
Drawbacks of simple implementation



Pipelining analogy
- takes 8 hours for 4 loads in  

non-pipelined approach
- takes 3.5 hours for 4 loads in 

pipelined approach
- 4 loads will have a speedup of 

8/3.5 = 2.3
- for infinite laundry loads, 

speedup approaches 4, the 
number of stages



MIPS pipeline
Five states, one (much faster) clock tick per stage

1. IF: instruction fetch from memory
2. ID: instruction decode and register read
3. EX: ALU executes operation or calculates address
4. MEM: access data memory
5. WB: write results back to register file



Pipeline 
performance

- top, single-cycle, T=800 ps
- bottom, pipelined, T=200 ps

- top: each instruction executes in 
800 ps

- bottom: each instruction 
executes in 1000 ps, but 
throughput is improved



Pipeline speedup
If all stages are balanced, speedup is:

Ideally, a 5-stage pipeline will approach a 5 times speedup. The latency (time for 
each instruction), does not decrease. 



Pipelining and ISA design
MIPS ISA is designed for pipelining

- all instructions are 32 bits which makes it easier to fetch and decode
- few instruction formats makes it faster to decode and read registers
- load/store addressing - ALU cannot have a memory operand
- memory alignment - words are aligned, makes access faster



MIPS pipelining



What could go wrong?



Hazards
Situations that prevent starting the next instruction in the next cycle

3 types:

1. structure hazard - a required resource is busy (doesn't happen in MIPS but 
would in a system that combined data/instruction memory)

2. data hazard - need to wait for previous instruction to complete its data access
3. control hazard - we don't know yet if we are branching or not



Pipeline phases
Shading on left means write, shading on right means read

No shading means that component is not used. Full shading means it is busy the 
whole clock cycle. 



Data hazards
An instruction has to wait for data from a previous instruction.



Forwarding (bypassing)
Use result as soon as it is computed, rather than wait for register WB

Requires extra connections in the data path



load-use hazard
Can't avoid load-use stall by forwarding, but forwarding limits stall to 1 cycle



Where are the hazards in this code?

Can we reorder to code to avoid hazards?



Code scheduling to avoid stalls
Reorder the code to avoid load-use hazards.



Control hazard

If the CPU assumes the branch is not 
taken but it is,  it will have to bubble 
out the instructions that have started 
execution, and start executing at the 
correct instruction. 

This would waste a lot of clock cycles.



Control hazards
After a branch instruction, which instruction should be fetched, the one 
immediately following the branch or the one at the target?

In order to minimize the number of clock cycles wasted, add some circuitry in the 
ID stage to determine if we are branching or not.



Stall on branch
Branch instructions often cause a stall because the CPU does not know whether 
to branch or not. 

SPEC benchmarks: 17% of instructions were branches, so this would increase 
CPI by 17%.



Branch prediction
The CPU will predict that the branch is 
not taken. If that is correct (top 
diagram) then no stall is required.

If that prediction is wrong (bottom 
diagram) then only one stall is 
required. The instruction that had 
started to execute is bubbled, turned 
into a NOP.



Types of branch prediction
Static branch prediction (assembler)

- based on typical branch behavior at loops 
and conditional branches (ifs)

- predict backward branches are taken
- predict forward branches are not taken

Dynamic branch prediction (CPU)

- extra circuitry measures behavior for each 
branch

- then assumes branch or not based on past 
behavior

- if it is wrong, will stall and refetch, updating 
history

- can be up to 90% accurate



What MIPS does: delayed branching
- implemented by MIPS assemblers
- the instruction following the branch is always executed
- if the branch should have been taken, it will be taken after that one extra 

instruction
- the assembler selects an instruction that is not affected by the branch to place 

after the branch



Pipelining
What we know so far:

- pipelining increases performance by increasing instruction throughput
- works on multiple instructions at a time
- each instruction has the same latency

- but pipelining is subject to hazards: structure, data, control
- ISA affects complexity of pipeline implementation



How to divide the 
data path?



Pipelined data path
In the single-cycle implementation, each instruction executed in one clock cycle

In the multi-cycle pipelined design, the clock will be faster and instructions execute 
in phases over several clock cycles

Each phase takes one clock cycle

We will redesign the CPU slightly so that each CPU section can operate 
independently on one instruction at the same time



Divide the data path 
into 5 sections

Data flows left to right with 2 
exceptions shown in blue lines:

- register write back
- PC update



How instructions 
are processed 
concurrently
Shading: right side for read, left side 
for write

Notice that we can write to the register 
file and read from it in the same cycle



Pipeline architecture
A pipelined computer executes instructions concurrently

Hardware units are divided into stages:

- each stage takes 1 clock period
- stages are separated by pipeline registers that preserve and pass partial 

results to the next stage



Pipeline registers
Pipeline registers are needed between 
stages to hold information produced in 
previous cycles. 

5 stages, 4 pipeline registers

They are named according to the 
registers they are between.

Next, we look at how the lw instruction 
would travel through these stages.



IF stage for lw

- instruction is read and placed into 
IF/ID register

- meanwhile the PC is updated by 4
- the PC is also saved in the 

pipeline register in case it is 
needed for a beq instruction

lines going through pipeline registers 
indicate information that is passed 
forward



ID stage for lw
- the two registers, rt (destination) 

and rs (source) are read
- even though we don't need to 

read rt, the CPU doesn't know 
that yet

- the 16-bit immediate field is 
sign-extended to 32 bits

- the register read (rs) and 
sign-extended immediate field is 
stored in the ID/EX pipeline 
register



EXE stage for lw
- sum of rs and the sign-extended 

offset are summed
- the sum is placed on the 

EX/MEM register



MEM stage for lw
- the address is picked up from 

the EX/MEM register
- that address is read
- the contents are placed on the 

MEM/WB register



WB stage for lw
- data is read from the MEM/WB 

register and written back to rt in 
the register file



What about sw?

- the first 2 stages are the same
- in the EXE stage, the value to be written is 

carried forward on the pipeline registers
- in the MEM stage, we are writing to memory 

instead of reading it
- the data being written comes from the 

pipeline register, carried forward from the 
previous pipeline register

- nothing happens in the WB stage



Modification to lw

Which register to write to will get 
overwritten in the pipeline register as 
new instructions come into the 
pipeline. 

Therefore, we need to carry that 
register address forward through the 
pipeline registers.



Concurrent 
instruction 
execution
clock cycles shown left to right

instructions entering the pipeline are 
shown top down



Traditional diagram of the same instructions



How is control affected by pipelining?

PC and pipeline registers are 
written every clock cycle, so no 
control lines are needed.

We will group the control 
signals by stage so that the 
control signals for an 
instruction are carried forward 
as long as needed.



Control signals grouped by stage
IF and ID stages - no special control signals needed

EX stage - RegDst, ALUOp, and ALUSrc

MEM stage - Branch, MemRead, MemWrite

WB stage - MemtoReg, and RegWrite

Control signals have the same meaning as non-pipelined datapath.



Pipelined control signals
Values are unchanged from non-pipelined datapath, but they are grouped.



Pipeline registers are 
extended to hold control 
signals that are carried 
forward for each 
instruction. 



We can work on up to 5 
instructions at the same 
time within a single 
CPU core.

Terms concurrent and 
parallel apply to 
hardware or software. 
When to use each term 
is confusing.

Talk by Rob Pike:

http://blog.golang.org/concurrency-is-not-parallelism

http://blog.golang.org/concurrency-is-not-parallelism


Pipelining at Chipotle


