Floating point numbers

Floating point representation

- Like scientific notation
- -2.34×10^{56}
- $+0.002 \times 10^{-4}$
- +987.02 $\times 10^{9}$

- In binary (.=binary point)
- $\pm 1 . x x x x x x x_{2} \times 22^{y y y}$
- Types float and double in C

floating-point IEEE standard 754-1985

Developed in response to divergence of representations
Now universally adopted
Two representations:

- single precision (32-bit)
- double precision (64-bit)

Level	Width	Range at full precision	Precision $^{[\mathrm{a}]}$
Single precision	32 bits	$\pm 1.18 \times 10^{-38}$ to $\pm 3.4 \times 10^{38}$	Approximately 7 decimal digits
Double precision	64 bits	$\pm 2.23 \times 10^{-308}$ to $\pm 1.80 \times 10^{308}$	Approximately 16 decimal digits

single: 8 bits double: 11 bits
S Exponent single: 23 bits double: 52 bits

$$
x=(-1)^{S} \times(1+\text { Fraction }) \times 2^{(\text {Exponent-Bias })}
$$

- Most significant bit is the sign bit ($0=$ positive, $1=$ negative $)$
- Fraction represents binary fractional part of the number, after being normalized
- The "1" before this fractional part is not stored, it is assumed.
- Exponent is biased to force negative/positive exponents sort in correct order:
- 127 for single precision
- 1203 for double precision

reconstructing a floating-point number

Assume that the following is stored in memory:
Break it down:

- \quad sign $=1$
- exponent $=129-127=2$
- number $=1.01$

Put it together:
$-1.01 \times 2^{\wedge} 2=-101.0==-5$ in decimal

storing a floating point number

Represent -0.75 in single-precision.
-0.75 decimal $=-0.11$ binary
normalize: -1.1 x 2^-1
$\operatorname{sign}=1$
exponent $=-1+127=126=01111110$ in binary
put it together: 101111110100..00 = 0xbf400000

convert to sp: +14.75

Steps:

1. determine sign bit
2. convert whole number part to binary
3. convert fraction part to binary
4. put 2 and 3 together
5. normalize $1 \ldots . . \times 2^{\wedge} n$
6. exponent $=$ bias $+n$
7. convert biased exponent to binary
8. get fraction from step 5

1	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
5	exponent								fraction																						
0	1	0	0	0	0	0	1	0	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Converting a base-10 decimal to binary

Convert whole-numbers by repeated division by 2
Convert fractional part by repeated multiplication by 2
Example: 0.75

1. multiply decimal portion by 2
2. keep the whole number part of the product

fraction	x2	
whole portion		
0.75	1.5	1
0.5	1	1
0	0	0

3. repeat until fraction is 0 or max digits

.085 to binary

stopped at max \# digits

fraction $\times 2$	whole portior	
0.085	0.17	0
0.17	0.34	0
0.34	0.68	0
0.68	1.36	1
0.36	0.72	0
0.72	1.44	1
0.44	0.88	0
0.88	1.76	1
0.76	1.52	1
0.52	1.04	1
0.04	0.08	0
0.08	0.16	0
0.16	0.32	0
0.32	0.64	0
0.64	1.28	1
0.28	0.56	0
0.56	1.12	1
0.12	0.24	0
0.24	0.48	0
0.48	0.96	0
0.96	1.92	1
0.92	1.84	1
0.84	1.68	1
0.68	1.36	1
0.36	0.72	0
0.72	1.44	1
0.44	0.88	0
0.88	1.76	1
0.76	1.52	1

Practice: Represent 17.75 in IEEE 754 SP

Check with this site: $\underline{\text { https://www.h-schmidt.net/FloatConverter/IEEE754.html }}$

Practice

Reconstruct the base 10 number from the hex representation: 0x42085000

Questions

S Exponent \quad Fraction

$$
x=(-1)^{S} \times(1+\text { Fraction }) \times 2^{\text {(Exponent-Bias) }}
$$

1. What is the advantage of the order S-exp-frac?
2. The exponent being $8 \vee 11$ bits affects:
a. range of numbers
b. precision of numbers
3. The fraction part being $23 \vee 52$ bits affects:
a. range of numbers
b. precision of numbers

More about floating points

We can still have overflow.

- overflow happens when the exponent is too large for the exponent field
- underflow happens when a negative exponent is too large

Having double-precision helps. The range is:

- single precision: almost 2.0×10^{-38} to $2.0 \times 10^{+38}$
- double precision: range is almost: 2.0×10^{-308} to $2.0 \times 10^{+308}$

However the primary advantage of double precision is greater accuracy.

IEEE 754 encoding

Shegle preclslon		Doublo preclslon		Object ropresented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	\pm denormalized number
$1-254$	Anything	$1-2046$	Anything	\pm floating-point number
255	0	2047	0	\pm infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

Rounding errors

Not every number can be represented exactly, ex: 0.1

"If I had a dime for every time I've seen someone use FLOAT to store currency, I'd have \$999.997634" -- Bill Karwin.

FP accuracy

32 bits gives us $2^{\wedge} 32$, about 4 billion, unique bit patterns, but there are an infinite number of reals

The IEEE 754 standard does not guarantee that every number can be represented, but that every machine using the standard will get the same results

Rounding

IEEE 754 specifies two bits that are kept to the right during arithmetic operations. These bits are in the circuitry but not in the final result.

- the guard bit is the first extra bit to the right
- the round bit is the second bit to the right

The goal is to find the closest floating-point number that will fit into the format.
Further, a 'sticky' bit is set whenever there are nonzero bits to the right of the round bit. This is used in rounding.

Rounding

1. BBGRXXX

Extra bits

These extra bits are in circuitry, not in the 32-bit or 64-bit representation.

Guard bit: LSB of result

Round bit: $1^{\text {st }}$ bit removed

- Round up conditions
- Round $=1$, Sticky = $1 \rightarrow>0.5$
- Guard =1, Round $=1$, Sticky $=0 \rightarrow$ Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

Number representation

During the Gulf War in 1991, a US Patriot missile failed to intercept an Iraqi scud missile, resulting in 28 Americans being killed

Cause: software updated a counter every 0.10 seconds, then multiplied the counter by 0.1 to compute the actual time

Over 100 hours, the time was off by 0.34 seconds, enough for a scud to travel 500 meters

extreme errors

problems occur if one argument is much smaller than the other since we need to match the exponents to add
$\left(1.5 \times 10^{38}\right)+\left(1.0 \times 10^{0}\right)=1.5 \times 10^{38}$
The 1.0×10^{0} gets rounded out of existence

associativity break down

```
1 #include <stdio.h>
int main (void)
{
    float x = 1.5e38;
        float y = -1.5e38;
        printf("%f\n", (x + y) + 1.0);
        printf("%f\n", x + (y + 1.0));
        return 0;
}
```


Output:

```
1}1.00000
2 0.000000
```


Questions

1. What do overflow/underflow mean in floating-point numbers?
2. What is NaN ?
3. What is a denormalized number:
a. the fraction part of the number cannot be represented in the number of bits
b. the exponent part of the number cannot be represented in the number of bits
4. Denormalized numbers occur:
a. near zero
b. near the extremes +/- of magnitude of numbers that can be represented
5. True or false. Arithmetic associativity can break down when adding numbers at opposite extremes (most large and most small)

MIPS FP registers

Click on Coprocessor 1 to see them

Coprocessor 1 is a simulated floating-point coprocessor

The fp registers can be accessed as

 single-precision (32-bits) or double (64-bits)
Even registers can hold 64 bits

Name	Float	Double
\$f0	0x00000000	0x0000000000000000
\$f1	0x00000000	
\$f2	0x00000000	0x0000000000000000
\$f3	0x00000000	
\$f4	0x00000000	0x0000000000000000
\$f5	0x00000000	
\$f6	0x00000000	0x0000000000000000
\$f7	0x00000000	
\$f8	0x00000000	0x0000000000000000
\$f9	0x00000000	
\$f10	0x00000000	0x0000000000000000
\$f11	0x00000000	
\$f12	0x00000000	0x0000000000000000
\$f13	0x00000000	
\$f14	0x00000000	0x0000000000000000
\$f15	0x00000000	
\$f16	0x00000000	0x0000000000000000
\$f17	0x00000000	
\$f18	0x00000000	0x0000000000000000
\$f19	0x00000000	
\$f20	0x00000000	0x0000000000000000
\$f21	0x00000000	
\$f22	0x00000000	0x0000000000000000
\$f23	0x00000000	
\$f24	0x00000000	0x0000000000000000
\$f25	0x00000000	
\$f26	0x00000000	0x0000000000000000
\$f27	0x00000000	
\$f28	0x00000000	0x0000000000000000
\$f29	0x00000000	
\$f30	0x00000000	0x0000000000000000

ARITHMETIC CORE INSTRUCTION SET

OPCODE / FMT/FT /FUNCT (Hex)

NAME, MNEMONIC MAT

OPERATION

Branch On FP True	belt	FI	ond) $\mathrm{PC}=\mathrm{PC}+4+\mathrm{Branch} A d$		8/1/-
Branch On FP False	belf	FI	if(IFPcond)PC-PC+4+BranchAd		11/8/0/-
Divide	div	R	Lo $=\mathrm{R}[\mathrm{rs}] / \mathrm{R}[\mathrm{rt}] ; \mathrm{Hi}=\mathrm{R}[\mathrm{rs}] \% \mathrm{R}[\mathrm{rt}]$		$0 / \omega / \omega / 1 \mathrm{a}$
Divide Unsigned	divu	R	$L 0=R[r s] / \mathrm{R}[\mathrm{r}]$; $\mathrm{Hi}=\mathrm{R}[\mathrm{rs}] \% \mathrm{R}[\mathrm{rt}]$		0/ $/$ / ω / lb
FPAdd Single	add. a	FR	$F[f d]=F[f s]+F[f]$		11/10/ - / 0
FPAdd Double	add.d	FR	$\{F[f d], F[f d+1])=\{F[f s], F[f s+1]\}$		11/11/-2/0
FP Compare Single	c.x.s*	FR	FPcond $=(\mathrm{F}[\mathrm{s}]$ op $\mathrm{F}[\mathrm{f}]) 71$; 0		11/10/m/y
FP Compare	c.e.d*	FR	FPcond $=(\{\mathrm{F}[\mathrm{fs}] . \mathrm{F}[\mathrm{fs}+1]\}$ op		11/11/m/y
* (x is eq, 1τ, or $1 e)(o p$ is $=,<$ or $\Leftrightarrow)(y$ is 32, 3e, or 3 e$)$					
FP Divide Single	div	FR	$F[f d]=F[f s] / F[f t]$		11/10/m/3
FP Divide Double	div.d	FR	$\begin{aligned} \{\mathrm{F}[\mathrm{fd}], \mathrm{F}[\mathrm{fd}+1]\}= & \{\mathrm{F}[\mathrm{fs}], \mathrm{F}[\mathrm{fs}+1]\} / \\ & (\mathrm{F}[\mathrm{ft}], \mathrm{F}[\mathrm{ft}+1]\} \end{aligned}$		11/11/m/3
FP Multiply Single	mul, s	FR	$F[f d]=F[f s] * F[f]$		11/10/--/2
FP Multiply	mul. ${ }^{\text {d }}$	FR	$\{F[f \mathrm{fd}], \mathrm{F}[\mathrm{fd}+1]\}=\{\mathrm{F}[\mathrm{fs}], \mathrm{F}[\mathrm{fs}+1]\}$		11/11/m/2
FP Subtract Single	sub.	FR	$\mathrm{F}[\mathrm{fd}]=\mathrm{F}[\mathrm{fs}]-\mathrm{F}[\mathrm{ft}]$		11/10/--/1
FP Subtract	sub.d	FR	$\{F[\mathrm{fd}], F[\mathrm{fd}+1]\}=\{\mathrm{F}[\mathrm{fs}], \mathrm{F}[\mathrm{fs}+1]\}$		11/11/-/1
Double	Imel		$\{\mathrm{F}[\mathrm{ft}], \mathrm{F}[\mathrm{ft}+1]\}$		
Load FP Single Load FP	Iwcl	1	F[rt]=M[R[rs]+SignExtImm] $\mathrm{F}[\mathrm{rt}]=\mathrm{M}[\mathrm{R}[\mathrm{rs}]+$ SignExtImm]:		
Double	1 dcl	1	$F[r t+1]=M[R[r s]+\text { SignExtlmm }+4]$		35/ $\ldots / \sim /-$
Move From Hi	mfh	R	$\mathbf{R}[\mathrm{rd}]=\mathrm{Hi}$		$0 /$ - / -/10
Move From Lo	mflo	R	$\mathbf{R}[\mathrm{rd}]=$ Lo		$0 / \mathrm{m} / \mathrm{m} / 12$
Move From Control	mfco	R	$\mathrm{R}[\mathrm{rd}]=\mathrm{CR}[\mathrm{rs}]$		$10 / 0 / \sim / 0$
Multiply	mult	R	(Hi,Lo\} $=\mathrm{R}[\mathrm{rs}] * \mathrm{R}[\mathrm{rr}]$		0/-/ / /18
Multiply Unsigned	multu	R	($\mathrm{Hi}, \mathrm{Lo} \mathrm{o})=\mathrm{R}[\mathrm{rs}] * \mathrm{R}[\mathrm{rt}]$	(6)	0/-/m/19
Shift Right Arith.	ora	R	$\mathrm{R}[\mathrm{rd}]=\mathrm{R}[\mathrm{rt}] \ggg$ shamt		$0 / \mathrm{n} / \mathrm{m} / 3$
Store FP Single	swcl	1	$\mathrm{M}[\mathrm{R}[\mathrm{rs}]+\mathrm{SignExtImm}]=\mathrm{F}[\mathrm{rt}]$		39/m/o/e-
Store FP		1	$\mathrm{M}[\mathrm{R}[\mathrm{rs}]+$ SignExtImm] $=\mathrm{F}[\mathrm{rt}]$;	2)	
Double	,		$\mathrm{M}[\mathrm{R}[\mathrm{rs}]+$ SignExtImm +4$]=\mathrm{F}[\mathrm{rt}+1$		

FP arithmetic instructions

Replace .x with .s (single precision) or .d (double precision)

Instruction

add. x FPdest, FPsrc1, FPsrc2
sub.x FPdest, FPsrc1, FPsrc2
mul. x FPdest, FPssc 1, FPsrc2
div.x FPdest, FPsrc1, FPsrc2
abs.x FPdest, FPsrc
neg.x FPdest, FPsrc

Action

FPdest $=$ FPsrc1 + FPsrc2
FPdest $=$ FPsrc1 - FPsrc2
FPdest $=$ FPsrcl ${ }^{*}$ FPsrc2
FPdest $=$ FPsrc1 \backslash FPsrc2
FPdest $=\mathrm{abs}($ FPsrc $)$
FPdest $=$ negate(FPsrc)

load and store

Instruction	Action
Iwcl FPdest, address	FPdest = (address)
swcl FPsrc, address	(address) = FPsrc
Idcl FPdest, address	FPdest = (address)
sdc1 FPsrc, address	(address) = FPsrc
Pseudo-instruction	Action
I.x FPdest, address	FPdest = (address)
s.x FPsrc, address	(address) = FPsrc

FP move instructions

Move between coprocessor 1 registers and the general-purpose registers
mov.x can be mov.s or mov.d

Instruction	Action
mfcl Rdest, FPsrc	Rdest $=$ FPsrc
mtc1 Rsrc, FPdest	FPdest $=$ Rsrc
mov. x FPdest, FPsrc	FPdest $=$ FPsrc

FP conversion

Replace .x with .s or .d

Instruction	Action
cvt.x.w FPdest, FPsrc	FPdest $=$ to_FP(FPsrc integer)
cvt.w.x FPdest, FPsrc	FPdest $=$ to_int(FPsrc float)
cvt.d.s FPdest, FPsrc	FPdest $=$ to_double(FPsrc single-precision)
cvt.s.d FPdest, FPsrc	FPdest $=$ to_single(FPsrc double)

FP compare and branch

Replace .x with .s or .d
c is the floating point condition flag
"c1" for coprocessor 1

Instruction	Action
c.eq. x FPsrc1, FPsrc2	$c=1$ if FPsrc1 == FPsrc2
c.le.x FPsrc1, FPsrc2	$c=1$ if FPsrc1 <= FPsrc2
c.lt.x FPsrc1, FPsrc2	
Instruction	FPsrc1 < FPsrc2
bclt label	Action
bclf label	branch if $c=1$ (true)

FP example: area of a circle

```
#include <stdio.h>
int main(void) {
4. // area = pi * r * r
5. double pi = 3.1415926535897924;
6. double r=12.345678901234567;
7. double area;
8.
9. area = pi * r * r;
10. printf("%f", area);
11.
12.
13. }
```

```
# FP example to compute the area of a circle
            .data
pi: .double 3.1415926535897924
rad: .double 12.345678901234567
        .text
        l.d $f0, pi # $f0=pi
        l.d $f4, rad # $f4 = radius
        mul.d $f12, $f4, $f4 # $f12= rad^2
        mul.d $f12, $f12, $f0# $f12= rad^2 * pi
        li $v0,3 # output answer
        syscall
exit:
        li $v0, 10 # terminate program
        syscall
```


FP example: fahrenheit to celsius

```
    data
```

const5: .float 5.0
const9: .float 9.0
const32:.float 32
const32
fahr: .float 72.0
celc: .float 0
msgf: asciiz " $\backslash n$ nahrenheit temperature of "
msgf: .asciiz " \backslash nFahrenheit temperature of "
msgc:
. .text
main: wwc1 $\$ f 12$, fahr
\#lwcl \$f16,
FtwC1 \$t16, consts or
\# or use these 3 instrucions:
li $\$ t 0,5$
mtc1 \$t0, \$f16
cvt.s.w \$f16, \$f16
\#
\# can't do this:
\#li $\$ f 16$,
\#cvt.s.w \$f16, \$f16
lwc1 \$f18, const9
div.s $\$ f 16, \$ f 16, \$ f 18 \quad \# \$ f 16=5 / 9$
lwc1 \$f18, const32
sub.s \$f18, \$f12, \$f18 \# \$f18=F-32
mul.s $\$ f 0, \$ f 16, \$ f 18 \quad$ \# $\$ f 0=(F-32) * 5 / g$
swc1 \$f0, celc
\# display results
li $\$ \mathrm{v0}, 4$ \# print msgf
La \$a0, msgf
syscall
li
\$v0, 2
lwc1 \$f12, fahr
syscall
li \$v0, 4 \# print msgc
la $\$ a 0$, msgc
syscall
li \$v0, 2
lwc1 \$f12, celc
syscall
\# exit program
exit:
li
syscall

Summary

- floating point registers can be stored as single precision or double precision
- double precision FP registers have even numbers
- arithmetic is of form: add. x where you replace x with s or d for single or double precision
- special instructions allow you to move registers to and from coprocessor 1 to the main coprocessor, and load/store to memory
- other instructions let you convert from integer to floating point and back
- we have to use special compare and branch instructions for floating point registers

Practice

Given the following in .data:

```
.data
x: .float 3.8
y: .float 4.2
```

Write code to calculate the average of x and y and output it.
. data

Find the errors in this code	5	x :	.float	3.8
	6	$y:$.float	4.2
	7			
4 lines with errors	8	. text		
- 3 assemble errors	9		1w	\$f2, x
- 1 run time error	10		1w	\$f3, y
	11		add.s	\$f0, \$f2, \$f3
	12		li	\$t1, 2.0
	13		mtc1	\$t1, \$f1
	14		cvt.w.s	\$f1, \$f1
	15			
	16		div.s	\$f12, \$f0, \$f1
	17		li	\$v0, 2
	18		syscall	

Debugging

If use＂cvt．w．s＂instead of＂cvt．s．w＂the answer is infinity．

Look at register values and use the Schmidt site．

Answer \＄f12＝infinity＝ 01111111 0000．．． 00

Sum in $\$ \mathrm{ff}=8$ is ok
2.0 in $\$ f 1$ is 00000000 that where the error is！

Name	Float
\＄f0	0x41000000
§f1	0x00000000
きf2	0x40733333
？f3	0x40866666
\＄f4	0x00000000
§f5	0x00000000
pf6	0x00000000
きf7	0x00000000
\＄f8	0x00000000
§f9	0x00000000
？f10	0x00000000
きf11	0x00000000
§f12	0x7f800000

Practice

Create a BMI Calculator
\#include <iostream>
\#include <string>
using namespace std;

int main()

甲
int height $=0$, weight $=0$;
double bmi;
string name;
// Prompt user for their data cout << "What is your name? "; cin >> name;
cout << "Please enter your height in inches: ";
cin >> height;
cout << "Now enter your weight in pounds (round to a whole number) : "; cin >> weight
// Calculate the bmi
weight *= 703;
height *= height;
bmi = static_cast<double>(weight) / height;
// Output the results
cout << name << ", your bmi is: " << bmi << endl;
if (bmi < 18.5)
cout << "This is considered underweight. \n";
else if (bmi < 25)
cout << "This is a normal weight. \n";
else if (bmi < 30)
cout << "This is considered overweight. \n";
else
cout << "This is considered obese. \n"
return 0 ;
\}

