
Drawbacks of simple implementation

Pipelining analogy
- takes 8 hours for 4 loads in

non-pipelined approach
- takes 3.5 hours for 4 loads in

pipelined approach
- 4 loads will have a speedup of

8/3.5 = 2.3
- for infinite laundry loads,

speedup approaches 4, the
number of stages

MIPS pipeline
Five states, one (much faster) clock tick per stage

1. IF: instruction fetch from memory
2. ID: instruction decode and register read
3. EX: ALU executes operation or calculates address
4. MEM: access data memory
5. WB: write results back to register file

Pipeline
performance

- top, single-cycle, T=800 ps
- bottom, pipelined, T=200 ps

- top: each instruction executes in
800 ps

- bottom: each instruction
executes in 1000 ps, but
throughput is improved

Pipeline speedup
If all stages are balanced, speedup is:

Ideally, a 5-stage pipeline will approach a 5 times speedup. The latency (time for
each instruction), does not decrease.

Pipelining and ISA design
MIPS ISA is designed for pipelining

- all instructions are 32 bits which makes it easier to fetch and decode
- few instruction formats makes it faster to decode and read registers
- load/store addressing - ALU cannot have a memory operand
- memory alignment - words are aligned, makes access faster

MIPS pipelining

What could go wrong?

Hazards
Situations that prevent starting the next instruction in the next cycle

3 types:

1. structure hazard - a required resource is busy (doesn't happen in MIPS but
would in a system that combined data/instruction memory)

2. data hazard - need to wait for previous instruction to complete its data access
3. control hazard - we don't know yet if we are branching or not

Pipeline phases
Shading on left means write, shading on right means read

No shading means that component is not used. Full shading means it is busy the
whole clock cycle.

Data hazards
An instruction has to wait for data from a previous instruction.

Forwarding (bypassing)
Use result as soon as it is computed, rather than wait for register WB

Requires extra connections in the data path

load-use hazard
Can't avoid load-use stall by forwarding, but forwarding limits stall to 1 cycle

Where are the hazards in this code?

Can we reorder to code to avoid hazards?

Code scheduling to avoid stalls
Reorder the code to avoid load-use hazards.

Control hazard

If the CPU assumes the branch is not
taken but it is, it will have to bubble
out the instructions that have started
execution, and start executing at the
correct instruction.

This would waste a lot of clock cycles.

Control hazards
After a branch instruction, which instruction should be fetched, the one
immediately following the branch or the one at the target?

In order to minimize the number of clock cycles wasted, add some circuitry in the
ID stage to determine if we are branching or not.

Stall on branch
Branch instructions often cause a stall because the CPU does not know whether
to branch or not.

SPEC benchmarks: 17% of instructions were branches, so this would increase
CPI by 17%.

Branch prediction
The CPU will predict that the branch is
not taken. If that is correct (top
diagram) then no stall is required.

If that prediction is wrong (bottom
diagram) then only one stall is
required. The instruction that had
started to execute is bubbled, turned
into a NOP.

Types of branch prediction
Static branch prediction (assembler)

- based on typical branch behavior at loops
and conditional branches (ifs)

- predict backward branches are taken
- predict forward branches are not taken

Dynamic branch prediction (CPU)

- extra circuitry measures behavior for each
branch

- then assumes branch or not based on past
behavior

- if it is wrong, will stall and refetch, updating
history

- can be up to 90% accurate

What MIPS does: delayed branching
- implemented by MIPS assemblers
- the instruction following the branch is always executed
- if the branch should have been taken, it will be taken after that one extra

instruction
- the assembler selects an instruction that is not affected by the branch to place

after the branch

Pipelining
What we know so far:

- pipelining increases performance by increasing instruction throughput
- works on multiple instructions at a time
- each instruction has the same latency

- but pipelining is subject to hazards: structure, data, control
- ISA affects complexity of pipeline implementation

How to divide the
data path?

Pipelined data path
In the single-cycle implementation, each instruction executed in one clock cycle

In the multi-cycle pipelined design, the clock will be faster and instructions execute
in phases over several clock cycles

Each phase takes one clock cycle

We will redesign the CPU slightly so that each CPU section can operate
independently on one instruction at the same time

Divide the data path
into 5 sections

Data flows left to right with 2
exceptions shown in blue lines:

- register write back
- PC update

How instructions
are processed
concurrently
Shading: right side for read, left side
for write

Notice that we can write to the register
file and read from it in the same cycle

Pipeline architecture
A pipelined computer executes instructions concurrently

Hardware units are divided into stages:

- each stage takes 1 clock period
- stages are separated by pipeline registers that preserve and pass partial

results to the next stage

Pipeline registers
Pipeline registers are needed between
stages to hold information produced in
previous cycles.

5 stages, 4 pipeline registers

They are named according to the
registers they are between.

Next, we look at how the lw instruction
would travel through these stages.

IF stage for lw

- instruction is read and placed into
IF/ID register

- meanwhile the PC is updated by 4
- the PC is also saved in the

pipeline register in case it is
needed for a beq instruction

lines going through pipeline registers
indicate information that is passed
forward

ID stage for lw
- the two registers, rt (destination)

and rs (source) are read
- even though we don't need to

read rt, the CPU doesn't know
that yet

- the 16-bit immediate field is
sign-extended to 32 bits

- the register read (rs) and
sign-extended immediate field is
stored in the ID/EX pipeline
register

EXE stage for lw
- sum of rs and the sign-extended

offset are summed
- the sum is placed on the

EX/MEM register

MEM stage for lw
- the address is picked up from

the EX/MEM register
- that address is read
- the contents are placed on the

MEM/WB register

WB stage for lw
- data is read from the MEM/WB

register and written back to rt in
the register file

What about sw?

- the first 2 stages are the same
- in the EXE stage, the value to be written is

carried forward on the pipeline registers
- in the MEM stage, we are writing to memory

instead of reading it
- the data being written comes from the

pipeline register, carried forward from the
previous pipeline register

- nothing happens in the WB stage

Modification to lw

Which register to write to will get
overwritten in the pipeline register as
new instructions come into the
pipeline.

Therefore, we need to carry that
register address forward through the
pipeline registers.

Concurrent
instruction
execution
clock cycles shown left to right

instructions entering the pipeline are
shown top down

Traditional diagram of the same instructions

How is control affected by pipelining?

PC and pipeline registers are
written every clock cycle, so no
control lines are needed.

We will group the control
signals by stage so that the
control signals for an
instruction are carried forward
as long as needed.

Control signals grouped by stage
IF and ID stages - no special control signals needed

EX stage - RegDst, ALUOp, and ALUSrc

MEM stage - Branch, MemRead, MemWrite

WB stage - MemtoReg, and RegWrite

Control signals have the same meaning as non-pipelined datapath.

Pipelined control signals
Values are unchanged from non-pipelined datapath, but they are grouped.

Pipeline registers are
extended to hold control
signals that are carried
forward for each
instruction.

We can work on up to 5
instructions at the same
time within a single
CPU core.

Terms concurrent and
parallel apply to
hardware or software.
When to use each term
is confusing.

Talk by Rob Pike:

http://blog.golang.org/concurrency-is-not-parallelism

http://blog.golang.org/concurrency-is-not-parallelism

Pipelining at Chipotle

