
Floating point numbers

Floating point representation

floating-point IEEE standard 754-1985
Developed in response to divergence of representations

Now universally adopted

Two representations:

- single precision (32-bit)
- double precision (64-bit)

● Most significant bit is the sign bit (0=positive, 1=negative)
● Fraction represents binary fractional part of the number, after being

normalized
● The "1" before this fractional part is not stored, it is assumed.
● Exponent is biased to force negative/positive exponents sort in correct

order:
○ 127 for single precision
○ 1203 for double precision

reconstructing a floating-point number

Assume that the following is stored in memory: 11000000101000…00

Break it down:

- sign = 1
- exponent = 129 - 127 = 2
- number = 1.01

Put it together:

-1.01 x 2^2 == -101.0 == -5 in decimal

storing a floating point number
Represent -0.75 in single-precision.

-0.75 decimal = -0.11 binary

normalize: -1.1 x 2^-1

sign = 1

exponent = -1+127 = 126 = 01111110 in binary

put it together: 101111110100..00 = 0xbf400000

convert to sp: +14.75
Steps:

1. determine sign bit
2. convert whole number part to binary
3. convert fraction part to binary
4. put 2 and 3 together
5. normalize 1…. x 2^n
6. exponent = bias +n
7. convert biased exponent to binary
8. get fraction from step 5

Converting a base-10 decimal to binary

Example: 0.75

1. multiply decimal portion by 2
2. keep the whole number part of the

product
3. repeat until fraction is 0 or max digits

Convert whole-numbers by repeated division by 2

Convert fractional part by repeated multiplication by 2

.085 to binary
stopped at max # digits

Practice: Represent 17.75 in IEEE 754 SP
Check with this site: https://www.h-schmidt.net/FloatConverter/IEEE754.html

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Practice
Reconstruct the base 10 number from the hex representation: 0x42085000

Questions
1. What is the advantage of the order S-exp-frac?

2. The exponent being 8 v 11 bits affects:
a. range of numbers
b. precision of numbers

3. The fraction part being 23 v 52 bits affects:
a. range of numbers
b. precision of numbers

More about floating points
We can still have overflow.

- overflow happens when the exponent is too large for the exponent field
- underflow happens when a negative exponent is too large

Having double-precision helps. The range is:

- single precision:
- double precision:

However the primary advantage of double precision is greater accuracy.

IEEE 754 encoding

Rounding errors
Not every number can be represented exactly, ex: 0.1

FP accuracy
32 bits gives us 2^32, about 4 billion,
unique bit patterns, but there are an
infinite number of reals

The IEEE 754 standard does not
guarantee that every number can be
represented, but that every machine
using the standard will get the same
results

Rounding
IEEE 754 specifies two bits that are kept to the right during arithmetic operations.
These bits are in the circuitry but not in the final result.

- the guard bit is the first extra bit to the right
- the round bit is the second bit to the right

The goal is to find the closest floating-point number that will fit into the format.

Further, a 'sticky' bit is set whenever there are nonzero bits to the right of the
round bit. This is used in rounding.

Extra bits
These extra bits are in
circuitry, not in the 32-bit or
64-bit representation.

Number representation
During the Gulf War in 1991, a US Patriot missile failed to intercept an Iraqi scud
missile, resulting in 28 Americans being killed

Cause: software updated a counter every 0.10 seconds, then multiplied the
counter by 0.1 to compute the actual time

Over 100 hours, the time was off by 0.34 seconds, enough for a scud to travel 500
meters

extreme errors
problems occur if one argument is much smaller than the other since we need to
match the exponents to add

associativity break down

Questions
1. What do overflow/underflow mean in floating-point numbers?
2. What is NaN?
3. What is a denormalized number:

a. the fraction part of the number cannot be represented in the number of bits
b. the exponent part of the number cannot be represented in the number of bits

4. Denormalized numbers occur:
a. near zero
b. near the extremes +/- of magnitude of numbers that can be represented

5. True or false. Arithmetic associativity can break down when adding numbers
at opposite extremes (most large and most small)

MIPS FP registers

Click on Coprocessor 1 to see them

Coprocessor 1 is a simulated floating-point
coprocessor

The fp registers can be accessed as
single-precision (32-bits) or double (64-bits)

Even registers can hold 64 bits

MIPS card

FP arithmetic instructions
Replace .x with .s (single precision) or .d (double precision)

load and store

FP move instructions
Move between coprocessor 1 registers and the general-purpose registers

mov.x can be mov.s or mov.d

FP conversion
Replace .x with .s or .d

FP compare and branch
Replace .x with .s or .d

c is the floating point condition flag

"c1" for coprocessor 1

FP example: area of a circle

FP example: fahrenheit to celsius

Summary
- floating point registers can be stored as single precision or double precision
- double precision FP registers have even numbers
- arithmetic is of form: add.x where you replace x with s or d for single or

double precision
- special instructions allow you to move registers to and from coprocessor 1 to

the main coprocessor, and load/store to memory
- other instructions let you convert from integer to floating point and back
- we have to use special compare and branch instructions for floating point

registers

Practice
Given the following in .data:

Write code to calculate the average of x and y and output it.

Find the errors in
this code
4 lines with errors

- 3 assemble errors
- 1 run time error

Debugging
If use "cvt.w.s" instead of "cvt.s.w" the answer is infinity.

Look at register values and use the Schmidt site.

Answer $f12=infinity = 0 11111111 0000...00

Sum in $f0 = 8 is ok

2.0 in $f1 is 00000000 that where the error is!

Practice
Create a BMI Calculator

