ISA instruction set architecture

e ARMvV7 32-bit architecture for embedded devices
e ARMvVS8 64-bit architecture
e Xx86 Intel architecture

ARMv7

chips used in phones, tablets

ARM licenses their IP (intellectual property) to manufacturers
ARM is a RISC architecture like MIPS

MIPS has more registers

ARM has more addressing modes and instruction formats

ARM v. MIPS

Date announced 1985 1985

Instruction size (bits) 32 32

Address space (size, model) 32 bits, flat 32 bits, flat

Data alignment Aligned Aligned

Data addressing modes 9 3

Integer registers (number, model, size) 15 GPR X 32 bits 31 GPR X 32 bits
1/0 Memory mapped Memory mapped

_-E--E-

addu, addiu
Add (trap if overfiow) adds: swivs add
Subtract sub subu
Subtract (trap if overflow) subs; swivs sub
Multiply mul mult, multu
Divide - div, divu
)) And and and
Register-register or e =
Xor eor xor
Load high part register —_ lui
Shift left logical Isi* sllv, sli
Shift right logical Isr* sriv, srl
‘Shift right arithmetic asrl srav, sra
C;)a;;are i ‘cm;;.i cr;ar; {st teq i slt/>i_.slt/ iu
Load byte signed Idrsb Ib
Load byte unsigned Idrb Ibu
Load halfword signed Idrsh lh
Load halfword unsigned Idrh lhu
Load word Idr Iw
Data transfer Store byte strb sb
Store halfword strh sh
Store word str SwW
Read, write special registers mrs, msr move
Atomic Exchange ' swb, swpb 'Il:sé.

Condition codes

e ARMvV7 used 4 condition codes that are stored in a program status word:
o negative, zero, carry, overflow
e these codes are set on any arithmetic/logic instruction

Each ARMvV7 instruction begins with a 4-bit field that determines if it acts as a
NOP or the instruction, depending on the condition codes

ARM
Register-register

MIPS

ARM
Data transfer

MIPS

ARM
Branch

MIPS

ARM
Jump/Call

MIPS

31 28 27 20 19 18 15 12 1
I < [—

31 26 25 21 20 16 15 11 10

C A

31 28 27 20 19 16 15 12 1 0

| m opeode 0 Register @ Constant |

FIGURE 2.34 Instruction formats, ARM and MIPS. The differences result from whether the
architecture has 16 or 32 registers.

Load immediate Rd = Imm addi $0,
Not Rd = ~(Rs1) mvn nor $0,
Move Rd = Rs1 mov or $0,
Rotate right Rd=Rsi>> i ror

Rdg, . i1 =Rs31 . .31
And not Rd = Rs1 & ~(Rs2) bic
Reverse subtract Rd = Rs2 - Rs1 rsb, rsc
Support for multiword CarryOut, Rd = Rd + Rs1 + adcs —
integer add OldCarryOut
Support for multiword CarryOut, Rd = Rd - Rs1 + sbcs —
integer sub OldCarryQOut

FIGURE 2.35 ARM arithmetic/logical instructions not found in MIPS.

ARMvVS

e 2007 design began; released 2013

e much closer to MIPS than ARMv7 because:
o gotrid of the 4-bit conditional execution field
o has 32 general-purpose registers
o includes a divide instruction

ARM

e Current reports (June 2020) indicate Apple will use 12-core 5nm ARM processors in
2021 Mac instead of Intel chips

ARM chips currently used in iPhones, iPads, etc. (currently based on the A14 chip)
reason: they can design their own custom chips

reason: ARM chips are more power efficient

potential problems: software compatibility

Classic Embedded Application
ARM Processors (COTteX Processors Cortex Processors

(COrtex-AlS5

|

x86 evolution

e MIPS and ARM were developed by small groups, starting in 1985
x86 is the product of many groups over decades

1978 - Intel 8086 16-bit CPU, an extension of the 8-bit 8080

1980 - Intel 8087 floating point coprocessor

1982 - Intel 80286 24-bit processor

1985 - Intel 80386 32-bit, paging support

1989 - 1995 - 80486 and Pentium improved performance and allowed
multiprocessing

VYVYVYY

. . SIMD (slﬁéle
x86 evolution " instruction,

multiple data)
architecture

> 1997 - Pentium and Pentium Pro added MMX (multimedia extension)
instructions

> 1999 - added SSE (streaming SIMD extensions) for faster video processing
> 2003 - AMD widened all architectures to 64-bit and Intel followed soon
> 2006 - more SSE instructions and support for virtual machines

> 2011 - Advanced Vector Extensions

80386

only 8 general-purpose
registers

x86 arithmetic/logic instructions
must have one operand that is
both a source and destination
one of the operands can be in
memory

conditional branches use
condition codes or flags like
ARMv7

€ox |
EBX
ESP
£8P |
esi|

EDI

Code segment pointer
Stack segment pointer (top of stack)
Data segment pointer 0
Data segment pointer 1
Data segment pointer 2
Data segment pointer 3

EIP Instruction pointer (PC)

EFLAGS Condition codes

I833€8&8

FIGURE 2.36 The 80386 register set. Starting with the 80386, the top eight registers were extended
to 32 bits and could also be used as general-purpose registers.

a. JE EIP + displacement

4 4 8
Condi-| .
JE tion Displacement
b. CALL
8 32
CALL Offset

c.MOV EBX, [EDI + 45]
6 11 8 8

r/m R
MOV |d|w Postbyte Displacement

d. PUSH ESI
5 3

PUSH |Reg

e. ADD EAX, #6765

4 3 1 32
ADD |Reg|w Immediate
f. TEST EDX, #42
7 1 8 32
TEST |w| Postbyte Immediate

FIGURE 2.41 Typical x86 instruction formats. Figure 2.42 shows the encoding of the postbyte.

| struction | Mewig

Control Conditional and unconditional branches

jnz, jz Jump if condition to EIP + 8-bit offset; JNE (forJNZ), JE (for JZ) are
alternative names

Jjmp Unconditional jump—8-bit or 16-bit offset

call Subroutine call—16-bit offset; return address pushed onto stack

ret Pops return address from stack and jumps to it

100p Loop branch—decrement ECX; jump to EIP + 8-bit displacement if ECX 20

Data transfer Move data between registers or between register and memory

move Move between two registers or between register and memory

push, pop Push source operand on stack; pop operand from stack top to a register

les Load ES and one of the GPRs from memory

Arithmetic, logical Arithmetic and logical operations using the data registers and memory

add, sub Add source to destination; subtract source from destination; register-memory
format

cmp Compare source and destination; register-memory format

shl, shr, rcr Shift left; shift logical right; rotate right with carry condition code as fill

cbw Convert byte in eight rightmost bits of EAX to 16-bit word in right of EAX

test Logical AND of source and destination sets condition codes

inc, dec Increment destination, decrement destination

| or, xor | Logical OR; exclusive OR; register-memory format _

String Move between string operands; length given by a repeat prefix

movs Copies from string source to destination by incrementing ESI and EDI; may be
repeated

lods Loads a byte, word, or doubleword of a string into the EAX register

FIGURE 2.40 Some typical operations on the x86. Many operations use register-memory format,
where either the source or the destination may be memory and the other may be a register or immediate

operand.

1000

900
800 /
700

600
500

400
300 /

200
100 -

0IIIllllllllIlllllllllllllllllllll

PSS S S PSS S S SO
S FFF P PR RS LSS

Number of Instructions

Year

FIGURE 2.43 Growth of x86 instruction set over time. While there is clear technical value to
some of these extensions, this rapid change also increases the difficulty for other companies to try to build
compatible processors.

Hello World in x86

run like this:

message:

gcc -c hello.s && 1d hello.o &&

.global
.text

mov $1, Srax

mov $1, %rdi

mov $message, %rsil
mov $13, %rdx
syscall

mov $60, S%rax

Xor Srdi, S%rdi
syscall

.ascil "Hello world!\n"

H R H R

./a.out

syscall 1 for write

file 1 is console output
string address

number of bytes

syscall 60 for exit
return ©

Comparing
architectures

e designing CPU and ISA go
hand-in-hand

e choices: how many and what
types of instructions and how
fast they can execute

—ﬁ"—ﬁ"[t\"}m

=]

o Rogsstars
Write o el
reglster

InSTReetion [15-41] Wirlte:

Eresh

{ MemPoad

tostruction §31 26} | MermoRey

Control A0
Nemirite

| ausne

0

Instnietion (25-21]

Read

register 1
Instaxction (20-186] Raad data
register 7

Bx Fa»
i nE

P

g

Instavction |15-0] 3 { sign

Insthastion [S-0

ISA shoot-out

e Talk at Berkeley by a grad student of David Patterson:
https://www.reddit.com/r/RISCV/comments/7ikgbqg/isa shootout a compariso
n of risc v arm and x86/

e Technical paper here: https://arxiv.org/pdf/1607.02318.pdf

e This is extra information for those who want to learn more.

https://www.reddit.com/r/RISCV/comments/7ikq6q/isa_shootout_a_comparison_of_risc_v_arm_and_x86/
https://www.reddit.com/r/RISCV/comments/7ikq6q/isa_shootout_a_comparison_of_risc_v_arm_and_x86/
https://arxiv.org/pdf/1607.02318.pdf

