
Advanced MIPS coding
- dynamic memory
- file I/O
- macros
- multiple file programs
- exceptions and interrupts

1

dynamic memory (heap)
allocation in MARS
In a real OS:

- programs request additional memory
dynamically (at run time)

- the os finds a block of memory and
allocates it

In MARS we are emulating this

2

3

4

struct
- in C, a struct is a user-defined composite data type
- compilers may actually store the items in a different order to optimize memory

5

6

program could be upgraded to
change "p" to an array of
pointers

7

MARS file I/O syscalls

Example

8

Macros in MARS
- macros enable you to specify a set of instructions that can be invoked with a

single line of code
- macros are expanded by the assembler by substituting the macro body for

each use in the program
- although it conceals implementation details like a function does, but it

implemented in a completely different way

9

Example: macro for program termination
- define the macro:

.macro done
 li $v0, 10
 syscall

 .end_macro

- invoke the macro:

done

10

Macro arguments
- arguments can be a register or immediate value

11

.include
● the include assembler directive can be used to include a file of macros into

the current file
● macros can only be invoked after they are defined
● put the .include above the .data section

.include "macros.asm"

12

13

multiple files
- you can put your code in multiple files and assemble them together
- files must be in the same directory
- make subs global with the ,global directive
- Settings -> Assemble all files in directory
- Settings -> Initialize program counter to global 'main'

.text

.global main
main: ...

14

exceptions, interrupts, and traps

exceptions - an event that causes a change in the normal flow of execution

interrupts (external events) - often signals from sensors, I/O, or other hardware
devices

traps (internal events) - software-defined exceptions like breakpoints

15

exception
when an exception occurs, the program is interrupted and a branch occurs to an
exception handler, aka ISR (interrupt service routine)

the exception could be:

- a fatal error, in which case the program needs to halt
- a recoverable error that can be serviced so that the program can continue

16

MIPS exception handling
handled by coprocessor 0

system enters kernel (not user) mode

coprocessor 0 has 4 special registers:

- $14 EPC (exception PC) holds the address of the offending instruction
- $13 cause - contains a cause code
- $8 badvaddress register - address for bad address exception
- $12 status register contains additional information

17

cause codes

•4 address exception load

•5 address exception store

•8 syscall exception

•9 breakpoint exception

•10 reserved instruction exception

•12 arith overflow exception

•13 trap exception

•15 divide by zero exception

•16 floating-point overflow

•17 floating-point underflow

18

special instructions
mtc0 Rsrc, C0dest # copy Rsc to C0dest
mfc0 Rdest, C0src # copy C0src to Rdest
lwc0 C0dest, addr # load word from addr
swc0 C0dest, addr # store word at addressµ

19

Example

MARS MIPS does not cause an
exception on divide by zero

Using the code from the MARS site
we could create a trap

20

Bubble Sort

21

22

23

Tools -> Instruction Statistics

24

Tools -> Instruction Counter

