Matroid Decomposition
Revised Edition

Klaus Truemper
University of Texas at Dallas
Richardson, Texas

Leibniz Company
Plano, Texas
Contents

Preface ... ix

Chapter 1 Introduction .. 1
 1.1 Summary 1
 1.2 Historical Notes 3

Chapter 2 Basic Definitions 5
 2.1 Overview and Notation 5
 2.2 Graph Definitions 6
 2.3 Matrix Definitions 18
 2.4 Complexity of Algorithms 24
 2.5 References 25

Chapter 3 From Graphs to Matroids 26
 3.1 Overview 26
 3.2 Graphs Produce Graphic Matroids 27
 3.3 Binary Matroids Generalize Graphic Matroids 52
 3.4 Abstract Matrices Produce All Matroids 71
 3.5 Characterization of Binary Matroids 85
 3.6 References 87
Chapter 4 Series-Parallel and Delta-Wye Constructions ... 89

4.1 Overview 89
4.2 Series-Parallel Construction 90
4.3 Delta-Wye Construction for Graphs 96
4.4 Delta-Wye Construction for Binary Matroids 101
4.5 Applications, Extensions, and References 109

Chapter 5 Path Shortening Technique 111

5.1 Overview 111
5.2 Shortening of Paths 112
5.3 Intersection and Partitioning of Matroids 119
5.4 Extensions and References 125

Chapter 6 Separation Algorithm 128

6.1 Overview 128
6.2 Separation Algorithm 129
6.3 Sufficient Conditions for Induced Separations 134
6.4 Extensions of 3-Connected Minors 147
6.5 Extensions and References 150

Chapter 7 Splitter Theorem and Sequences of Nested Minors 151

7.1 Overview 151
7.2 Splitter Theorem 152
7.3 Sequences of Nested Minors and Wheel Theorem 157
7.4 Characterization of Planar Graphs 163
7.5 Extensions and References 165

Chapter 8 Matroid Sums .. 168

8.1 Overview 168
8.2 1- and 2-Sums 169
8.3 General k-Sums 173
8.4 Finding 1-, 2-, and 3-Sums 180
8.5 Delta-Sum and Wye-Sum 182
8.6 Extensions and References 186
Chapter 9 Matrix Total Unimodularity and Matroid Regularity 188

 9.1 Overview 188
 9.2 Basic Results and Applications of Total Unimodularity 189
 9.3 Characterization of Regular Matroids 196
 9.4 Characterization of Ternary Matroids 199
 9.5 Extensions and References 202

Chapter 10 Graphic Matroids 205

 10.1 Overview 205
 10.2 Characterization of Planar Matroids 206
 10.3 Regular Matroids with $M(K_{3,3})$ Minors 214
 10.4 Characterization of Graphic Matroids 224
 10.5 Decomposition Theorems for Graphs 227
 10.6 Testing Graphicness of Binary Matroids 238
 10.7 Applications, Extensions, and References 241

Chapter 11 Regular Matroids 245

 11.1 Overview 245
 11.2 1-, 2-, and 3-Sum Compositions
 Preserve Regularity 246
 11.3 Regular Matroid Decomposition Theorem 251
 11.4 Testing Matroid Regularity and
 Matrix Total Unimodularity 259
 11.5 Applications of Regular Matroid
 Decomposition Theorem 260
 11.6 Extensions and References 270

Chapter 12 Almost Regular Matroids 272

 12.1 Overview 272
 12.2 Characterization of Alpha-Balanced Graphs 274
 12.3 Several Matrix Classes 284
 12.4 Definition and Construction of
 Almost Regular Matroids 294
 12.5 Matrix Constructions 302
 12.6 Applications, Extensions, and References 312
Chapter 13 Max-Flow Min-Cut Matroids

13.1 Overview 314
13.2 2-Sum and Delta-Sum Decompositions 316
13.3 Characterization of Max-Flow Min-Cut Matroids 326
13.4 Construction of Max-Flow Min-Cut Matroids and Polynomial Algorithms 335
13.5 Graphs without Odd-K_4 Minors 340
13.6 Applications, Extensions, and References 348

References 350

Author Index 378

Subject Index 383
Preface

Matroids were first defined in 1935 as an abstract generalization of graphs and matrices. In the subsequent two decades, comparatively few results were obtained. But starting in the mid-1950s, progress was made at an ever-increasing pace. As this book is being written, a large collection of deep matroid theorems already exists. These results have been used to solve difficult problems in diverse fields such as civil, electrical, and mechanical engineering, computer science, and mathematics.

There is now far too much matroid material to permit a comprehensive treatment in one book. Thus, we have confined ourselves to a part of particular interest to us, the one dealing with decomposition and composition of matroids. That part of matroid theory contains several profound theorems with numerous applications. At present, the literature for that material is quite difficult to read. One of our goals has been a clear and simple exposition that makes the main results readily accessible.

The book does not assume any prior knowledge of matroid theory. Indeed, for the reader unfamiliar with matroid theory, the book may serve as an introduction to that beautiful part of combinatorics. For the expert, we hope that the book will provide a pleasant tour over familiar terrain.

The help of many people and institutions has made this book possible. P. D. Seymour introduced me to matroids and to various decomposition notions during a sabbatical year supported by the University of Waterloo. The National Science Foundation funded the research and part of the writing of the book through several grants. Most of the the writing was made possible by the support of the Alexander von Humboldt-Foundation and of the University of Texas at Dallas, my home institution. The University of Bonn and Tel Aviv University assisted the search for and verification of reference material.
M. Grötschel of the University of Augsburg made the resources of the Institute of Applied Mathematics available for the editing, typesetting, and proofreading. He also supported the project in many other ways. P. Bauer, M. Jünger, A. Martin, G. Reinelt, M. Stoer, and G. Ziegler of the University of Augsburg were of much assistance.

T. Konnerth most ably typeset the manuscript in \TeX. R. Karpelowitz and C.-S. Peng patiently prepared the numerous drawings.

A number of people helped with the collection of reference material, in particular S. Fujishige and M. Iri.

R. E. Bixby, A. Bouchet, T. J. Reid, G. Rinaldi, P. D. Seymour, M. Stoer, A. Tamir, and U. Truemper reviewed a first draft. Their critique helped considerably to clarify and simplify material.

To all who so generously gave of their time and who lent support in so many ways, I express my sincere thanks. Without their help, the book would not have been written.

About the Revised Edition

In 1997, a transfer of the copyright from Academic Press, Inc., to the author made possible the issue of a revised edition. Since 1998, that edition has been distributed in electronic format; it can be printed for personal use without charge. Since 2016, it has been available as paperback.

We limited the changes to correction of technical and typographical errors and updating of the publication data of the references.

The change to an electronic version forced a reprocessing of the numerous drawings. R. L. Brooks, G. Qian, G. Rinaldi, and F.-S. Sun carried out much of that work. A. Bachem, F. Barahona, G. Cornuéjols, C. R. Coullard, A. Frank, A. M. H. Gerards, R. Hassin, D. Naddef, T. J. Reid, P. D. Seymour, R. Swaminathan, F.-S. Sun, and G. M. Ziegler assisted with the updating of the references. The final editing was done by I. Truemper.

G. Rinaldi and I. Truemper helped with the implementation of the paperback version.

We very much thank all who helped with the preparation of the revised edition. Without that help, we could not have accomplished that task.