
Control structures practice problems
- branches and jumps are used to implement

- conditional statements
- loops
- functions

1

More about functions
Leaf and non-leaf functions/procedures

- a leaf function does not call any other function or itself
- a non-leaf functions calls other functions or itself

If we call a function from within a function, $ra will get overwritten. Problem!

Solution: save $ra on the stack

We can also use the stack to store any variables we want.

2

the stack

the stack is a contiguous section of
memory

the stack pointer ($sp) points to the
current top of the stack

when the stack is initialized, $sp points
to the bottom of available stack
memory

the stack grows upward
3

push and pop
PUSH copies a register to the stack

- used to save data on the stack

POP copies a value from the stack to a register

- used to retrieve data from the stack

Many ISAs have PUSH and POP instructions

MIPS uses load and store instructions

4

push

This is how we push:

addi $sp, $sp, -4

sw $s3, ($sp)

5

pop
This is how we pop:

lw $s3, ($sp)

addi $sp, $sp, 4

6

Notice that the data is still there in the now
unused portion of the stack.

stacks and functions
In some architectures, each time a function is called, the entire state of the
machine (registers) is stored on the stack

If you have recursive calls, you can run out of stack space - stack overflow!

MIPS reduces the likelihood of this by providing register conventions of what is
saved across function calls

You need to use the stack in MIPS for non-leaf functions and if you want to pass in
more than 4 arguments or pass out more than 2 arguments

7

leaf function example
Args in $a registers

f in $s0;

result in $v0

C Code:

int leaf (int g, h, i, j)
{
 int f;
 f = (g + h) - (i + j)
 return f;
}

8

9

saving multiple registers on the stack

10

$t and $s registers
The following convention is used in MIPS:

- $t0 - $t9 are temporary registers that the called function is not required to
save

- $s0 - $s7 are saved registers that the called function must preserve them by
saving/restoring on the stack

This is a convention:

- not enforced by the assembler
- agreed upon by programmers to make code easier to read

11

byte operations
lb rt, offset(rs) # load a byte from address rs+offset to rt (sign extends)

lbu rt, offset(rs) # load a byte from address rs+offset to rt (no sign extend)

sb rt, offset(rs) # store register rt at address rs+offset

12

string copy example

C code:

void strcpy (char x[], char y[])
{
 int i = 0;
 while ((x[i]=y[i] != '\0')
 i ++ 1;
}

13

14

form of a function

15

non-leaf functions

C code:

int fact (int n)
{
 if (n < 1) return f;
 else return n * fact(n-1);
}

16

17

18

MIPS static and dynamic variables

Data in the .data section is
static data.

We can also allocate data at
run time on the heap.

Notice that the stack and the
heap grow towards each other.

19

memory management
In C, programmers allocate dynamic memory with malloc() and free it with the
free() function.

A memory leak occurs if a program does not release the bytes on the heap when it
is finished with it.

Another source of errors is releasing the memory before the program is finished
with them.

These types of problems led to the development of Java and C++

20

arrays v. pointers: clearing an array

21

arrays v. pointers
Array indexing involves:

- multiplying index by element size
- added to array base address

Pointers correspond directly to memory addresses.

Can avoid indexing complexity

22

