
MIPS memory map

Static data is known at the time the
program is loaded into memory.

Dynamic data is allocated at run time.

1

Fetch, Decode, Execute
Instruction cycle:

1. Fetch the next instruction from memory
2. Decode it
3. Execute it
4. Update the PC (program counter) += 4

2

Register PC - Program Counter
Register PC is update by 4 after every instruction.

You can see this when you single-step through a program.

In the code below, we are about to execute 0x004000c

and we see that is the value in register PC

3

Control structures
So far we have executed code sequentially.

We need:

Conditional execution, like an if statement

Repeated execution, like loops

Function calls

In assembly language we use branch and jump instructions to create these

4

Branch instructions
Branch instructions are conditional jumps

Branch to a labeled instruction if a condition is true; otherwise continue
sequentially

There are two MIPS branch instructions: beq and bne

beq rs, rt, label # compare registers and branch if they are equal

bne rs, rt, label # compare registers and branch if they are not equal

5

Jump
The jump instruction is unconditional.

j label # start executing the code at label

This will cause the current value of the PC to be replaced by the address “label”

6

Implementing an if statement

7

IF-ELSE example

We jump over the add if the
condition is false.

We have to jump over the sub if
the condition is true.

8

assembled

9

Branch statements use the I format
beq rs, rt, label

bne rs, rt, label

The offset is relative to the current PC value.

10

Branch v. Jump
j label

The jump instruction is absolute, the PC is updated to point to label. We can jump
anywhere in the code segment.

beq $t1, $t2, label

The branch instruction is relative to the current value of the PC. The 16-bit offset is
added to the PC. If the offset is positive, it's a forward jump; if the offset is
negative, it's a backward jump

11

branch addressing
Most branch targets are close, so a 16-bit offset is sufficient.

At a branch instruction, the PC is already pointing to the next instruction (PC+4)

target address = PC + offset*4

the offset is in words (4 bytes)

If the branch target is too far away, the assembler will rewrite it with jump.

12

MIPS has 3 instruction formats

13

Jump Decoding
The J instruction format has 6 bits for the opcode, leaving 26 bits for the label.

ut addresses are 32 bits, so how does that work? At run time:

● First the 26 bit address is shifted left twice to become 28 bits
● Then the upper 4 bits of the PC are appended to the MSB of the address

Ex: 0x0810000c -> 000010 (opcode 2 hex) and: 0000000000000000001100

Shift left twice: 000000000000000000110000

Append 4 MSB of PC: 0000000000000000000000110000B

14

Loops: counter loop

15

Loops: looping through an array

16

Conditional statements
The beq and bne instructions can be used to
create relational conditions like >, <=

First a condition is checked with slt (set less
than) or slti instruction. Instruction slt or slti will
set Rd to 1 if the condition is true, 0 otherwise.

Then a branch is taken, or not, based on if the
condition is equal to $zero.

17

slt example
slt $t0, $s3, $s4 # $t0 = $s3<$s4
beq $t0, $zero, label
will branch if NOT $s3<$s4

slti example
slti $t0, $s3, 10 # $t0 = $s3<10
bne $t0, $zero, label
will branch if $s3<10

slt and slti
slt rd, rs, rt # set rd=1 if rs<rt; otherwise rd=0

slti rd, rs, constant # set rd=1 if rs<constant; otherwise rd=0

Used immediately before beq or bne.

Can be used to implement any conditional (<, <=, >, >=) by changing the order of
the source operands

Why no blt, etc?

Two fast instructions are better than one slower one.

18

signed v. unsigned
signed comparison: slt and slti

unsigned comparison: sltu and sltiu

19

array bounds check
An unsigned comparison checks if x < y and
also if x is negative

Case 1: $s1>$s2 indicates we have gone
beyond the end of the array

Case 2: $s1 is negative

$s1 will be ">" $t2 with an unsigned check
because it will have 1 in MSB

20

jump to IndexOutOfBounds
if $s1>$t2 or $s1 is negative
sltu $t0, $s1, $t2
beq $t0, $zero, IndexOutOfBounds

Pseudo-instructions for branches
These get converted into slt-beq or slt-bne
instructions.

blt - branch less than

ble - branch less than or equal to

bgt - branch greater than

bge - branch greater than or equal to

21

blt $t1, $t2, exit
will be assembled into:
slt $1, $9, $10
bne $1, $0, exit

ble $t1, $t2, exit
will be assembled int:
slt $1, $10, $9
beq $1, $0, exit

if example
MIPS:

22

if-else example
MIPS code:

23

while loop

24

for loop
MIPS code:

25

functions aka procedures aka subroutines
Steps to calling a function:

In calling code:

1. place arguments in registers
2. transfer control to procedure
3. process any return values

In the called procedure:

1. acquire storage (stack) for procedure if
needed

2. perform procedure's operations
3. place results in register for caller
4. return to place of call

26

MIPS registers for functions
$a0 - $a3 - arguments for the function

$v0, $v1 - return values from the function

$t0 - $t9 - temporaries (may be overwritten by the function)

$s0 - $s7 - saved (function must save/restore them on the stack)

$sp - stack pointer, points to the top of the stack

Not important in MARS: $fp frame pointer, $gp global pointer

27

How to call functions in MIPS
Call a function:

jal ProcedureLabel

jal "jump and link:

- first saves $pc to $ra so we can get back
- then jumps to ProcedureLabel

As we execute jal, $pc will already be pointing to
the instruction immediately after jal; we need to
save this return address in $ra

Return from a function:

jr $ra

jr "jump register" will jump to the value in $ra

it copies the $ra to the $pc so that the next
instruction to be executed is after the jal

28

leaf function

29

Problem 1

30

Problem 2

31

Problem 3

32

Problem 4

33

Problem 5

34

Problem 6

35

Problem 7
move the loop in Problem 7 to a subroutine that you call from the main program

36

