
CS 4384 Automata Theory Sample
Fall 2012 Final

Do not open the exam until instructed.

This exam is closed book and closed notes, except that you may bring two sheets of paper
with anything written on them front and back. In your answers, any results proved in class
or on homeworks may be applied without re-proving or re-deriving them.

Write your answers on the loose sheets provided, and be sure to write your name atop
ALL sheets that you turn in. Turn in this exam paper with your solutions. Scratch work
will be considered for partial credit so is worth including in your submitted answers, but
clearly mark the solutions you want me to grade as your final answers. Otherwise you will
receive the lowest score of your various attempts.

(1) (6 pts) Convert the following NFA to a regular CFG:

0 1
a,b a

2

b
b

a

(2) Consider the following CFG: S → aB | bA | D | E
A→ a | aS | bAA | c
B → b | bS | aBB | c
D → dD | Dd | d
E → EE | EdE

(a) (4 pts) Give a left-most derivation of the string aabbcc.

(b) (2 pts) Give a right-most derivation of the same string.

(c) (4 pts) Is the grammar ambiguous? Why or why not?

(3) (12 pts) Mathematically define a DFA that accepts the language of all strings over alphabet
{a, b} in which each b is separated from the next by at least 100 a’s.

(4) (10 pts) Write a CFG that generates the language of ALL palindromes over alphabet {a, b}
that do not contain the substring aa.

(5) (7 pts) For all strings s, s′ ∈ Σ∗, we write s s′ if there is a way to remove zero or more
(possibly non-adjacent) symbols from s to get s′. For example, final fnl and final fin,
but final 6 fan. Define p(L) = {s′ | s ∈ L, s s′}. Complete the following proof that p
is a closure property for the context-free languages:

Proof. Let a CFL L be given. Since L is a CFL, there exists a PDA A =
(Q,Σ,Γ,∆, q0, F) that generates L. Define a new PDA A′ = (Q′,Σ,Γ,∆′, q′0, F

′) where

Q′ = (you write this part)

∆′ = (you write this part)

q′0 = (you write this part)

F ′ = (you write this part)

PDA A′ accepts language p(L), so p(L) is context-free. We conclude that p is a closure
property of the CFL’s.

(6) (10 pts) Prove that the language L1 = {aibjck | j<i, j<k} is NOT context-free.

(7) (9 pts) Prove that the following decision problem is NOT Turing-decidable by reducing the
universal language (LU) to it: Given two TM’s A1 and A2, does |L(A1) ∩ L(A2)| = 2? That
is, are there exactly 2 strings that are accepted by both A1 and A2?

1

Solutions

(1) S → aA | bA | ε
A→ aA | bB
B → aS | bA | ε

(2) (a) S ⇒ aB ⇒ aaBB ⇒ aabSB ⇒ aabbAB ⇒ aabbcB ⇒ aabbcc

(b) S ⇒ aB ⇒ aaBB ⇒ aaBc⇒ aabSc⇒ aabbAc⇒ aabbcc

(c) Yes, the grammar is ambiguous because there are two different leftmost derivations of
the string dd: (1) S ⇒ D ⇒ dD ⇒ dd and (2) S ⇒ D ⇒ Dd⇒ dd.

(3) Define A = (Q, {a, b}, δ, q0, F) with Q = [0, 100] ∩ Z, q0 = 100, F = Q, and

δ = {((100, a), 100), ((100, b), 0)} ∪ {((q, a), q + 1) | q ∈ Q− {100}}

(4) S → abSba | bSb | aba | a | b | ε

(5) Define Q′ = Q, q′0 = q0, F
′ = F , and

∆′ = ∆ ∪ {((q, ε, γ), (q′, γ′)) | ((q, σ, γ), (q′, γ′)) ∈ ∆}

(6) Proof. Expecting a contradiction, assume L1 is a CFL and let p ∈ N1 be its pumping length.
Define s = ap+1bpcp+1. Let uvxyz = s be a partitioning such that |vxy| ≤ p and |vy| ≥ 1.
Since |vxy| ≤ p, vy cannot have a’s, b’s, and c’s. Since |vy| ≥ 1, it follows that vy does
not have equal numbers of a’s, b’s, and c’s. With this ruled out, there are only two other
possibilities:

Case 1: If vy has more a’s or more c’s than b’s, then choose s′ = uxz and observe that s′

has at most as many a’s or at most as many c’s as b’s (because more a’s or more c’s than
b’s were removed).

Case 2: If vy has more b’s than a’s or than c’s, then choose s′ = uv2xy2z and observe that
s′ has at least as many b’s as a’s or c’s (because more b’s were added than a’s or c’s).

In both cases s′ 6∈ L1, contradicting the pumping lemma. We conclude that L1 is not context-
free.

(7) LD = {〈A1〉#〈A2〉 | |L(A1) ∩ L(A2)| = 2} is undecidable.

Proof. Expecting a contradiction, assume there exists an always-halting TM D such that
L(D) = LD. To decide whether 〈A〉#〈s〉 ∈ LU , construct a new TM A′ that first compares
its input to s. If they match, A′ simulates A(s). Otherwise, A′ next compares its input to sσ
where σ is some arbitrarily chosen symbol from A’s alphabet. If they match, A′ immediately
accepts; otherwise it immediately rejects. We then simulate D(〈A′〉#〈A′〉), accepting if it
accepts and rejecting if it rejects.

Observe that (1) A′ always accepts sσ, (2) it accepts s if and only if A accepts s, and (3) it
always rejects everything else. Thus, |L(A′)∩L(A′)| = |L(A′)| = 2 if and only if A(s) accepts
(and it equals 1 otherwise). Hence, D(〈A′〉#〈A′〉) accepts if and only if A(s) accepts.

This contradicts the undecidability of LU , so we conclude that no such TM D actually exists;
i.e., LD is undecidable.

2

