
Compile C

4 steps:

1. the compiler translates C into assembly
language

2. the assembler translates assembly code (and
pseudoinstructions) into machine code (object
files); the assembler creates a symbol table to
match labels to addresses.

3. all object files are linked by the linker into one
executable

4. the loader loads the executable into memory

Linking

Steps:

- place code and data modules
symbolically in memory

- determine the addresses of
data and instruction labels

- patch both the internal and
external references

Loading
Steps:

- read the executable file
- create address space for the program

and data
- copy the instructions and data into

memory
- copy parameters (if any) to the main

program on to the stack
- initialize registers and set the stack

pointer
- jump to a start-up routine that starts

"main" and returns control to the system
upon program completion

DLL - dynamically linked libraries

The linking and loading steps above were traditional methods, called the static
approach. Disadvantages:

- the library routines are part of the executable, if the library is updated, the
executable still has the old code

- it loads all libraries that are called anywhere, bloating the program with
system routines that may not actually be called during the execution

Dynamically linked libraries are a more modern approach.

DLL

Approach:

- library calls are represented by a "dummy" placeholder that points to the
routine

- when a routine is called, the linker/loader finds the routine, loads it into
memory

- thereafter the routine is ready to be called directly

DLL lazy loading

● Only link a routine after it is called

● Traditional DLL links (but does not load) every routine potentially called in the
executable

Compiling
programs

● Front end translates a
higher-level language to a
machine-independent
intermediary language

● Performs series of optimizations

● Last level generates code

Front End
● The while statement is

translated into an abstract
syntax tree

● There are tokens: identifiers
and operators

● Syntax rules construct the tree

intermediate form
● registers are represented as

unlimited Rnn registers

optimizations

● strength reduction - replace a slow instruction like MULT with shift left
● dead store elimination - get rid of stores to values that are not used again
● dead code elimination - get rid of code that is not executed or does not affect

the rest of the program
● loop unrolling: repeat loop body statements with adjusted indices to need

fewer jumps
● subexpression elimination: calculate x[i] address once, not twice

Java

● Java is compiled into Java
bytecode

● the JVM Java Virtual Machine
executes the bytecode

Comparing Java and MIPS

Java uses a stack instead of registers for operations:

- operands are pushed on the stack, operated on, then popped off

MIPS instructions are always 4 bytes, Java bytecode instructions vary from 1 to 5
bytes because the original designers were concerned about space

Compiled vs. interpreted languages

● Compiled languages have to be recompiled for every machine, but that compiled code is
optimized and fast for that machine.

● Interpreted languages don't have to be recompiled but tend to have lower performance.

● Interpreted languages like Java can be made faster by Just in Time (JIT) compilers. These
compilers find blocks of code that can be optimized and then compile them into native
machine code at run time.

Programming evolution

Early assembly/languages

- go-to
- global variables (our registers are global)
- functions (reduce our cognitive load)

Problems led to higher-level languages that conceal details:

- functions with scope

Problems led to further concealment:

- objects with getter/setter helpers

15

“The acts of the mind, wherein it exerts its power over simple ideas, are chiefly these three: 1.

Combining several simple ideas into one compound one, and thus all complex ideas are made. 2. The

second is bringing two ideas, whether simple or complex, together, and setting them by one another

so as to take a view of them at once, without uniting them into one, by which it gets all its ideas of

relations. 3. The third is separating them from all other ideas that accompany them in their real

existence: this is called abstraction, and thus all its general ideas are made.”

― John Locke, An Essay Concerning Human Understanding

John Locke (b. 1632, d. 1704)

https://www.goodreads.com/work/quotes/1689887

Creativity and coding

16

music how we feel

art what we see, feel, believe

poetry what we imagine, feel, see, believe

math/logic what we assert to be true

code express a logical procedure in syntax

the use of the imagination or original ideas, especially in the production of an artistic work

The idioms by which we communicate the symbols of our poetry:

- conditionals, loops, functions

Writing good code

● Should you do things like loop unrolling in your higher-level language
code?

● No
● Let the compiler optimize the code

"... programs must be written for people to read, and only incidentally for machines
to execute."

in preface to Structure and Interpretation of Computer Programs

Documentation

● Code logic should be easy to read

● Code should be modular

● Code style should be internally consistent

● Code should be documented internally and externally

● Code should be tested and verifiable

● Code should be efficient

● When you write code, think of the person who will have to maintain it

Readable Code
● header comment
● comments at bottom of file show sample run
● in-line comments line up vertically
● vertical whitespace between logical steps
● horizontal whitespace -> opcode -> operands

External
Documentation

● Atom markdown
● headers start with hashtags
● **bold text**
● *italic text*
● ordered lists with * and indents
● ``` starts and ends code blocks

Markdown cheat sheet:
https://guides.github.com/pdfs/markdown-cheatsheet-online.pdf

https://guides.github.com/pdfs/markdown-cheatsheet-online.pdf
https://guides.github.com/pdfs/markdown-cheatsheet-online.pdf

GitHub
Why have a GitHub account?

● showcase your coding skills

● keep track of changes for team projects

● it's free (for public repos)

Basics on getting started with GitHub from the command line:

https://github.com/kjmazidi/CS3340/tree/master/GIT_Tutorial

https://github.com/kjmazidi/CS3340/tree/master/GIT_Tutorial

