Reviews

In 17th century Scotland and Switzerland, two inventors independently and almost simultaneously produced the concept of logarithm, constructed tables of logarithms for efficient arithmetic, and thus started the computing revolution. John Napier (1550–1617) of Edinburgh, Baron of Merchiston, studied mathematics and astronomy at St. Salvator's College, St. Andrews. Jost Bürgi (1552–1632) of Lichtensteig, Toggenburg had only basic schooling in writing and arithmetic, never learned Latin, and thus could not read scientific literature. Nevertheless, he became an excellent mathematician, astronomer, and master craftsman of precise astronomical clocks and instruments. Subsequently, Henry Briggs (1561–1630) of London, England, derived an easier-to-use logarithm table used to this day.

For the 400-year celebration of the publication of the logarithm tables by Bürgi—developed already around 1600, but published in 1620—and the independent invention of the logarithm by Napier and Bürgi, Klaus Truemper has written a book that examines the work of these inventors. The author succeeds in bringing their thinking to life: How they decided on two very different ways to formulate the concept of logarithms and constructed quite different tables of logarithms that made efficient arithmetic possible, and how these results triggered the computing revolution that continues to this day.

The author first transports the reader to the start of the 17th century as both inventors begin their work. In particular, the reader looks over Bürgi's shoulders, so to speak, as he comes up with the idea of a table of logarithms, decides various aspects, and then computes the table in just a few months—an astonishing achievement. In contrast, Napier's and Briggs's tables require years of computing effort.

The author narrates the developments in simple, non-technical language that reads more like a detective novel than a book about mathematics. Indeed, the book provides a delightful and illuminating walk through that hugely important part of computing history.

—Fritz Staudacher, author of the Bürgi biography Jost Bürgi, Kepler und der Kaiser

The Daring Invention of Logarithm Tables takes a fresh look at the question "Who invented the concept of logarithm?". So far, the answers have frequently asserted that John Napier is the sole inventor, and that Jost Bürgi is *not* an independent co-inventor.

Klaus Truemper's book explains the ideas of Jost Bürgi and John Napier, and the subsequent work of Henry Briggs, allowing the reader to trace their thinking. The text is easy to read and requires only elementary arithmetic as background.

The book invites the reader to know more about Jost Bürgi's role in this process. Probably around 1600 Bürgi had the ingenious idea to tabulate the function $f(n) = 1.0001^n$ for n = 0, 1, ..., 23027to the precision of 9 digits. He likely accomplished this in only a few months, and he did it with no systematic error. In Napier's terminology—still used today—*n* is the logarithm of f(n) to base 1.0001.

For the simplification of multiplication and division, the tables of Napier and Bürgi are completely equivalent. After a detailed analysis that includes results since Archimedes, the author rightfully concludes: Napier and Bürgi are independent co-inventors of the logarithms.

—Jörg Waldvogel, Dept. of Mathematics, Eidgenössische Technische Hochschule Zürich, Switzerland Also by Klaus Truemper

Brain Science

Artificial Intelligence Wittgenstein and Brain Science Magic, Error, and Terror

History

The Construction of Mathematics

Technical

Logic-based Intelligent Systems Effective Logic Computation Matroid Theory

Edited by Ingrid and Klaus Truemper

F. Hülster Introduction to Wittgenstein's Tractatus Logico-Philosophicus (English and German edition)

F. Hülster Berlin 1945: Surviving the Collapse

THE DARING INVENTION OF LOGARITHM TABLES

How Jost Bürgi, John Napier, and Henry Briggs simplified arithmetic and started the computing revolution

KLAUS TRUEMPER

Copyright © 2020 by Klaus Truemper

Softcover published by Leibniz Company 2304 Cliffside Drive Plano, Texas, 75023 USA

Original edition 2020 Updated color edition 2023

All rights reserved.

No part of this book may be reproduced, or stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without express permission of the publisher.

Cover Art:

Left column: Bürgi image and table. Center: Briggs table. Right column: Napier image and table. Cover design by Ingrid Truemper.

The book is typeset in LATEX using the Tufte-style book class, which was inspired by the work of Edward R. Tufte and Richard Feynman.

Sources and licenses for all figures are listed in the Notes section. The licenses implicitly cover the figures of the front cover since they are derived from images in Chapters 5, 10, 13, and 15.

Library of Congress Cataloging-in-Publication Data Truemper, Klaus, 1942–

The Daring Invention of Logarithm Tables Includes bibliographical references and subject index. ISBN 978-0-9991402-6-0 1. Mathematics. 2. Logarithm

Contents

About the Color Edition

1	Introduction	1
2	A Seemingly S	imple Notation

Some Definitions 8

5

25

- 3 Exponents 11 Exponents for Variables 11 Exponents for Constants 13 Archimedes 13
- 4 Michael Stifel 16
- Jost Bürgi 5 19 Decimal Number System 20 Notation for Decimal Numbers 20 Investigating Bürgi's Work on Logarithms 21 Bürgi's Construction 6 23 An Ingenious Base 24 Precise Form of the Base 24

Inherent Accuracy of the Table

	Estimate of Computing Effort 27 Choice of Precision 27
	Actual Construction Effort 28
	Representation of 10.0 28
	Bürgi Constant and Scaling 28
7	Computation with Bürgi's Scaled Table 30
	Multiplication 31
	Division 32
	Computation of Powers 32
	Extraction of roots 33
	Interpolation 34
8	Bürgi's Table of Logarithms 37
	Accuracy of Entries 39
	How did Bürgi Develop the Table? 39
9	Instructions for Bürgi's Table 41
	Selection of Black Numbers 44
	An Imagined Explanation 46
	An Important Aspect 47
	One More Question 48
10	Bürgi's Title Page 50
	Two Unfortunate Decisions 51
	Kepler's Comment 52
11	<i>Geometric Computation</i> 55
	Invention of Circular Slide Rule 57
	Invention of Slide Rule 58

12	Design of a Circular Slide Rule 61	
	Spacing of Ticks 61	
	Construction Effort 62	
	Improvements 62	
	Bürgi's Decision 63	
13	John Napier 65	
	Napier's Model 66	
	Format of Napier's Table 69	
	Role of Differentia Column 70	
	Napier's Scaled Table 71	
14	<i>Computation with Napier's Table</i> 72	
	Using Napier's Scaled Table 73	
	Computation 74	
	Multiplication 75	
	Division, Powers, Roots 75	
15	Henry Briggs 76	
	Briggs's Scaled Table 79	
	Computation 80	
16	Comparison of Accuracy and Efficiency	82
	Accuracy 82	
	Bürgi's Scaled Table 82	
	Napier's Scaled Table 82	
	Briggs's Scaled Table 83	
	Size of Table Entries 84	
	<i>Comparison of Efficiency</i> 84	

17	Beyond Bürgi, Napier, and Briggs	86
	The Difference Engine 87	
18	Models of the World 90	
	An Example 91	
	Types of Models 92	
	Modeling Errors 93	
	Sources of Errors 95	
	True Facts 95	
19	Who Invented Logarithms? 97	
	Key Steps 98	
	Stumped? 101	
	Stumped Again? 102	
	Deciding Who Was First 103	
20	Critical Comments 105	
	Bürgi's Scaled Table 105	
	Napier's Scaled Table 106	
	Briggs's Scaled Table 106	
	Objection 1 107	
	Objection 2 111	
21	Conclusions 115	
Not	es 117	
Bibl	liography 133	
Ack	nowledgements 137	
Inde	ex 138	

About the Color Edition

This book first appeared in 2020 in black and white due to the high cost of color printing. The goal was to keep the price at around two cups of coffee.

Ever since, we have had misgivings about that choice since Jost Bürgi (1552–1632), one of the key players in this book, used color printing for clarity in his logarithm tables all the way back in the 17th century. Yet we claimed that we couldn't do so in this book.

That dilemma has been solved: Color printing is now possible at the price of three cups of coffee.

Introduction

1

Starting around 50 000 BCE, early humans used pebbles, scratches, or other marks to record quantities. These devices supported addition, subtraction, multiplication, and division.¹

Eventually, various symbols replaced these tools and simplified operations. Thus, mathematics was born.

During the last 5 000 years, mathematical concepts and models became more and more advanced, and computations became more complicated as well.

In particular, the 16th and 17th centuries produced sophisticated models for puzzling observations about the world such as the configuration of the heavenly bodies. Evaluation of these models required voluminous manual computations spanning months or even years of effort.

An ingenious new computing device then reduced that effort dramatically. Indeed, the tool was an order of magnitude more effective than anything invented before.

That device was the logarithm table, or rather several such tables in particular formats. Use of these tables compressed months of computing effort to weeks and sometimes just days. The tables triggered the invention of computing equipment where distances and angles represented the numbers of the logarithm tables. There were three such devices: the slide rule, the circular slide rule, and the slide cylinder. These tools were produced until the middle of the 20th century.²

A downside of the logarithm tables was their arduous and errorprone construction. That aspect led to a sequence of groundbreaking inventions. First was a special purpose computing device in the 19th century that could compute such tables mechanically and error-free. It was called the difference engine.³ That design led to a general-purpose computer called the analytical engine⁴ and the first-ever computer program.⁵

Unfortunately, both engine designs were so complicated that the difference engine was built for the first time in the late 20th and early 21st century, while the analytical engine never was—and likely never will be—constructed.

In the 1930s—about 100 years after the invention of the analytical engine—an ingenious new approach resulted in a general-purpose computer whose first version could be built using just sheet metal.⁶

The ensuing electronic revolution created ever faster computing devices that have improved human life in almost miraculous ways.

And all this started with the logarithm tables.

We have taken this warp-speed tour of mathematical and computing development to highlight the extraordinary impact of the invention of the logarithm table. Thus, it surely is worthwhile to study the who, when, where, and how of this invention.

This has been done in a number of articles and books, so you may wonder why we have written yet another book on the topic.

The existing material usually recounts in the language of modern mathematics how the logarithm table was invented.

Yes, the publications typically consider that certain concepts were not available at the time. But the interpretation of events then relies on modern mathematical concepts. That approach makes the invention of the logarithm table look like a much simpler and more natural step than it actually was.

Instead, we transport ourselves into the life of one of the inventors. We look over his shoulder, so to speak, as he thinks about and works on the problem of efficient computation.

In the process, we understand how difficult the work on logarithm tables really was: Tens of thousands of computing steps had to be performed with utter precision.

At the same time, we experience the magic of this invention as it comes together in the mind of one of its creators.

You surely have noticed that so far we haven't mentioned a single name, let alone discussed the life of any person. That's done on purpose: We learn about each player as we delve into his life.

Yes, "his" is correct here. With rare exception, women at that time were thought incapable of scientific thought. Which says something about the men of that time and nothing about the women.

There has been a major controversy involving logarithms: It concerns the question of who invented logarithms first and when. So far, a variety of conflicting answers have been given.

In the last part of this book we look at these answers and come up with an explanation how such a divergence of views is possible. We also offer our own view, as you are bound to expect.

The arguments rest on a particular interpretation of the brain's reasoning process. That insight not only explains the divergence of opinions about the priority question, but also provides a reasonable justification for our answer.

4 INTRODUCTION

One more remark about our interpretation. We are convinced that mathematics is created, and have written a book arguing the case.⁷ That conclusion is contrary to that of most mathematicians, who believe that mathematics is discovered.

If you are on that side of the fence, too, don't let terms such as "invention" bother you. After all, the decision isn't based on an objective reality but depends on the models of the world we have in our heads. Chapters 9 and 23 of *Wittgenstein and Brain Science: Understanding the World*⁸ discuss this aspect in detail.

This book does not require any mathematical background beyond everyday knowledge of numbers and the elementary operations of addition, subtraction, multiplication, and division.

More complicated operations are rarely used. If so, they have been moved into the Notes section.