0x0040-0000

MIPS memory map

@OxOFFF -FFFF

0x1001-0000

.data

Static data is known at the time the (static data)

program is loaded into memory. Ghpasrikc daka)

Dynamic data is allocated at run time.

. Stack

Ox7FFF ~FFFF

Fetch, Decode, Execute

Instruction cycle:

Fetch the next instruction from memory
Decode it
Execute it
Update the PC (program counter) += 4

e

Register PC - Program Counter

Register PC is update by 4 after every instruction.

You can see this when you single-step through a program.

In the code below, we are about to execute 0x004000c

and we see that is the value in register PC

OO Text Segment

Bkpt Address Code Basic Source
0x00400000 0x24090002 addiu $9,%0,0x00000002 7: i $t1, 2
0x00400004 0x21290003 addi $9,%9,0x00000003 8: addi $t1, $t1, 3
0x00400008 0x21290004 addi $9,%9,0x00000004 9: addi $t1, $t1, 4
0x0040000c 0x3c011001 lui $1,0x00001001 10: Sw $t1, varl
0x00400010 0xac290000 sw $9,0x00000000($1)
0x00400014 0x2402000a addiu $2,%0,0x0000000a 12: exit: i $ve, 10
0x00400018 0x0000000C syscall 333 syscall

Coproc1 Coproc 0

Name Number Value

$zero 0 0x00000000
$at 1 0x00000000
$vo 2 0x00000000
$vl 3 0x00000000
$a0 4 0x00000000
$al 5 0x00000000
$a2 6 0x00000000
$a3 7 0x00000000
$t0 8 0x00000000
$t1 | 0x00000009
$t2 10 0x00000000
$t3 11 0x00000000
$t4 12 0x00000000
$t5 13 0x00000000
$t6 14 0x00000000
$t7 15 0x00000000
$s0 16 0x00000000
$s1 17 0x00000000
$s2 18 0x00000000
$s3 19 0x00000000
$s4 20 0x00000000
$s5 21 0x00000000
$56 22 0x00000000
$s7 23 0x00000000
$t8 24 0x00000000
$t9 25 0x00000000
$k0 26 0x00000000
$k1 27 0x00000000
$ap 28 0x10008000
$sp 29 Ox7fffeffc
$fp 30 0x00000000
$ra 31 0x00000000
pc 0x0040000C
hi 0x00000000
lo 0x00000000

Control structures

So far we have executed code sequentially.

We need:

Conditional execution, like an if statement
Repeated execution, like loops

Function calls

In assembly language we use branch and jump instructions to create these

Branch instructions

Branch instructions are conditional jumps

Branch to a labeled instruction if a condition is true; otherwise continue
sequentially

There are two MIPS branch instructions: beq and bne
beq rs, rt, label # compare registers and branch if they are equal

bne rs, rt, label # compare registers and branch if they are not equal

Jump

The jump instruction is unconditional.
j label # start executing the code at label

This will cause the current value of the PC to be replaced by the address “label”

Implementing an if statement

C code:

if CGi==j) ¥ = g+h; ‘
else f = g-h; '
« f,g, ... in $s0, $s1, ... |
Compiled MIPS code: cures |

bne $s3, $s4, Else

add $s0, $s1, $s2

J EX1t
Else: sub %$s0, $s1, $s2
EXIT: "o

3 = S
oA P S N G A T R TR S A R e A A N S S A e A ==

IF-ELSE example

We jump over the add if the
condition is false.

We have to jump over the sub if
the condition is true.

LCONOWUVIE WN =

branch example
1

f (1 ==j) f =g+h; else f = g-h;

T" H.?!Q -

.data
.word
.word
.word
.word
.word

. text
w
lw
lw
w
w

bne
add
]

sub

S 1
syscall

$s0,
$s1,
$s2,
$s3,
$s4,

$s3,
$s0,
Exit
$s0,

$vo,

wwoue

load data

— T -

$s4, Else
$sl, $s2

$sl, $s2

10

assembled

Bkpt

Address
UXYY4YVYVC

0x00400010
0x00400014
0x00400018
0x0040001c
0x00400020
0x00400024
0x00400028
0x0040002c
0x00400030
0x00400034
0x00400038
0x0040003C

0x8c340010 \w $20,0x00000010(51)
0x16740002 bne $19,$20,0x00000002 18:

0x02328020 add $16,$17,%$18 19:
0x0810000e j 0x00400038 20:
0x02328022 sub $16,$17,$18 21:

0x2402000a addiu $2,$0,0x0000000a 23:
0x0000000cC syscall 24:

Code Basic Source
UXBCILO004E LW HL1/,0X00000004 L)
0x3c011001 lui $1,0x00001001 14:
0x8¢320008 lw $18,0x00000008(%1)
0x3¢c011001 lui $1,0x00001001 15:
0x8¢33000c lw $19,0x0000000c($1)
0x3¢c011001 lui $1,0x00001001 16:

Else:
Exit:

w
1w
1w

bne
add

sub
11
syscall

$s2,
$s3,
$s4,

$s3,
$s0,
Exit
$s0,
$v0,

h
i

i

$s4, Else
$s1, $s2

$s1, $s2
10

Branch statements use the | format

beq rs, rt, label

bne rs, rt, label

I 4 l rs | rt Offset

beq rs. rt, l1abel
S 5 16

0

The offset is relative to the current PC value.

10

Branch v. Jump

j label

The jump instruction is absolute, the PC is updated to point to label. We can jump
anywhere in the code segment.

beq $t1, $t2, label

The branch instruction is relative to the current value of the PC. The 16-bit offset is
added to the PC. If the offset is positive, it's a forward jump; if the offset is
negative, it's a backward jump

11

branch addressing

Most branch targets are close, so a 16-bit offset is sufficient.
At a branch instruction, the PC is already pointing to the next instruction (PC+4)
target address = PC + offset*4

the offset is in words (4 bytes)

If the branch target is too far away, the assembler will rewrite it with jump.

12

MIPS has 3 instruction formats

BASIC INSTRUCTION FORMATS

R opcode rs 1 rt

31 26 25 21 20 16 15
I opcode rs] rt

3] 26 25 21 20 16 15
J opcode

3 26 25

rd
1110

address

shamt
h‘

immediate

5

funct

13

Jump Decoding

The J instruction format has 6 bits for the opcode, leaving 26 bits for the label.

ut addresses are 32 bits, so how does that work? At run time:

e First the 26 bit address is shifted left twice to become 28 bits
e Then the upper 4 bits of the PC are appended to the MSB of the address

Ex: 0x0810000c -> 000010 (opcode 2 hex) and: 0000000000000000001100
Shift left twice: 000000000000000000110000

Append 4 MSB of PC: 0000000000000000000000110000B

14

Loops: counter loop

OO0~ & WN

simple loop example

while (i < 3)

.data
n: .word
count: .word

Jtext
&1
Lw

loop: beq
addi
)

done: Sw

exit: &1
syscall

B L o

[~

$t2, done
$t1, 1

count

10

=+ =

$tl = 1 = @
$t2 = stop value
branch if] == 3

144

save 1

15

Loops: looping through an array

WOoo~NOU & WN -

looping through an

while
¥ whnile

arr:

loop:

exit:

farr "l J
- ¢ J

.data
.word

.text
i
la
i

sl
add
Lw
beq
addi
)

i
syscall

)

L)

array

144,

3, 8,12, -1

$s3, 0

$s6, arr
$s5, =1
$t1, $s3, 2

$t1,
$10,
$10,
$s3,
Loop

$vo,

$t1, $s6
($t1)
$s5, exit
$s3, 1

10

% #®

&% & % 8 % &%

Sy =1 =
Ol v

b = Das
$t9 = K

i=1%4
address =
get next

if arrfi]
I+

goto next

se address of

i¥4d + arrf@]
array element
- 3

= =1, CX1lL

i1teration

array

16

Conditional statements

The beq and bne instructions can be used to
create relational conditions like >, <=

First a condition is checked with slt (set less
than) or slti instruction. Instruction slt or slti will
set Rd to 1 if the condition is true, 0 otherwise.

Then a branch is taken, or not, based on if the
condition is equal to $zero.

slt example

slt $t0, $s3, S$s4 # $St0 = $s3<$s4
beqg $t0, S$zero, label

will branch if NOT $s3<$s4

slti example

slti $t0, $s3, 10 # $t0 = $s3<10
bne $t0, S$zero, label

will branch if $s3<10

17

slt and slti

sltrd, rs, rt # set rd=1 if rs<rt; otherwise rd=0
slti rd, rs, constant # set rd=1 if rs<constant; otherwise rd=0
Used immediately before beq or bne.

Can be used to implement any conditional (<, <=, >, >=) by changing the order of
the source operands

Why no blt, etc?

Two fast instructions are better than one slower one.

18

signed v. unsigned

signed comparison: slt and slti

unsigned comparison: sltu and sltiu

19

array bounds check

An unsigned comparison checks if x <y and
also if x is negative

Case 1: $s1>$s2 indicates we have gone
beyond the end of the array

Case 2: $s1 is negative

$s1 will be ">" $t2 with an unsigned check
because it will have 1 in MSB

jJump to IndexOutOfBounds

if $s1>$t2 or $sl is negative
$sl, $t2

#
sltu S$tO,
beq $tO0,

Szero,

IndexOutOfBounds

20

Pseudo-instructions for branches

These get converted into slt-beq or slt-bne
instructions.

blt - branch less than
ble - branch less than or equal to
bgt - branch greater than

bge - branch greater than or equal to

blt $tl, $t2, exit

will be assembled into:
slt $1, $9, $10

bne $1, $0, exit

ble Stl, S$t2, exit

will be assembled int:
slt $1, $10, $9

beqg $1, $0, exit

21

if example i

f = f — 1;
MIPS:

$sO0 = f, $s1 = g, $s2 = h, $s3 = i, $s4 = j

bne $s3, $s4, L1 # if i ! = j, skip if block

add $s0, $sl1, $s2 # if block: f = g + h
= -

sub $s0, $s0, $s3 ## f = f — i

22

if-else example

MIPS code:

$sO0 = f, $s1 = g,
bne $s3, $s4, else
add $s0, $sl, $s2
J L2

else:
sub $s0, $s0, $s3

L2:

$s2
iF
i
ik

i

= h, $s3 =
if i ! J
if block: f
skip past t

else block:

i,

.F

$s4 = j

., branch to else
g + h

he else block

f

i

23

while loop

f## $5s0 = pow,

addi
addi

addi

while:
beq
s11
addi
J

done:

$s0,
$sl,

$t0,

$s0,
$s0,
$sl,
while

$s1
$0,

- X
1

$0, O

$O,

$tOo,
$s0,
$s1,

128

done
1
1

#

it
#
1

t0 = 128 for comparison

if pow == 128,
pow = pow * 2
X = x + 1

exit while

[
o

24

int sum = 0O;

for (i == O; 1 ! = 10: 1 = § <+ 1) {(

for loop e

1

MIPS Code: // equivalent to the following while l1oop
int sum = O;
int i = O:
while (i != 10) {
sum = sum <+ 1
1 = 1 4 1:

$s0 = i, $s1 = sum

add $s1, $0., sO # sum = O
addi $s0, sO0,. O f# 4 = 0
addi $t0, s$0O, 10 # $tO0 = 10
for:
beq $s0, $tO, done ## if i == 10, branch to done
add $s1, $sl1, $s0 # sum = sum <+ i
addi $s0, $s0, 1 # increment 1
J for
done:

25

functions aka procedures aka subroutines

Steps to calling a function:
In calling code:

1. place arguments in registers
2. transfer control to procedure
3. process any return values

In the called procedure:

1.

w

acquire storage (stack) for procedure if
needed

perform procedure's operations

place results in register for caller
return to place of call

26

MIPS registers for functions

$a0 - $a3 - arguments for the function

$v0, $v1 - return values from the function

$t0 - $t9 - temporaries (may be overwritten by the function)

$s0 - $s7 - saved (function must save/restore them on the stack)
$sp - stack pointer, points to the top of the stack

Not important in MARS: $fp frame pointer, $gp global pointer

27

How to call functions in MIPS

Call a function: Return from a function:

jal ProcedurelLabel jr $ra

jal "jump and link: jr "jump register" will jump to the value in $ra
- first saves $pc to $ra so we can get back it copies the $ra to the $pc so that the next
- then jumps to ProcedureLabel instruction to be executed is after the jal

As we execute jal, $pc will already be pointing to
the instruction immediately after jal; we need to
save this return address in $ra

28

leaf function

1 # leaf function

2 # result = sum(x, y)

3

4 .data

5 Xx: word 3

6 : .word 5

7 result: .word @

8

9 text

10 L% $ad, x

11 lw $al, y

12 jal sum

13 Sw $v@, result
14

15 exit: &1 $vo, 10

16 syscall

17

18 sum: # return x + y

19 # x and y are in $a@ and $a@
20 # sum is returned in 3v@
21 add $v@, $ab, sal
22 jr $ra

Problem 1

OO~ & WN =

g

1T (a

al

main:

your c

exit:

2

< @) a
.data
.word

. text

ode here

&1
syscall

practice program 1

L=

]

d

$vo, 10

30

OO~ H WN =

Problem 2

practice program 2

if (3 > 0) a = -a
.data

a: .word 4

text
main:
your code here

exit: &1 $v@, 10
syscall

change to n

31

Problem 3

1 # practice program 3

2 #if (a<=b) c=b elsec=a
3 data

4 a word 5

S5 b word 6

6 C word @

7

8 text

9 main:
10
11
12
13 exit: i $vo, 10
14 syscall

OO0 ~NOWU & WN =

Problem 4

practice program 4

for

main:

exit:

imfAr 3<cIP* 3)
(1=, 1<iU, 1++)

.data
.word (4]

Llext

i $ve, 10
syscall

=
4= »

’

T+
W

S€

ALy

mmediate

load/add instructions

33

Problem 5

WO U & WN -

prac
for

a:
len:

main:

exit:

tice program 5

(i=0; i<10; i++) a[i] +=5;
.data
.word S Bpidy Ty il 05 395952, 1
.word 10

. text

li sve, 10
syscall

34

Problem 6

WO U & WN

practice program 6

13

sl:

52:

main:

exit:

while (

§2[i] = §

[
i
I
S

.data
.asciiz "hi"
.align 2
.Space 4

. text

i $vo, 10
syscall

35

Problem 7

move the loop in Problem 7 to a subroutine that you call from the main program

36

