Drawbacks of simple implementation

One Clock
“Period”
‘ |
0
TIME —
instruction | Register ALU Data | Register | Total
Instruction class fetch read operation | access | write time
Load word (1w) 200 ps 100 ps 200 ps 200 ps 100 ps | 800 ps
Store word (Sw) 200 ps 100 ps 200 ps 200 ps 700 ps
R-format (add, sub, AND, 200 ps 100 ps 200 ps 100 ps | 600 ps
OR, s1t)
Branch (beq) 200 ps 100 ps 200 ps 500 ps

Pipelining analogy

- takes 8 hours for 4 loads in
non-pipelined approach

- takes 3.5 hours for 4 loads in
pipelined approach

- 4 loads will have a speedup of
8/3.56=2.3

- forinfinite laundry loads,
speedup approaches 4, the
number of stages

6 PM 7 8 9 10 11 12 1 2 AM

Time — R

Task

order =

» B5=1

B

: =

; 8-=0

6 PM 7 8 9 10 11 12 1 2 AM

Time

‘% | l l I l
Task
order

A

o O @

MIPS pipeline
Five states, one (much faster) clock tick per stage

IF: instruction fetch from memory

ID: instruction decode and register read

EX: ALU executes operation or calculates address
MEM: access data memory

WB: write results back to register file

a s owbd =

Pipeline
performance

- top, single-cycle, T=800 ps
- bottom, pipelined, T=200 ps

- top: each instruction executes in
800 ps

- bottom: each instruction
executes in 1000 ps, but
throughput is improved

Program

execution Time
order

(in instructions)

lw $1, 100($0)
iw $2, 200($0)
lw $3, 300($0)

Program
execution
order

(in instructions)

Time

w $1, 100(S0)
w $2, 200(S0)

Iw $3, 300(S0)

200 ps 200 ps 200 ps 200 ps 200 ps

200 400 600 800 1000 1200 1400 1600 1800
e |7o8] AV | scoess | Re0
800 ps Insft:.;mcrt‘ion Reg| ALU a?::s Reg
800 ps Immion
800 ps
200 400 600 800 1000 1200 1400
Instructi Data
mfetcett:on Reg| ALU ao:ess Reg
200 ps lnsftt.tu;\uon Reg| ~“ALU aEcaetzs Reg
ops || o] v [2%,

Pipeline speedup

If all stages are balanced, speedup is:

Time between instruction ;i iined

Time between instructions ;i ed =
pipelined Number of pipe stages

Ideally, a 5-stage pipeline will approach a 5 times speedup. The latency (time for
each instruction), does not decrease.

Pipelining and ISA design

MIPS ISA is designed for pipelining

- all instructions are 32 bits which makes it easier to fetch and decode
- few instruction formats makes it faster to decode and read registers
- load/store addressing - ALU cannot have a memory operand

- memory alignment - words are aligned, makes access faster

MIPS pipelining

Program

execution

order

(in instructions)

w $10, 20($1)
sub $11, 82, 33
add $12, $3, $4
Iw $13, 24(51)

add $14, $5, $6

Time (in clock cycles)
CC1 cc2 CC3 CC4 CC5 CCé CC7 ccs cC9
lns'l;gim Imon Execution aE:et:s Wirite-back
Ins;;::hﬁon In:tor:cogeon Execution a[c):et:s Write-back
'ns::::hb" '"::::::" Execution ag:el:s Write-back
Insirucnon | Inswcto” | execution | D% | write-back
nsiructon | nsiuchon [&, erunon | D08 | g pack

What could go wrong?

Program
execution
order

(in instructions)

w $10, 20($1)
sub $11, 82, $3
add $12, $3, $4
Iw $13, 24($1)

add $14, $5, $6

Time (in clock cycles)
CC1 cc2 CC3 CC4 CC5 CCé cC7 cCs cC9
Im:;gim '":&On Execution ag:;:s Wirite-back
"‘:;fhﬁm '":;:’:g;’" Execution a[c)got:s Write-back
'"s:::;m I":::o?:" Execution ac?:;:s Write-back
Ins'l‘r’\:;l:on ln:;r:ocg:n Execution 82:‘:; Write-back
ol el e I

Hazards

Situations that prevent starting the next instruction in the next cycle
3 types:

1. structure hazard - a required resource is busy (doesn't happen in MIPS but
would in a system that combined data/instruction memory)

2. data hazard - need to wait for previous instruction to complete its data access

3. control hazard - we don't know yet if we are branching or not

Pipeline phases

Shading on left means write, shading on right means read

No shading means that component is not used. Full shading means it is busy the
whole clock cycle.

200 400 600 800 1000

MEM ls

Time

add $s0, $t0, $t1 E'—f

Data hazards

An instruction has to wait for data from a previous instruction.

add $s0, $t0, $t1
sub $t2, $s0, $t3

sub $12, 50, $13 E‘—= l':’ MEM l8§

Time

add $s0, $t0, $t1

Forwarding (bypassing)

Use result as soon as it is computed, rather than wait for register WB

Requires extra connections in the data path

Program
execution 200 400 600 800 1000
order Time T T T T T

(in instructions)
add $s0, $t0, $t1 E.—E | —MEM
CR— ',\

\
\

sub $t2, $s0, $t3 E.—E D | MEM—IB;

load-use hazard

Can't avoid load-use stall by forwarding, but forwarding limits stall to 1 cycle

Program
execution , 200 400 600 800 1000 1200 1400
order Time - - - - : T T
(in instructions)
w $s0, 20(St1) EI—J:l \ B§
X A g \> £Y
C bubble \rbubble bubble/\ (bubble (bubble
@ o/

sub $t2, $s0, $t3

L O

MEM

= 1=

Where are the hazards in this code?

Can we reorder to code to avoid hazards?

lw Stl,
lw $t2,
add §t3,
SwW St3,
lw St4,

0($t0)
4($t0)
$tl, $t2
12($t0)

8(5t0)

add $t5, $tl, $t4

sw S$t5,

16 ($t0)

Code scheduling to avoid stalls

Reorder the code to avoid load-use hazards.

Tw $t1, 0($t0) Tw $t1, 0($t0)
Tw ($t2)-4(5t0) Tw
— add $t3, $t1,(8t2) w .
sw $t3, 12(8t0) add $t3,
Tw @ 8($t0 sw $t3,
T3] — add $t5, $t1,(St4) add $tS,
sw $t5, 16($t0) sw $t5, 16($t0)

13 cycles 11 cycles

stall

Control hazard

If the CPU assumes the branch is not
taken but it is, it will have to bubble
out the instructions that have started
execution, and start executing at the
correct instruction.

This would waste a lot of clock cycles.

Program
execution
order

(in instructions)

40 beq $1, $3, 28
44 and $12, 82, $5

48 or $13, $6, $2

52 add $14, $2, 82

DM

|

1

| 72 1w $4, 50(57)

DM

DM

Control hazards

After a branch instruction, which instruction should be fetched, the one
immediately following the branch or the one at the target?

In order to minimize the number of clock cycles wasted, add some circuitry in the
ID stage to determine if we are branching or not.

Stall on branch

Branch instructions often cause a stall because the CPU does not know whether

to branch or not.

SPEC benchmarks: 17% of instructions were branches, so this would increase

CPI by 17%.

Program
execution ;o 200 400 600 800 1000 1200 1400
order 1 I 1 1 I 1 1
(in instructions)
add $4, $5,$6 "IN Reg| AU | 0% IReg
beq $1, $2, 40 m instruction| | reg| A | D2 |Reg
& . O = A rv S e L o s e

P ¥ 3
bubble&bubble» bubble X bubble/ bubble(

G \)-A/ W

Instruction Data

400 ps fetch Reg| A access |19

or $7, $8, $9 <

Branch prediction

The CPU will predict that the branch is
not taken. If that is correct (top
diagram) then no stall is required.

If that prediction is wrong (bottom
diagram) then only one stall is
required. The instruction that had
started to execute is bubbled, turned
into a NOP.

Program

execution ;- 200 400 600 800 1000 1200 1400
order
(in instructions)
add $4,95,96 || |Reg| AW | 2% |Reg
Instruction Data
beq $1, $2, 40 *—-200 oo fetch Reg| AW | _°° [Reg
Instruction Data
Iw $3, 300($0) 200 ps| fetch i B access |79
Program
execution ;- 200 400 600 800 1000 1200 1400
order
(in instructions)
add $4, 85,86 |"™Sucton| |Reg| AU | o%° | Reg
beq $1, $2, 40‘ g = nsnucion| |Reg| Aw [D% |Reg
| ‘1/‘ f“\
(bubble *bubblelbubble Eubble)(bubblez
K_)(S-)\._/ k_ A / _LQ\ L _»_5-'\ / k}:g-)_./
or $7, $8, $9 - ~(Instructi Data
400 ps fetchIon Regi| A access | o9

Types of branch prediction

Static branch prediction (assembler) Dynamic branch prediction (CPU)
- based on typical branch behavior at loops - extra circuitry measures behavior for each
and conditional branches (ifs) branch
- predict backward branches are taken - then assumes branch or not based on past
- predict forward branches are not taken behavior
- ifitis wrong, will stall and refetch, updating
history

- can be up to 90% accurate

What MIPS does: delayed branching

implemented by MIPS assemblers

- the instruction following the branch is always executed

- if the branch should have been taken, it will be taken after that one extra
instruction

- the assembler selects an instruction that is not affected by the branch to place

after the branch

Pipelining
What we know so far:

- pipelining increases performance by increasing instruction throughput
- works on multiple instructions at a time
- each instruction has the same latency

- but pipelining is subject to hazards: structure, data, control
- ISA affects complexity of pipeline implementation

How to divide the
data path?

Add
4
Instruction [31-26]
Instruction [25-21)
Read
address
|Instruction [20-16]
Instruction | |1 Loa
3
[31-0 M
Instruction | | linstruction [15-11] | X
: T
Instruction [15-0]

Instruction [5-0]

Pipelined data path

In the single-cycle implementation, each instruction executed in one clock cycle

In the multi-cycle pipelined design, the clock will be faster and instructions execute
in phases over several clock cycles

Each phase takes one clock cycle

We will redesign the CPU slightly so that each CPU section can operate
independently on one instruction at the same time

Divide the data path
Into 5 sections

Data flows left to right with 2
exceptions shown in blue lines:

- register write back
- PC update

IF: Instruction fetch

ID: Instruction decode/

register file read

EX: Execute/
address calculation

Add

Read Read

Address

Instruction

Instruction
memory

register 1 data 1
Read

register 2
Registers
Write

register

Write
data

o B—

MEM: Memory access

T

._____________________1_____________________________

W8: Write back

|

How instructions
are processed
concurrently

Shading: right side for read, left side
for write

Notice that we can write to the register
file and read from it in the same cycle

Program
execution
order

(in instructions)

Iw $1, 100($0)

Iw $2, 200($0)

Iw $3, 300($0)

J

Time (in clock cycles)

CC1

CC2

18

CC3

Pipeline architecture

A pipelined computer executes instructions concurrently
Hardware units are divided into stages:

- each stage takes 1 clock period
- stages are separated by pipeline registers that preserve and pass partial
results to the next stage

Pipeline registers

Pipeline registers are needed between

IFAD

IDEX

stages to hold information produced in ‘B
previous cycles. ‘

5 stages, 4 pipeline registers

Instruction
memaory

They are named according to the
registers they are between.

|insrucson

Next, we look at how the Iw instruction
would travel through these stages.

-

Read

regater 1

Read

regster 2
Regsters o

Wite
register

Whte

Read

%
Shi A‘”ch\.l
left2

EXMEM

data 1

6 [s)%
M extend

Ze
ALYy

-Q.B resut

!

Address

Wree

memary

MEMWE

IF stage for Iw

- instruction is read and placed into
IF/ID register

- meanwhile the PC is updated by 4

- the PCis also saved in the
pipeline register in case it is
needed for a beq instruction

lines going through pipeline registers
indicate information that is passed
forward

w

Instruction fetch

IFhD

.

Addrass

Instruction
maemory

| Read

ragister 1
Read
register 2
R
Write
register
Write

data

Read
dats 1

ogisters .
data 2

Iw
| |

Instruction decode

ID stage for lw
- the two registers, rt (destination) —
and rs (source) are read Add
- even though we don't need to b= -~
read rt, the CPU doesn't know o
that yet —
- the 16-bit immediate field is 18

sign-extended to 32 bits

- the register read (rs) and remory
sign-extended immediate field is
stored in the ID/EX pipeline
register

EXE stage for lw

- sum of rs and the sign-extended
offset are summed

- the sum is placed on the
EX/MEM register

w

Execution

ID/EX EX/MEM
YAdgAdd
Shift result
left 2
Read
register 1 Read
data 1
Read —
registe{‘ 2 i
Write eg 'mRea d | Address
register data 2 Data
Write memory
data
Write
data
16 Sign- 32

lw
I |

Memory

MEM stage for Iw ey —

- the address is picked up from
the EX/MEM register e
- that address is read
- the contents are placed on the
MEM/WB register -

g
£

Zaro —

resut

Wirie
data

I

Write-back

o IDEX EXXMEM MEMAYB
WB stage for lw ~
- data is read from the MEM/WB @_W/ﬁ -

register and written back to rt in
the register file g
> Mm Read
g 3 data ¢ * =3
= M - Zoo > =
ALU
pll gl S e =
regster Oata
— Lﬂb memory
v, Vinte
coa
6 sign- | 2
oxtond -

What about sw?

- the first 2 stages are the same

- in the EXE stage, the value to be written is
carried forward on the pipeline registers

- in the MEM stage, we are writing to memory
instead of reading it

- the data being written comes from the
pipeline register, carried forward from the
previous pipeline register

- nothing happens in the WB stage

Data
memary

LH

e e

Modification to Iw

Which register to write to will get
overwritten in the pipeline register as
new instructions come into the
pipeline.

Therefore, we need to carry that
register address forward through the
pipeline registers.

L —

] lnetructon

memory

Read

regster 1

Read

regater 2
Registers oo.q

Wiite

regater

Write
data

Read

data ¥

{

data 2

Address

Vinte
data

Data
memaory

Concurrent
Instruction
execution

clock cycles shown left to right

instructions entering the pipeline are
shown top down

Program
execution
order

(in instructions)

Iw $10, 20($1)

sub $11, $2, $3

add $12, $3, $4

Iw $13, 24($1)

add $14, $5, $6

Time (in clock cycles)
CcC2

CC1

CC3

CC4

CC5

CC6

CC7

cCs8

CCs8

Traditional diagram of the same instructions

Program
execution
order

(in instructions)

Iw $10, 20($1)
sub $11, $2, $3
add $12, $3, $4
Iw $13, 24($1)

add $14, $5, $6

Time (in clock cycles) >
CC1 CC2 CC3 CcC4 CC5 CCé6 CC7 cCs8 CC9
Instruction | Instruction Erasiiias Data Write-back
fetch decode access
Instruction | Instruction . Data .
ok T Execution e Write-back
Instruction | Instruction Execution Data Write-back
fetch decode access
Instruction | Instruction ; Data :
fetch decode Execution access Write-back
Instruction | Instruction Exaoition Data Write-back
fetch decode access

How is control affected by pipelining?

PC and pipeline registers are
written every clock cycle, so no
control lines are needed.

We will group the control
signals by stage so that the
control signals for an
instruction are carried forward
as long as needed.

|
Instruction|
—

IF/ID

Control

f—

WB

\
—e

| EX

ID/EX

1 B
M ‘
| C—-|

EX/MEM

WwB

MEM/WB

Control signals grouped by stage

IF and ID stages - no special control signals needed
EX stage - RegDst, ALUOp, and ALUSrc

MEM stage - Branch, MemRead, MemWrite

WB stage - MemtoReg, and RegWrite

Control signals have the same meaning as non-pipelined datapath.

Pipelined control signals

Values are unchanged from non-pipelined datapath, but they are grouped.

Execution/address calculation stage Memory access stage
control lines control lines control Ihu

nstruction -mmm-mm-

R-format

Tw
SW
beq

o

PIO|O|O

X | X|»|O

Cl|O|Pr|F

P|O|O|O
o [
oO|lRr|O|O

X|X|O|k
O|O|O|k
O|lFRr|FP|OC

Pipeline registers are
extended to hold control
signals that are carried
forward for each
instruction.

PCSrc

o
xe=

IFAD

PC

Instruction
memory

ID/EX
/ X ™ LEXIMEM
f \' — ‘
| |
e 'VVB
|. Control ‘}—» M L\ |_:1EM/WB
\ f | £9] SRS
\ L
\,_ EX M WB
g Branch
= —
]
1=}
£
S g
Read E «
i Read S)
register 1 dats 1 - 5
r%egaigted a1 B [= *
Rl ALU ALy Read
Write Read C result JTT™ 1 p—+| Address data |7 {1
register data2 M M
i u Data u
- mﬁ »1)(memory o
Write
g |
- data
Instruction = 3 /
[15-0) Sign- 8 [aiu
r extend A WW) | MemRead
Instruction !
[20-16] [ALuop
Instruction
[15-11]

We can work on up to 5
instructions at the same
time within a single
CPU core.

Terms concurrent and
parallel apply to
hardware or software.
When to use each term
is confusing.

Talk by Rob Pike:

http://blog.golang.org/concurrency-is-not-parallelism

PCSrc

PC

o
Xxc=

ID/EX
T LEXIMEM
f A fhainid T
{
/ \ |
nt | |\"B
L - ‘f" M L y UEM/WB
\ J — r—
\ / -
FAD \\,_ E M | wB
Add '\
MdAdd
© Branch
= ALUSrc 1]
> /
2 £
= g
Address s Read E «
: i Read S)
g register data 1 = 3
£ r%egaigterZ e |1 O *
Instruction = ALU a1y Read
—— Rani . |
memory Wit aR“g C resutt T | Address ol | — 1"
‘r;gistsr ata E Daia i
o | Write x memol X
data o g 0
. Write
” data
Instruction // \
(1500 16 _f sign- |32 8 [aw |
| extend Y control | MemRead
Instruction
[20-16]
Instruction
[15-11]

http://blog.golang.org/concurrency-is-not-parallelism

Pipelining at Chipotle

