unsigned, do we have carry, overflow, or neither?
○ If the operands are signed?

4

Overflow Example

● Example: 1996 Ariane 5 Rocket (unmanned)
● link: https://www.youtube.com/watch?v=gp_D8r-2hwk

● Explanation by SE Professor Ian Sommerville
● link: https://www.youtube.com/watch?v=W3YJeoYgozw

5

https://www.youtube.com/watch?v=gp_D8r-2hwk
https://www.youtube.com/watch?v=gp_D8r-2hwk
https://www.youtube.com/watch?v=W3YJeoYgozw
https://www.youtube.com/watch?v=W3YJeoYgozw

Dealing with Overflow
MIPS provides signed and unsigned versions of ADD and SUB

ADDU and SUBU will ignore overflow

Some languages (ex: C) ignore overflow, so a MIPS compiler will use ADDU,
SUBU, etc.

Other languages require raising an exception, so for them the MIPS compiler with
use ADD, SUB, etc.

6

Demo: overflow exception
The add instruction triggered an exception,
which is handled by coprocessor 0

Changing the add to addu will not trigger an
exception, instead the result in $t3 will be
0x80000000

7

Trigger or ignore overflow

Implement the following C expression:

(a) Ignoring overflow (use subu, addu)
(b) Triggering overflow (shown)

g = (a - b) + (c - d)

8

Shift Instructions

shamt - holds the number of bits to shift

SLL - shift left logical

SRL - shift right logical

Move all bits right (or left) and fill empty spot with 0

9

SLL shift left logical
Each shift left is the same as multiplying by 2

10

Shift instruction format

Instruction: sll $t3, $t2, 1 # hex machine code 0x000a5840

000000 00000 01010 01011 00001 000000

opcode=function=000000

Rs is unused; rt is source; rd is destination; shamt = 00001

11

SLL as NOP
Some ISAs have a no-op instruction, an instruction that does nothing

Why? Useful for various situations such as creating time delays

MIPS uses SLL for a NOP: sll $0, $0, 0

This instruction does nothing; no side effects. Shifting $zero by 0 does nothing and
$zero cannot be a destination register anyway.

What do you think the machine code for this instruction is?

12

SRL shift right logical
Each srl divides by 2 with truncation

For positive integers only

13

Shift and rotate instructions
MIPS also has:

SRA - shift right arithmetic to preserve sign

Many ISAs have rotate instructions that bring the “dropped” bit around to fill the
vacant spot. MIPS implements rotate instructions with pseudo-instructions.

How are these instructions used?

Encryption and compression algorithms; fast mul/div

14

Register $zero aka $0
Read-only

Other use-cases:

As a move:

add $t2, $s1, $zero # $t2 = $s1

15

Pseudo-instructions
There is a MOV pseudo-instruction

Pseudo-instructions get translated to real instructions by the assembler.

These instructions have the same result:

add $t2, $s1, $zero # $t2 = $s1

move $t2, $s1 # $t2 = $s1

16

More pseudo-instructions
li - load immediate

la - load address

These two pseudo instructions let us use 32-bit operands in a 16-bit space by
translating the pseudo instruction into 2 real instructions.

Pseudo-instructions are included to make coding a little easier.

17

Load immediate and load upper immediate
li is translated into lui (load upper immediate) and ori if the operand is larger than
16 bits; otherwise it is translated into addiu $0

li $t0, 0x12345678 # 32-bit operand

Becomes:

lui $1, 0x00001234

ori $8, $1, 0x00005678 # $1 is the at assembler temporary register (reserved)

18

Load address
Addresses are 32-bits

Instruction la is also translated into lui and ori

19

Logical instructions

Same format as arithmetic instructions

The logical operation is performed bit-by-bit.

20

AND

21

OR
A destination bit will be 1 if at least 1 of the source bits is 1.

22

XOR
A destination bit will be 1 if one of the the source bits is 1,

but not both.

23

NOR

A destination bit will be 1 if both source operand bits are 0.

24

NOT?
MIPS does not implement a NOT instruction since NOR could be used:

nor $t0, $t1, $zero

First $t1 and $zero are ORed and then inverted.

25

Immediate arithmetic/logic instructions
addi, andi, ori, slli, etc., use the I-format:

rt is the destination operand; rs is the source operand

The constant can be -2^15 to -2^15-1, that is, -32,768 to +32,767

26

Assemble by hand:
addi $t0, $t0, 1

001000 01000 01000 0000000000000001

Opcode = 001000 = 8

Rs and Rt (destination) = 01000 $t0

Constant = 000000000000001

27

Immediate operands
Let's say our constant is 5.

 16 bits 0000000000000101

 2 bytes 00000000 00000101

 4 hex digits 0005

28

ANDI example
To force bits to be 0, use an AND instruction.

ANDing by 0xffffffa forces bits 0 and 2 to be 0, leaving all other bits unchanged.

29

ORI example
To force bits to be 1, use OR.

The following code forces bits 1 and 3 to be 1, leaving all others unchanged.

30

Bitwise operations
We do have bitwise operators in higher-level languages as well

&& is often used for logical operations

& is often used for bit-wise operations

Why do we need bit-wise operations?

● Manipulate flag registers in embedded systems
● Any time bit-manipulation is needed such as encryption algorithms

31

Arithmetic/Logic/Shift Instruction
We will cover MUL, DIV and floating-point arithmetic after exam 1.

All arithmetic/logic/shift instructions use the R format.

If the opcode ends in “i” it is the immediate version which uses the I format.

Trick question: What instruction format does li use?

32

Integer arithmetic/logic/shift functions

33

XOR swap
algorithm

34

- use XOR bitwise operation to
swap the contents of 2 registers

- x = x xor y

- y = x xor y

- x = x xor y

- proof:
https://en.wikipedia.org/wiki/XOR_swap_algorithm

https://en.wikipedia.org/wiki/XOR_swap_algorithm

XOR cypher
Encrypt a string by xor-ing each character with a 'key'; read more here:
https://en.wikipedia.org/wiki/XOR_cipher

Using cypher key 7 = 0111 on char 'a' = 0x61 = 0110 0001

'a' 0110 0001
7 0111 0111
xor 0001 0110 encrypted char

 0001 0110 encrypted char
7 0111 0111
xor 0110 0001 decrypted char

35

https://en.wikipedia.org/wiki/XOR_cipher

