Formally Specifying Language Syntax

- Let’s create a new language: Simple IMPerative Language (SIMPL)
- Backus-Naur Form (BNF)
 - Invented by John Backus and Peter Naur (inventors of ALGOL-60 and later FORTRAN)
 - Notation for expressing context-free grammars (CFGs)
- Convention: Teletype font for symbols vs. mathematical font for mathematical operators
 - +, −, and * are symbols from your keyboard that have no particular mathematical meaning
 - +, −, and * are the mathematical operators for addition, subtraction, and multiplication
 - (To make things easier for our OCaml implementation, we will define them to be 31-bit integer addition, subtraction, and multiplication operators, which is how OCaml performs those operations natively.)

Syntax of SIMPL

- **commands**

 \[c ::= \text{skip} \mid c_1 ; c_2 \mid v ::= a \mid \text{if } b \text{ then } c_1 \text{ else } c_2 \mid \text{while } b \text{ do } c \]

- **boolean expressions**

 \[b ::= \text{true} \mid \text{false} \mid a_1 \leq a_2 \mid b_1 \&\& b_2 \mid b_1 \| b_2 \mid \neg b \]

- **arithmetic expressions**

 \[a ::= n \mid v \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 \times a_2 \]

- **variable names**

 \[v \]

- **integer constants**

 \[n \]
Syntax vs. Semantics

- Syntactic definition imparts **no meaning** (semantics) of programs
 - Symbol “+” might not mean addition.
 - (Can you think of a language where it does not?)
- Elements of CFGs (e.g., defined by BNF) are *abstract syntax trees* (ASTs)
 - Use parentheses to describe AST’s structure
 - Example: $x := (x + 1) * 2; (\text{skip}; y := x)$

![Abstract Syntax Tree Example]

- Parser transforms symbol stream into AST
 - Uses various precedence and associativity rules to auto-insert parenths
 - I’ll assume you know how that works (use a parser generator or take compilers/automata theory class).
 - When I write a program, it denotes an already-parsed AST.
CFG elements (e.g., programs) are finite but unbounded.

- **Finite**: The number of nodes in the AST equals a natural number (not infinity).
- **Unbounded**: For every program c there exists a larger program c'.

The set of all programs is countably infinite.

- Countably infinite = set has cardinality equal to the set of all natural numbers

But each individual program is finite.

- An infinite-sized program is actually a syntax error, because the CFG has no infinite-sized members.
Operational Semantics

- Operational semantics - mathematically define the meanings of programs in terms of the operation of an abstract machine

Stores

A store (machine state) in SIMPL is a partial function from variable names to integers:

\[\Sigma = v \rightarrow \mathbb{Z} \]

\[\sigma \in \Sigma \]

- (Partial) functions can be written as sets of input-output pairs:
 - Example: \(\sigma = \{(x, 8), (y, -10), (z, 0)\} \)
 - Not every set of input-output pairs is a function though, so be careful.
 - Non-function: \(\{(x, 8), (x, 10)\} \)
Configurations and Judgments

Configurations

A **configuration** is a command or expression paired with a store:

- command configurations: \(\langle c, \sigma \rangle \)
- arithmetic configurations: \(\langle a, \sigma \rangle \)
- boolean configurations: \(\langle b, \sigma \rangle \)

Judgments

A **judgment** declares that a configuration **converges to** a store or value:

- command judgments: \(\langle c, \sigma \rangle \downarrow \sigma' \) \((\sigma' \in \Sigma)\)
- arithmetic judgments: \(\langle a, \sigma \rangle \downarrow n \) \((n \in \mathbb{Z})\)
- boolean judgments: \(\langle b, \sigma \rangle \downarrow p \) \((p \in \{T, F\})\)

“Converges to” (\(\downarrow\)) informally means “terminates and returns a value of ...”
We now have formalisms for talking about program behaviors (judgments), but we haven't defined which judgments are "true".

Insight: Judgments are like mathematical propositions, but for a new math (computation).

How do we define "truth" in propositional logic? (Laws or Inference Rules)

Example: Law of Modus Ponens

\[
\begin{array}{c}
\frac{p}{q} \\
(\text{MP})
\end{array}
\]

Each rule written as a "fraction" with zero or more hypotheses on top, and a conclusion on the bottom.

Free variables in rules are universally quantified.

Rules can be nested to form tree-shaped derivations (proofs) of truth:

\[
\begin{array}{c}
\frac{p \quad p \Rightarrow q}{q} \\
(\text{MP})
\end{array}
\]

\[
\begin{array}{c}
\frac{q \quad q \Rightarrow r}{r} \\
(\text{MP})
\end{array}
\]

Solution: We need logical axioms that define computations in SIMPL!
Rule #1: Skip

Inference Rule (Axiom) for skip

\[
\langle \text{skip}, \sigma \rangle \Downarrow \sigma^{(1)}
\]

- no hypotheses = axiom
- True for every \(\sigma \) (i.e., \(\sigma \) is universally quantified)
Warning: Misnamed Variables

The following rule is \textit{completely different}!

A different (wrong) rule for \texttt{skip}

\[
\langle \texttt{skip}, \sigma \rangle \downarrow \sigma' \tag{1}
\]

- What's the difference?
- What does this rule effectively say \texttt{skip} does?
Rule #2: Sequence

Inference Rule for ;

\[
\frac{?}{\langle c_1 ; c_2, \sigma \rangle \Downarrow \sigma'}^{(2)}
\]
Rule #2: Sequence

Inference Rule for $;$

\[
\begin{align*}
\langle c_1, \sigma \rangle \downarrow \sigma_2 \\
\overline{\quad} \\
\langle c_1 ; c_2, \sigma \rangle \downarrow \sigma' \quad (2)
\end{align*}
\]
Rule #2: Sequence

Inference Rule for `;`

\[
\begin{align*}
&\langle c_1, \sigma \rangle \Downarrow \sigma_2 \\
&\langle c_2, \sigma_2 \rangle \Downarrow \sigma' \\
\Rightarrow &\langle c_1; c_2, \sigma \rangle \Downarrow \sigma'^{(2)}
\end{align*}
\]
Example Derivation

\[
\langle \text{skip;} (\text{skip;} \text{skip}), \sigma \rangle \downarrow ?
\]
Example Derivation

\[
\begin{align*}
\langle \text{skip}, \sigma \rangle & \downarrow \text{??} & \langle \text{skip;}\text{skip}, \text{??} \rangle & \downarrow \text{??} \\
\hline
\hline
\langle \text{skip;}(\text{skip;}\text{skip}), \sigma \rangle & \downarrow \text{??} \\
\end{align*}
\]
Example Derivation

\[\langle \text{skip}, \sigma \rangle \downarrow \sigma \quad \langle \text{skip};\text{skip}, \sigma \rangle \downarrow ? \]

\[\langle \text{skip};(\text{skip};\text{skip}), \sigma \rangle \downarrow ? \]
Example Derivation

\[
\begin{align*}
\langle \text{skip}, \sigma \rangle \Downarrow \sigma & \quad \frac{\langle \text{skip}, \sigma \rangle \Downarrow ?}{\langle \text{skip}, \text{skip}, \sigma \rangle \Downarrow ?} \\
\langle \text{skip}, \text{skip}, \sigma \rangle \Downarrow ? & \quad \frac{\langle \text{skip}, \text{skip}, \sigma \rangle \Downarrow ?}{\langle \text{skip; (skip; skip)}, \sigma \rangle \Downarrow ?}
\end{align*}
\]
Example Derivation

\[
\frac{\langle \text{skip}, \sigma \rangle \Downarrow \sigma}{\langle \text{skip}, \sigma \rangle \Downarrow \sigma}^{(1)} \quad \frac{\langle \text{skip}, \sigma \rangle \Downarrow \sigma}{\langle \text{skip}, \sigma \rangle \Downarrow \sigma}^{(1)} \quad \frac{\langle \text{skip}; \text{skip}, \sigma \rangle \Downarrow \sigma}{\langle \text{skip}; \text{skip}, \sigma \rangle \Downarrow ?}^{(2)}
\]

\[
\frac{\langle \text{skip}; (\text{skip}; \text{skip}), \sigma \rangle \Downarrow ?}{\langle \text{skip}; (\text{skip}; \text{skip}), \sigma \rangle \Downarrow ?}^{(2)}
\]
Example Derivation

\[
\begin{align*}
\langle \text{skip}, \sigma \rangle & \Downarrow \sigma & \langle \text{skip}, \sigma \rangle & \Downarrow \sigma \\
\langle \text{skip}, \sigma \rangle & \Downarrow \sigma & \langle \text{skip};\text{skip}, \sigma \rangle & \Downarrow \sigma \\
\langle \text{skip};(\text{skip};\text{skip}), \sigma \rangle & \Downarrow \sigma
\end{align*}
\]
Building Derivations

Work bottom-up, left-to-right (usually).

Identify (by number) which rule you’re using to the right of the bar.

Instantiate rule variables consistently and uniformly at each rule use.
 - If $\sigma = \sigma_1$ in this rule instance, then every σ appearing in the rule must be replaced with σ_1.
 - Treat rule literally, not what you expect/want it to say!

Derivations and infinity
 - No infinite-sized derivations! (Each derivation must have strictly finite height.)
 - The set of all derivations is countably infinite.
Rule #3: Assignment

Inference Rule for $=:

\[
\langle v := a, \sigma \rangle \Downarrow ?^{(3)}
\]
Warning: Type-inconsistent Rules

First attempt at assignment rule:

Malformed (wrong) Rule for :=

\[\langle v := a, \sigma \rangle \Downarrow \sigma[v \mapsto a] \]

But the rule above is not a mathematically sensible definition. Why?
Rule #3: Assignment

Correct formulation of assignment rule:

<table>
<thead>
<tr>
<th>Inference Rule for $\ ::= $</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle a, \sigma \rangle \Downarrow n$</td>
</tr>
<tr>
<td>$\langle v := a, \sigma \rangle \Downarrow \sigma[v \mapsto n]$</td>
</tr>
</tbody>
</table>

Notation (functional update):

$$ f[x \mapsto y] = (f - \{(x, z) \mid (x, z) \in f\}) \cup \{(x, y)\} $$
Rule #4: Conditional

Inference Rule for if-then-else

\[
\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \downarrow ?^{(4)}
\]
Solution: Multiple rules per syntactic form are perfectly valid and often useful.

Inference Rules for if-then-else

\[
\begin{align*}
\langle b, \sigma \rangle \Downarrow T & \quad \langle c_1, \sigma \rangle \Downarrow \sigma' \\
\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \Downarrow \sigma'^{(4)} \\
\langle b, \sigma \rangle \Downarrow F & \quad \langle c_2, \sigma \rangle \Downarrow \sigma' \\
\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \Downarrow \sigma'^{(5)}
\end{align*}
\]
Rule #6: While-loop

Inference Rule for while-loop

\[
\langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow ?
\]

This is a tough one.
Rule #6: While-loop

The false part is easy, but what about the true part?

Inference Rules for while-loop

\[
\begin{align*}
\langle b, \sigma \rangle & \Downarrow F \\
\langle \text{while } b \text{ do } c, \sigma \rangle & \Downarrow \sigma \\
\langle b, \sigma \rangle & \Downarrow T \\
\langle \text{while } b \text{ do } c, \sigma \rangle & \Downarrow ?
\end{align*}
\]
Rule #6: While-loop

The false part is easy, but what about the true part?

Inference Rules for while-loop

\[
\begin{align*}
\langle b, \sigma \rangle &\Downarrow F \\
\langle \text{while } b \text{ do } c, \sigma \rangle &\Downarrow \sigma \\
\langle b, \sigma \rangle &\Downarrow T \\
\langle c, \sigma \rangle &\Downarrow \sigma_2 \\
\langle \text{while } b \text{ do } c, \sigma \rangle &\Downarrow ?
\end{align*}
\]
Rule #6: While-loop

Idea: What about using the entire while-loop recursively?

Inference Rules for while-loop

\[
\begin{align*}
\langle b, \sigma \rangle \Downarrow F & \quad \frac{\langle b, \sigma \rangle \Downarrow F}{\langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow \sigma} \\
\langle b, \sigma \rangle \Downarrow T & \quad \frac{\langle c, \sigma \rangle \Downarrow \sigma_2}{\langle \text{while } b \text{ do } c, \sigma_2 \rangle \Downarrow \sigma'} \\
\langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow \sigma' & \end{align*}
\]

Danger: Is this rule circular?
Warning: Circular Rules

Warning: It is easy to create valid yet pointless rules using recursion.

Example of a valid yet pointless inference rule

\[\langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow \sigma' \]

- This inference rule is valid and sound.
- But it isn’t useful. (Recall that derivations are finite.)
Rule #6: While-loop

Is this rule pointless?

Inference Rules for while-loop

\[
\begin{align*}
\langle b, \sigma \rangle & \Downarrow F \\
\langle \text{while } b \text{ do } c, \sigma \rangle & \Downarrow \sigma \\
\langle b, \sigma \rangle & \Downarrow T \quad \langle c, \sigma \rangle \Downarrow \sigma_2 \quad \langle \text{while } b \text{ do } c, \sigma_2 \rangle \Downarrow \sigma' \\
\langle \text{while } b \text{ do } c, \sigma \rangle & \Downarrow \sigma'
\end{align*}
\]
Rule #6: While-loop

Is this rule pointless? No, this works! But let’s compact it into a single rule...

Inference Rules for while-loop

\[\langle b, \sigma \rangle \Downarrow F \]
\[\frac{\langle b, \sigma \rangle \Downarrow F}{\langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow \sigma} \]

\[\langle b, \sigma \rangle \Downarrow T \]
\[\langle c, \sigma \rangle \Downarrow \sigma_2 \]
\[\langle \text{while } b \text{ do } c, \sigma_2 \rangle \Downarrow \sigma' \]

\[\frac{\langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow \sigma'}{\langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow \sigma'} \]
Rule #6: While-loop

Inference Rule for while-loop

\[
\frac{\langle \text{if } b \text{ then } (c ; \text{while } b \text{ do } c) \text{ else skip }, \sigma \rangle \Downarrow \sigma'}{\langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow \sigma'}
\]
Rule #6: While-loop

This single rule suffices because with it we can derive:

\[
\begin{align*}
\langle b, \sigma \rangle & \Downarrow F & \langle \text{skip}, \sigma \rangle & \Downarrow \sigma & \quad \text{(1)} \\
\langle \text{if } b \text{ then } (c; \text{while } b \text{ do } c) \text{ else skip}, \sigma \rangle & \Downarrow \sigma & \quad \text{(4)} \\
\langle \text{while } b \text{ do } c, \sigma \rangle & \Downarrow \sigma' & \quad \text{(6)}
\end{align*}
\]

and

\[
\begin{align*}
\langle b, \sigma \rangle & \Downarrow T & \langle c; \text{while } b \text{ do } c, \sigma \rangle & \Downarrow \sigma' & \quad \text{(2)} \\
\langle c, \sigma \rangle & \Downarrow \sigma_2 & \langle \text{while } b \text{ do } c, \sigma_2 \rangle & \Downarrow \sigma' & \quad \text{(5)} \\
\langle \text{if } b \text{ then } (c; \text{while } b \text{ do } c) \text{ else skip}, \sigma \rangle & \Downarrow \sigma' & \quad \text{(6)} \\
\langle \text{while } b \text{ do } c, \sigma \rangle & \Downarrow \sigma' & \quad \text{(6)}
\end{align*}
\]
Other Rules

- Also need inference rules for arithmetic and boolean judgments
- See reference section of Assignment #2 for full list
- Mostly “obvious” but I’ll mention a few
Symbols vs. Mathematical Operators

Inference Rule for addition

\[
\begin{align*}
\langle a_1, \sigma \rangle \downarrow n_1 & \quad \langle a_2, \sigma \rangle \downarrow n_2 \\
\implies \langle a_1 + a_2, \sigma \rangle \downarrow n_1 + n_2
\end{align*}
\]

(15)

Recall: “+” is a symbol from the input stream (no mathematical significance), whereas “+” is the mathematical operator for 31-bit modular integer addition.
To get variable values, we simply use σ as a function.

Inference Rule for variable-read

\[\langle v, \sigma \rangle \Downarrow \sigma(v) \tag{14} \]

- Rules with no premises are called **axioms**.
- When writing axioms, feel free to omit the fraction line.
Comprehending Inference Rules

Inference Rule for $;$

\[
\langle c_1, \sigma \rangle \Downarrow \sigma_2 \quad \langle c_2, \sigma_2 \rangle \Downarrow \sigma' \\
\frac{\langle c_1 ; c_2, \sigma \rangle \Downarrow \sigma'}{(2)}
\]

- Two ways to understand each inference rule:
 1. Implementation recipe: "To compute $c_1 ; c_2$ on σ, first (recursively) compute c_1 on σ to get σ_2, then (recursively) compute c_2 on σ_2 to get σ'.”
 2. Logical specification: "To prove that $c_1 ; c_2$ on σ converges to σ', it suffices to prove c_1 on σ converges to some σ_2, and c_2 on σ_2 converges to σ'.”

- Big hint: Reading each rule as an implementation recipe essentially solves Assignment #2 for you. Your solution should be a nearly verbatim translation from the rules to code.

- Spanning the semantic gap
 - Rules are definitions, not theorems. So if you get them “wrong”, there’s no proof of wrongness. You’ve merely defined a really strange language.
 - Functional languages minimize the chance for error when mapping the math to code.