Motivation

- Goals of any axiomatic semantics:
 - **Soundness**: If a Hoare triple $\{A\}c\{B\}$ is derivable, it is “true”.
 - **Completeness**: If a Hoare triple $\{A\}c\{B\}$ is “true”, it is derivable.

- Are our 6 axiomatic semantic rules sound and complete?
 - Must first formally define what is meant by “true” in the above
 - Typically we define this using... *denotational semantics*!
Denotations of Assertion Expressions

(1) Extend expression denotations \(\mathcal{E} \) to include meta-variables \(\bar{v} \):

- stores \(\Sigma : v \rightarrow \mathbb{Z} \)
- interpretations \(\bar{\Sigma} : \bar{v} \rightarrow \mathbb{Z} \)
- exp denotations \(\mathcal{E} : e \rightarrow \bar{\Sigma} \rightarrow \Sigma \rightarrow \mathbb{Z} \)

\[
\begin{align*}
\mathcal{E}[n]_{\bar{\sigma}}\sigma &= n \\
\mathcal{E}[v]_{\bar{\sigma}}\sigma &= \sigma(v) \\
\mathcal{E}[\bar{v}]_{\bar{\sigma}}\sigma &= \bar{\sigma}(\bar{v}) \\
\mathcal{E}[e_1 + e_2]_{\bar{\sigma}}\sigma &= \mathcal{E}[e_1]_{\bar{\sigma}}\sigma + \mathcal{E}[e_2]_{\bar{\sigma}}\sigma \\
\mathcal{E}[e_1 - e_2]_{\bar{\sigma}}\sigma &= \mathcal{E}[e_1]_{\bar{\sigma}}\sigma - \mathcal{E}[e_2]_{\bar{\sigma}}\sigma \\
\mathcal{E}[e_1 \times e_2]_{\bar{\sigma}}\sigma &= \mathcal{E}[e_1]_{\bar{\sigma}}\sigma \cdot \mathcal{E}[e_2]_{\bar{\sigma}}\sigma
\end{align*}
\]
Denotations of Assertions

(2) Define denotations \mathcal{A} of assertions A:

assertion denotations $\mathcal{A} : A \rightarrow \bar{\Sigma} \rightarrow \Sigma \rightarrow \{T, F\}$

$\mathcal{A}[T] \bar{\sigma} \sigma = T$

$\mathcal{A}[F] \bar{\sigma} \sigma = F$

$\mathcal{A}[e_1 \leq e_2] \bar{\sigma} \sigma = \mathcal{E}[e_1] \bar{\sigma} \sigma \leq \mathcal{E}[e_2] \bar{\sigma} \sigma$

$\mathcal{A}[A_1 \Rightarrow A_2] \bar{\sigma} \sigma = \mathcal{A}[A_1] \bar{\sigma} \sigma \Rightarrow \mathcal{A}[A_2] \bar{\sigma} \sigma$

$\mathcal{A}[\forall \bar{v}.A] \bar{\sigma} \sigma = \forall i \in \mathbb{Z}, \mathcal{A}[A](\bar{\sigma}[\bar{v} \mapsto i]) \sigma$

\vdots
(3) Notations:

\[\bar{\sigma}, \sigma \models A \text{ asserts } A[\bar{\sigma}]\bar{\sigma} \sigma \]
\[\sigma \models A \text{ asserts } \forall \bar{\sigma} \in \bar{\Sigma}, (\bar{\sigma}, \sigma \models A) \]
\[\models A \text{ asserts } \forall \sigma \in \Sigma, (\sigma \models A) \]

Note: \(\models A \) is our notation from the Rule of Consequence.

(4) Hoare Triple Denotations: \(\models \{A\}c\{B\} \) asserts:

\[\forall \bar{\sigma} \in \bar{\Sigma}, \forall \sigma, \sigma' \in \Sigma, (\bar{\sigma}, \sigma \models A) \land ((\sigma, \sigma') \in C[\bar{c}]) \Rightarrow (\bar{\sigma}, \sigma' \models B) \]

Note: \(C[\bar{c}] \) is the denotational semantics of the target programming language.
Proving Soundness

Theorem (Soundness)

If \(\{A\} c \{B\} \) is derivable then \(\models \{A\} c \{B\} \) holds.

Proof

Let \(\bar{\sigma} \in \bar{\Sigma} \) and \(\sigma, \sigma' \in \Sigma \) be given such that \(\bar{\sigma}, \sigma \models A \) and \((\sigma, \sigma') \in C[c] \).

(Goal: Prove \(\bar{\sigma}, \sigma' \models B \).)
Proving Soundness

Theorem (Soundness)
If $\{A\}c\{B\}$ is derivable then $\models \{A\}c\{B\}$ holds.

Proof
Let $\bar{\sigma} \in \bar{\Sigma}$ and $\sigma, \sigma' \in \Sigma$ be given such that $\bar{\sigma}, \sigma \models A$ and $(\sigma, \sigma') \in C[c]$.

Let D be a derivation of $\{A\}c\{B\}$. Proof is by structural induction over D.

IH: If $\{A_0\}c_0\{B_0\}$ has a derivation $D_0 < D$, then $\models \{A_0\}c_0\{B_0\}$ holds.

Case 1: Suppose D ends in Rule 1:

$$D = \frac{\{A\}\text{skip}\{A\}}{(1)}$$

Thus $c = \text{skip}$ and $B = A$.

(Goal: Prove $\bar{\sigma}, \sigma' \models B$.)
Proving Soundness

Theorem (Soundness)
If \(\{A\} c \{B\} \) is derivable then \(\models \{A\} c \{B\} \) holds.

Proof
Let \(\bar{\sigma} \in \bar{\Sigma} \) and \(\sigma, \sigma' \in \Sigma \) be given such that \(\bar{\sigma}, \sigma \models A \) and \((\sigma, \sigma') \in C[c] \).

Let \(D \) be a derivation of \(\{A\} c \{B\} \). Proof is by structural induction over \(D \).

IH: If \(\{A_0\} c_0 \{B_0\} \) has a derivation \(D_0 < D \), then \(\models \{A_0\} c_0 \{B_0\} \) holds.

Case 1: Suppose \(D \) ends in Rule 1:

\[
D = \frac{\{A\} \text{skip} \{A\}}{(1)}
\]

Thus \(c = \text{skip} \) and \(B = A \). Since \(\sigma' = C[\text{skip}] \sigma = \sigma \) and \(B = A \), assumption \(\bar{\sigma}, \sigma \models A \) implies \(\bar{\sigma}, \sigma' \models B \).

\[
\ldots
\]

(Goal: Prove \(\bar{\sigma}, \sigma' \models B \).)
Recall: $\models \{A\} c \{B\}$ asserts

$$\forall \bar{\sigma} \in \bar{\Sigma}, \forall \sigma, \sigma' \in \Sigma, (\bar{\sigma}, \sigma \models A) \land ((\sigma, \sigma') \in C[c]) \Rightarrow (\bar{\sigma}, \sigma' \models B)$$

Theorem (Completeness)

If $\models \{A\} c \{B\}$ then $\{A\} c \{B\}$ is derivable.

Proof

Assume $\models \{A\} c \{B\}$.
Completeness

Recall: $\vdash \{A\} c \{B\}$ asserts

$$\forall \bar{\sigma} \in \bar{\Sigma}, \forall \sigma, \sigma' \in \Sigma, (\bar{\sigma}, \sigma \models A) \land ((\sigma, \sigma') \in C[c]) \Rightarrow (\bar{\sigma}, \sigma' \models B)$$

Theorem (Completeness)

If $\vdash \{A\} c \{B\}$ then $\{A\} c \{B\}$ is derivable.

- Impossible! Recall our friend Kurt Gödel:

 No finite collection of axioms is both sound and complete.

- BUT... Stephen Cook (of P v. NP fame) comes to our rescue:
 - **Relative Completeness**: Given an oracle that (magically) derives the $\models A$ premises in the Rule of Consequence (whenever they are true), Hoare logic is complete.
 - In essence, Hoare Logic is “as complete as possible” given the inherent incompleteness of mathematics in general.
Preconditions & Postconditions

Edsger Dijkstra’s idea: The strongest correctness assertions are those in which
- the precondition is “weakest” (fewest assumptions)
- the postcondition is “strongest” (most conclusions)

Formally:
- We say “D is weaker than C” and “C is stronger than D” if $C \Rightarrow D$ and $D \not\Rightarrow C$.
- A is a **weakest precondition** of program c for postcondition B iff every precondition A_0 satisfying $\{A_0\}c\{B\}$ implies A.
- B is a **strongest postcondition** of program c for precondition A iff B implies every postcondition B_0 satisfying $\{A\}c\{B_0\}$.
Can Weakest Preconditions be Computed?

Idea

\[wp(c, B) \] should return a weakest precondition \(A \) for command \(c \) with postcondition \(B \).

\[
wp(\text{skip}, B) = ?
\]
Can Weakest Preconditions be Computed?

Idea

\(wp(c, B) \) should return a weakest precondition \(A \) for command \(c \) with postcondition \(B \).

\[
wp(\text{skip}, B) = B
\]
Can Weakest Preconditions be Computed?

Idea

\(\text{wp}(c, B) \) should return a weakest precondition \(A \) for command \(c \) with postcondition \(B \).

\[
\begin{align*}
\text{wp}(\text{skip}, B) &= B \\
\text{wp}(c_1 ; c_2, B) &= \\
\end{align*}
\]
Can Weakest Preconditions be Computed?

Idea

$\text{wp}(c, B)$ should return a weakest precondition A for command c with postcondition B.

\[
\begin{align*}
\text{wp}(\text{skip}, B) &= B \\
\text{wp}(c_1 ; c_2, B) &= \text{wp}(c_1, \text{wp}(c_2, B))
\end{align*}
\]
Can Weakest Preconditions be Computed?

Idea

\(wp(c, B) \) should return a weakest precondition \(A \) for command \(c \) with postcondition \(B \).

\[
\begin{align*}
wp(\text{skip}, B) &= B \\
wp(c_1 ; c_2, B) &= wp(c_1, wp(c_2, B)) \\
wp(x := e, B) &= \text{missing}
\end{align*}
\]
Can Weakest Preconditions be Computed?

Idea

$\text{wp}(c, B)$ should return a weakest precondition A for command c with postcondition B.

- $\text{wp}(\text{skip}, B) = B$
- $\text{wp}(c_1; c_2, B) = \text{wp}(c_1, \text{wp}(c_2, B))$
- $\text{wp}(x := e, B) = B[e/x]$
Can Weakest Preconditions be Computed?

Idea

\(wp(c, B)\) should return a weakest precondition \(A\) for command \(c\) with postcondition \(B\).

\[
\begin{align*}
wp(\text{skip}, B) &= B \\
wp(c_1 ; c_2, B) &= wp(c_1, wp(c_2, B)) \\
wp(x := e, B) &= B[e/x] \\
wpp(\text{if } b \text{ then } c_1 \text{ else } c_2, B) &= \\
\end{align*}
\]
Can Weakest Preconditions be Computed?

Idea

$wp(c, B)$ should return a weakest precondition A for command c with postcondition B.

\[
wp(\text{skip}, B) = B
\]
\[
wp(c_1 ; c_2, B) = wp(c_1, wp(c_2, B))
\]
\[
wp(x := e, B) = B[e/x]
\]
\[
wp(\text{if } b \text{ then } c_1 \text{ else } c_2, B) = (b \Rightarrow wp(c_1, B)) \land (\neg b \Rightarrow wp(c_2, B))
\]
Can Weakest Preconditions be Computed?

Idea

$\text{wp}(c, B)$ should return a weakest precondition A for command c with postcondition B.

\[
\begin{align*}
\text{wp}(\text{skip}, B) &= B \\
\text{wp}(c_1 ; c_2, B) &= \text{wp}(c_1, \text{wp}(c_2, B)) \\
\text{wp}(x := e, B) &= B[e/x] \\
\text{wp}(\text{if } b \text{ then } c_1 \text{ else } c_2, B) &= (b \Rightarrow \text{wp}(c_1, B)) \land (\neg b \Rightarrow \text{wp}(c_2, B)) \\
\text{wp}(\text{while } b \text{ do } c, B) &=
\end{align*}
\]
Can Weakest Preconditions be Computed?

Idea

$wp(c, B)$ should return a weakest precondition A for command c with postcondition B.

$\begin{align*}
wp(\text{skip}, B) &= B \\
wp(c_1 ; c_2, B) &= wp(c_1, wp(c_2, B)) \\
wp(x := e, B) &= B[e/x] \\
wp(\text{if } b \text{ then } c_1 \text{ else } c_2, B) &= (b \Rightarrow wp(c_1, B)) \land (\neg b \Rightarrow wp(c_2, B)) \\
wp(\text{while } b \text{ do } c, B) &= \text{undecidable?}
\end{align*}$
Can Weakest Preconditions be Computed?

Idea

$\text{wp}(c, B)$ should return a weakest precondition A for command c with postcondition B.

\[
\begin{align*}
\text{wp}(\text{skip}, B) &= B \\
\text{wp}(c_1 ; c_2, B) &= \text{wp}(c_1, \text{wp}(c_2, B)) \\
\text{wp}(x := e, B) &= B[e/x] \\
\text{wp}(\text{if } b \text{ then } c_1 \text{ else } c_2, B) &= (b \implies \text{wp}(c_1, B)) \land (\neg b \implies \text{wp}(c_2, B)) \\
\text{wp}(\text{while } b \text{ do } c, B) &= \forall \sigma \in \Sigma, \forall k, (\forall i, (0 \leq i < k) \implies C[c]^i \sigma \models b) \\
&\quad \implies (C[c]^k \sigma \models b \lor B)
\end{align*}
\]
Can Weakest Preconditions be Computed?

Idea

\(wp(c, B)\) should return a weakest precondition \(A\) for command \(c\) with postcondition \(B\).

\[
\begin{align*}
wp(\text{skip}, B) &= B \\
wp(c_1 ; c_2, B) &= wp(c_1, wp(c_2, B)) \\
wp(x := e, B) &= B[e/x] \\
wp(\text{if } b \text{ then } c_1 \text{ else } c_2, B) &= (b \Rightarrow wp(c_1, B)) \land (\neg b \Rightarrow wp(c_2, B)) \\
wp(\text{while } b \text{ do } c, B) &= \forall \sigma \in \Sigma, \forall k, \forall i, (0 \leq i < k) \Rightarrow C[c]^i \sigma \models b \\
&\Rightarrow (C[c]^k \sigma \models b \lor B)
\end{align*}
\]

Not supported by our assertion language (but turns out one can encode them):

- quantification over non-integers (\(\forall \sigma \in \Sigma \ldots\))
- all of denotational semantics(!) (\(C[c]\))
- function \(n\)-composition (\(f^n\))
- axiomatic denotations (\(\models\))
Exercise: Define an algorithm \(sp(A, c) \) that computes the strongest postcondition \(B \) for program \(c \) with precondition \(A \).

- Don’t worry about while-loops (hard!)
- Mostly similar to \(wp \) algorithm but assignment rule is messy

More (optional) topics:
- Read about Dijkstra guarded commands.
- Read “The Science of Programming” by David Gries (classic text).
- Read about verification condition generators.