FP vs. LP

- **Functional Programming**
 - centered around first-class functions
 - strong, parametric polymorphic type systems
 - single-assignment
 - operational semantics based on λ-calculus

- **Logic Programming**
 - centered around *relations*
 - no type system
 - no explicit assignment operation (!)
 - operational semantics based on unification and depth-first search
 Relations

- **Relation**
 - **Definition (relation):** A relation is a cartesian product $A \times B$ of two sets A and B.
 - Example: \leq relation over $\mathbb{N} \times \mathbb{N}$: \{(0, 0), (0, 1), (1, 1), (0, 2), (1, 2), (2, 2), \ldots\}
- Relations generalize functions.
 - Recall: We write (partial) functions $f : A \rightarrow B$ as sets of pairs $A \times B$.
 - Relations (as defined above) are also sets of pairs.
 - Function f encodes relation $\{(x, f(x)) \mid x \in f^{-1}\}$
 - Unlike functions, relations can map the same domain element to multiple different range elements.
Relational Programming

- Three ways to define a function/relation:
 - Imperatively:
 \[
 \text{factorial}(x) := \{ z := 1; \text{ for } i := 1 \text{ to } x \text{ do } z := z \times i; \text{ return } z \}\]
 - Functionally:
 \[
 \text{factorial}(x) := (\text{if } x \leq 0 \text{ then } 1 \text{ else } x \times \text{factorial}(x - 1))
 \]
 - Relationally:
 \[
 \text{factorial}(0, 1).
 \]
 \[
 \text{factorial}(x, y) \text{ if factorial}(x - 1, y/x).
 \]

- Note the differences in approach:
 - Imperative style is an operational recipe.
 - You are essentially doing the compiler’s job.
 - Compiler must reverse-engineer your code to optimize it!
 - Functional is a mathematical recipe.
 - better, but still somewhat operational
 - Relational defines necessary and sufficient conditions.
 - Compiler creates a search algorithm for the solution
 - Implementation details abstracted away from programmer
 - Search algorithm can be highly optimized by language implementation
Prolog Programming

- Prolog programs consist of:
 - facts (unconditional truths)
 - rules (conditional truths)
 - queries (cause the program to “run” by initiating a search for a solution to a question)

- Example: factorial program

```prolog
factorial(0,1).
factorial(X,Y) :- X2 is X-1, factorial(X2,Y2), Y is X*Y2.
```

```prolog
?- factorial(5,X).
X = 120
```
Originally invented by Robert Kowalski (for theorem-proving) and Alain Colmeraur (for NLP) [1973]

Now used primarily for:
- artificial intelligence
- scheduling problems
- databases (Datalog)
- model-checking
- compilers
- software engineering (verification, etc.)
- network protocol analysis
- many other applications...
Running Prolog

- One Prolog programming assignment (see eLearning)
- Two installation options:
 - Install SWI Prolog on your machine (see link on course web page)
 - Use CS Dept linux machines to do the assignment
- Programming
 - Create a text file name “lastname.pl”.
 - Text file contains facts and rules (no queries)
- Running your program
 - Type “pl” at the Unix prompt.
 - Type “consult(lastname).” at the Prolog prompt.
 - Enter queries at the Prolog prompt.
 - To reload after changing programs, just type “make.”
 - Exit by hitting Control-C then pressing “e”.
Prolog Syntax

- Each program line has one of two forms:
 - \(p(t_1, \ldots, t_n). \)
 - \(p(t_1, \ldots, t_n) :- p_1(t_1, \ldots, t_i), p_2(t_1, \ldots, t_j), \ldots, p_m(t_1, \ldots, t_k). \)
 - Don’t forget the period ending each line!
 - \(p \) is a *predicate* consisting of lower-case letters (e.g., “factorial”).
 - \(t_1, \ldots, t_n \) are *terms* (defined below)

- Terms can be:
 - integer constants (1, -13, etc.)
 - atoms (non-numerical constants)
 - consist of lower-case letters or surrounded by single-quotes
 - Examples: \(x, abc, 'Foo' \)
 - variables (captialized identifiers)
 - Examples: \(X, Foo \)
 - structures (tree-shaped data structures)
 - Examples: \(\text{foo}(3,12), \text{foo}(\text{foo}(13),\text{foo}(16,12)) \)
 - Warning: Syntax resembles predicates but means something completely different!
 - No type system, so be careful!
Example: Family Tree Relational Data Structure

father(tony, abe).
father(tony, sarah).
father(abe, john).
father(bill, susan).
father(john, jill).
father(rob, phil).
mother(lisa, abe).
mother(lisa, sarah).
mother(nancy, john).
mother(sarah, susan).
mother(mary, jill).
mother(susan, phil).
Reasoning About Family Trees

Q1: How might we decide parent relations?

\[\text{parent}(X, Y) : - \]

Q2: Grandparent?

\[\text{gp}(X, Y) : - \text{parent}(X, Z), \text{parent}(Z, Y). \]

Q3: Great-grandparent?

\[\text{ggp}(X, Y) : - \text{gp}(X, Z), \text{parent}(Z, Y). \]

Q4: Ancestor?

\[\text{ancestor}(X, Y) : - \text{parent}(X, Y). \]
\[\text{ancestor}(X, Y) : - \text{parent}(X, Z), \text{ancestor}(Z, Y). \]
Q1: How might we decide parent relations?

parent(X, Y) :- father(X, Y).
parent(X, Y) :- mother(X, Y).

Q2: Grandparent?

gp(X, Y) :- parent(X, Z), parent(Z, Y).

Q3: Great-grandparent?

ggp(X, Y) :- gp(X, Z), parent(Z, Y).

Q4: Ancestor?

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).
Reasoning About Family Trees

Q1: How might we decide parent relations?

parent(X, Y) :- father(X, Y).
parent(X, Y) :- mother(X, Y).

Q2: Grandparent?

gp(X, Y) :-

Q3: Great-grandparent?

ggp(X, Y) :- gp(X, Z), parent(Z, Y).

Q4: Ancestor?

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).
Reasoning About Family Trees

Q1: How might we decide parent relations?
parent(X, Y) :- father(X, Y).
parent(X, Y) :- mother(X, Y).

Q2: Grandparent?
gp(X, Y) :- parent(X, Z), parent(Z, Y).

Q3: Great-grandparent?
ggp(X, Y) :- gp(X, Z), parent(Z, Y).

Q4: Ancestor?
ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).
Reasoning About Family Trees

Q1: How might we decide parent relations?
 parent(X, Y) :- father(X, Y).
 parent(X, Y) :- mother(X, Y).

Q2: Grandparent?
 gp(X, Y) :- parent(X, Z), parent(Z, Y).

Q3: Great-grandparent?
 ggp(X, Y) :-
Q1: How might we decide parent relations?
 parent(X, Y) :- father(X, Y).
 parent(X, Y) :- mother(X, Y).

Q2: Grandparent?
 gp(X, Y) :- parent(X, Z), parent(Z, Y).

Q3: Great-grandparent?
 ggp(X, Y) :- gp(X, Z), parent(Z, Y).
Q1: How might we decide parent relations?
 parent(X,Y) :- father(X,Y).
 parent(X,Y) :- mother(X,Y).

Q2: Grandparent?
 gp(X,Y) :- parent(X,Z), parent(Z,Y).

Q3: Great-grandparent?
 ggp(X,Y) :- gp(X,Z), parent(Z,Y).

Q4: Ancestor?
 ancestor(X,Y) :-
Reasoning About Family Trees

Q1: How might we decide parent relations?
 parent(X,Y) :- father(X,Y).
 parent(X,Y) :- mother(X,Y).

Q2: Grandparent?
 gp(X,Y) :- parent(X,Z), parent(Z,Y).

Q3: Great-grandparent?
 ggp(X,Y) :- gp(X,Z), parent(Z,Y).

Q4: Ancestor?
 ancestor(X,Y) :- parent(X,Y).
 ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
Query Examples

?- father(abe,john).
true.

?- father(tony,X).
X = abe ; (user presses semicolon)
X = sarah.

?- parent(X,susan).
X = bill ; (user presses semicolon)
X = sarah ; (user presses semicolon)
false.

?-
Queries

- typed at Prolog prompt (not in external files)
- consist of a predicate possibly containing variables
 - if no variables, result is either true or false
 - otherwise, result is an instantiation of variables or false
- no solutions, one solution, or many solutions
 - no solution: false
 - after printing one solution, Prolog waits for user input
 - hit 〈RETURN〉 to stop search; Prolog says true
 - hit ; to find more solutions; Prolog either finds another and waits for more input or says false
- convergence not guaranteed!
 - queries can diverge (i.e., loop infinitely)
 - hit 〈CTRL-C〉 to interrupt, then “a” to abort
How does Prolog search for query solutions?

Three internal data structures:
- search tree in which each node has ...
- a list of goals (predicates), and
- a set of variable bindings (instantiations)

Two important concepts:
- **unification**: find instantiation of vars to make equal terms (if such instantiation exists)
- **back-tracking**: revisiting past decisions after a failed goal is reached
Search Procedure

- Initially...
 - search tree has just a root node
 - goal list consists only of the query
 - set of variable bindings is empty

- **Step 1:** Scan file from **top to bottom** for a fact or rule whose lhs potentially matches the current goal.
 - for each such fact/rule, add a child node to the search tree
 - descend to the leftmost child

- **Step 2:** Unify the top goal with this rule's lhs, yielding more variable instantiations

- **Step 3:** Add all rhs predicates to goal list, **left to right**

- Return to Step 1.

- Steps 1 or 2 may fail
 - no matching rule or failed unification
 - if so, backtrack to parent node and try next child
 - if root node fails, stop and return false
ancestor(tony, phil)

Search Example
Search Example

```
ancestor(tony, phil)

ancestor(X1, Y1) :- parent(X1, Y1).

ancestor(X1, Y1) :- parent(X1, Z1), ancestor(Z1, Y1).
```

![Family tree diagram](https://example.com/family_tree.png)
Search Example

ancestor(tony, phil)

ancestor(X₁, Y₁) :- parent(X₁, Y₁).
 X₁ = tony, Y₁ = phil
 parent(tony, phil)

ancestor(X₁, Y₁) :- parent(X₁, Z₁),
 ancestor(Z₁, Y₁).

ancestor(X₁, Y₁) :- parent(X₁, Z₁),
 ancestor(Z₁, Y₁).
Search Example

\[
\begin{align*}
\text{ancestor}(X_1, Y_1) & \iff \text{parent}(X_1, Y_1). \\
X_1 & = \text{tony}, Y_1 = \text{phil} \\
\text{parent}(\text{tony}, \text{phil})
\end{align*}
\]

\[
\begin{align*}
\text{ancestor}(X_1, Y_1) & \iff \text{parent}(X_1, Z_1), \text{ancestor}(Z_1, Y_1). \\
\text{parent}(X_2, Y_2) & \iff \text{father}(X_2, Y_2). \\
\text{parent}(X_2, Y_2) & \iff \text{mother}(X_2, Y_2).
\end{align*}
\]
Search Example

ancestor(X₁, Y₁) :- parent(X₁, Y₁).
\[X₁ = \text{tony}, \ Y₁ = \text{phil} \]
parent(tony, phil)

parent(X₂, Y₂) :- father(X₂, Y₂).
\[X₂ = \text{tony}, \ Y₂ = \text{phil} \]
father(tony, phil)

ancestor(X₃, Y₃) :- parent(X₃, Z₁), ancestor(Z₁, Y₃).

ancestor(tony, phil)
Search Example

ancestor(tony, phil)

ancestor(X₁, Y₁) :- parent(X₁, Y₁).
X₁ = tony, Y₁ = phil
parent(tony, phil)

ancestor(X₁, Y₁) :- parent(X₁, Z₁), ancestor(Z₁, Y₁).

parent(X₂, Y₂) :- father(X₂, Y₂).
X₁ = X₂ = tony, Y₁ = Y₂ = phil
father(tony, phil)
FAILS

parent(X₂, Y₂) :- mother(X₂, Y₂).

FAILS
Search Example

ancestor(tony, phil)

ancestor(X_1, Y_1) :- parent(X_1, Y_1).
X_1 = tony, Y_1 = phil
parent(tony, phil)

parent(X_2, Y_2) :- father(X_2, Y_2).
X_1 = X_2 = tony, Y_1 = Y_2 = phil
father(tony, phil)

FAILS

ancestor(X_1, Y_1) :- parent(X_1, Z_1), ancestor(Z_1, Y_1).

ancestor(X_1, Y_1) :- parent(X_1, Z_1), ancestor(Z_1, Y_1).
X_1 = X_2 = tony, Y_1 = Y_2 = phil
mother(tony, phil)
Search Example

ancestor(tony, phil)

ancestor(X₁, Y₁) :- parent(X₁, Y₁).
X₁ = tony, Y₁ = phil

parent(tony, phil)

parent(X₂, Y₂) :- father(X₂, Y₂).
X₁ = X₂ = tony, Y₁ = Y₂ = phil

father(tony, phil)

FAILS

FAILS

ancestor(X₁, Y₁) :- parent(X₁, Z₁), ancestor(Z₁, Y₁).

ancestor(X₁, Y₁) :- parent(X₁, Z₁), ancestor(X₁, Y₁).

search example diagram
Search Example

ancestor(tony,phil)

\[
\text{ancestor}(X_1,Y_1) \leftarrow \text{parent}(X_1,Z_1), \text{ancestor}(Z_1,Y_1).
\]
Search Example

```
ancestor(tony, phil)

ancestor(X₁, Y₁) :- parent(X₁, Z₁), ancestor(Z₁, Y₁).
X₁ = tony, Y₁ = phil
parent(tony, Z₁), ancestor(Z₁, phil)
```
Search Example

ancestor(tony, phil)

\[\begin{align*}
\text{ancestor}(X_1, Y_1) &\ :- \ \text{parent}(X_1, Z_1), \ \text{ancestor}(Z_1, Y_1). \\
X_1 &= \text{tony}, \ Y_1 = \text{phil} \\
\text{parent}(\text{tony}, Z_1), \ \text{ancestor}(Z_1, \text{phil})
\end{align*}\]

\[\begin{align*}
\text{parent}(X_2, Y_2) &\ :- \ \text{father}(X_2, Y_2). \\
\text{parent}(X_2, Y_2) &\ :- \ \text{mother}(X_2, Y_2).
\end{align*}\]
Search Example

```
ancestor(tony, phil)

X₁ = tony, Y₁ = phil
parent(tony, Z₁), ancestor(Z₁, phil)

parent(X₂, Y₂) :- mother(X₂, Y₂).
X₁ = X₂ = tony, Y₁ = phil, Y₂ = Z₁
father(tony, Z₁), ancestor(Z₁, phil)
```

EVENTUALLY FAILS
Search Example

ancestor(tony, phil)

\[\text{ancestor}(X_1, Y_1) :\text{ parent}(X_1, Z_1), \text{ ancestor}(Z_1, Y_1).\]
\[X_1 = \text{tony}, \ Y_1 = \text{phil} \]
\[\text{parent}(\text{tony}, Z_1), \text{ ancestor}(Z_1, \text{phil})\]

parent(tony, Z_1), ancestor(Z_1, phil)

\[\text{parent}(X_2, Y_2) :\text{ father}(X_2, Y_2).\]
\[X_1 = X_2 = \text{tony}, \ Y_1 = \text{phil}, \ Y_2 = Z_1\]
\[\text{father}(\text{tony}, Z_1), \text{ ancestor}(Z_1, \text{phil})\]

\[\text{father}(\text{tony}, \text{abe}).\]

\[\text{father}(\text{tony}, \text{sarah}).\]

\[\text{father}(\text{tony}, \text{sarah}).\]
Search Example

```
ancestor(tony, phil)

ancestor(X1, Y1) :- parent(X1, Z1), ancestor(Z1, Y1).

X1 = tony, Y1 = phil
parent(tony, Z1), ancestor(Z1, phil)

parent(X2, Y2) :- father(X2, Y2).

X1 = X2 = tony, Y1 = phil, Y2 = Z1
father(tony, Z1), ancestor(Z1, phil)

father(tony, abe).

X1 = X2 = tony, Y1 = phil, Y2 = Z1 = abe
ancestor(abe, phil)

father(tony, sarah).

father(tony, abe).
```

```
EVENTUALLY FAILS

father(tony, sarah).
```

```
father(tony, abe).
```

```
father(tony, sarah).
```
Search Example

ancestor(tony, phil)

ancestor(X1, Y1) :- parent(X1, Z1), ancestor(Z1, Y1).

X1 = tony, Y1 = phil
parent(tony, Z1), ancestor(Z1, phil)

parent(X2, Y2) :- father(X2, Y2).

X1 = X2 = tony, Y1 = phil, Y2 = Z1
father(tony, Z1), ancestor(Z1, phil)

father(tony, abe).

X1 = X2 = tony, Y1 = phil, Y2 = Z1 = abe
ancestor(abe, phil)

EVENTUALLY FAILS
Search Example

ancestor(tony, phil)

ancestor(X_1, Y_1) :- parent(X_1, Z_1), ancestor(Z_1, Y_1).

X_1 = tony, Y_1 = phil

parent(tony, Z_1), ancestor(Z_1, phil)

parent(X_2, Y_2) :- father(X_2, Y_2).

X_1 = X_2 = tony, Y_1 = phil, Y_2 = Z_1

father(tony, Z_1), ancestor(Z_1, phil)

father(tony, abe).

X_1 = X_2 = tony, Y_1 = phil, Y_2 = Z_1 = abe

ancestor(abe, phil)

EVENTUALLY FAILS
father(tony,sarah).

\[X_1 = X_2 = \text{tony}, \ Y_1 = \text{phil}, \ Y_2 = Z_1 = \text{sarah} \]

ancestor(sarah,phil)
father(tony,sarah).

\[X_1 = X_2 = \text{tony}, \ Y_1 = \text{phil}, \ Y_2 = Z_1 = \text{sarah} \]

ancestor(sarah,phil)

\[\vdots \]

ancestor(susan,phil)

\begin{itemize}
 \item \text{LISA}
 \item \text{TONY}
 \item \text{NANCY}
 \item \text{ABE}
 \item \text{SARAH}
 \item \text{BILL}
 \item \text{MARY}
 \item \text{JOHN}
 \item \text{SUSAN}
 \item \text{ROB}
 \item \text{JILL}
 \item \text{PHIL}
\end{itemize}
father(tony,sarah).

\[X_1 = X_2 = \text{tony}, \ Y_1 = \text{phil}, \ Y_2 = Z_1 = \text{sarah} \]

ancestor(sarah,phil)

...

ancestor(susan,phil)

ancestor(\(X_3, Y_3\)) :- parent(\(X_3, Y_3\)).

ancestor(\(X_3, Y_3\)) :- parent(\(X_3, Z_3\)), ancestor(\(Z_3, Y_3\)).
father(tony,sarah).

\[
X_1 = X_2 = tony, \ Y_1 = phil, \ Y_2 = Z_1 = sarah
\]

ancestor(sarah,phil)

\[
\vdots
\]

ancestor(susan,phil)

\[
\text{ancestor}(X_3, Y_3) :\text{- parent}(X_3, Y_3).
\]

\[
X_3 = susan, \ Y_3 = phil
\]

parent(susan,phil)

\[
\text{ancestor}(X_3, Y_3) :\text{- parent}(X_3, Z_3),\text{ ancestor}(Z_3, Y_3).
\]
father(tony,sarah).

\[X_1 = X_2 = \text{tony}, \ Y_1 = \text{phil}, \ Y_2 = Z_1 = \text{sarah} \]

ancestor(sarah,phil)

\[\vdots \]

ancestor(susan,phil)

ancestor(\(X_3, Y_3\)) :- parent(\(X_3, Y_3\)).

\[X_3 = \text{susan}, \ Y_3 = \text{phil} \]

parent(susan,phil)

father(susan,phil).

mother(susan,phil).

\begin{center}
\begin{tikzpicture}
 \node (susan) {susan} child {node (mary) {mary} child {node (jill) {jill}}}
 child {node (nancy) {nancy} child {node (abe) {abe}}}
 child {node (sarah) {sarah}}
 child {node (bill) {bill}}
 child {node (lisa) {lisa} child {node (tony) {tony}}}
 child {node (john) {john}}
 child {node (susan) {susan}}
 child {node (rad) {rob}}
 child {node (phil) {phil}};
\end{tikzpicture}
\end{center}
father(tony,sarah).

\[X_1 = X_2 = \text{tony}, \ Y_1 = \text{phil}, \ Y_2 = Z_1 = \text{sarah} \]

ancestor(sarah,phil)

\vdots

ancestor(susan,phil)

ancestor(\(X_3, Y_3\)) :- parent(\(X_3, Y_3\)).

\[X_3 = \text{susan}, \ Y_3 = \text{phil} \]

parent(susan,phil)

father(susan,phil).

mother(susan,phil).

FAILS
father(tony,sarah).

\[X_1 = X_2 = \text{tony}, \ Y_1 = \text{phil}, \ Y_2 = Z_1 = \text{sarah} \]

ancestor(sarah,phil)

\[\vdots \]

ancestor(susan,phil)

ancestor(\(X_3, Y_3\)) :- parent(\(X_3, Y_3\)).
\[X_3 = \text{susan}, \ Y_3 = \text{phil} \]

parent(susan,phil)

father(susan,phil).

FAILS

father(susan,phil).

mother(susan,phil).

SUCCEEDS
Order matters!
- order of facts/rules in file
- order of predicates on rhs of each rule
- order only affects termination (as long as you stick to a certain language subset...), but does not change answers

Tips for good ordering:
- put facts before rules (base cases first)
- put “easy” predicates before “harder” ones
Our definition of ancestor:

\[
\begin{align*}
\text{ancestor}(X,Y) & \leftarrow \text{parent}(X,Y). \\
\text{ancestor}(X,Y) & \leftarrow \text{parent}(X,Z), \text{ancestor}(Z,Y).
\end{align*}
\]

Q1: What would happen if we reversed the rule order?

\[
\begin{align*}
\text{ancestor}(X,Y) & \leftarrow \text{parent}(X,Z), \text{ancestor}(Z,Y). \\
\text{ancestor}(X,Y) & \leftarrow \text{parent}(X,Y).
\end{align*}
\]

Q2: What if we reversed the conjunct order within the last rule?

\[
\begin{align*}
\text{ancestor}(X,Y) & \leftarrow \text{parent}(X,Y). \\
\text{ancestor}(X,Y) & \leftarrow \text{ancestor}(Z,Y), \text{parent}(X,Z).
\end{align*}
\]

Q3: What if we did both?

\[
\begin{align*}
\text{ancestor}(X,Y) & \leftarrow \text{ancestor}(Z,Y), \text{parent}(X,Z). \\
\text{ancestor}(X,Y) & \leftarrow \text{parent}(X,Y).
\end{align*}
\]
Equality Predicates

- “=” means “unifiable”
 - attempts a unification (possibly adding new variable bindings)
 - Example #1: \(f(X,a) = f(b,Y) \). (succeeds with \(X = b, Y = a \))
 - Example #2: \(X = a, X = b \). (fails)
 - Example #3: \(X = a, a = X \). (succeeds with \(X = a \))

- “==” means “physically equal”
 - tests existing bindings (no new unification!)
 - Example #1: \(a == b \) (fails)
 - Example #2: \(X == Z \) (fails)
 - Example #3: \(X = Z, X == Z \) (succeeds)
 - Example #4: \(X == a \) (fails)
 - Example #5: \(X = a, X == a \) (succeeds)

- “\(\neq \)” is negation of “==”
 - sibling(\(X,Y \)) :- parent(\(Z,X \)), parent(\(Z,Y \)), \(X \neq Y \).
Inequalities

- **Numerical inequalities**
 - $X < Y$, $X > Y$, $X =< Y$, $X >= Y$
 - succeed only when both X and Y are already bound to integers
 - no unification occurs
 - no arithmetic expressions permitted!
 - Example: $X+3 < X+4$ (*syntax error*)

- **Non-numerical comparisons**
 - $X @< Y$, $X @> Y$, $X @=< Y$, $X @>= Y$
 - compare arbitrary atoms according to a “standard” ordering
 - Example: `bar @< foo` (*succeeds*)
 - X and Y must be bound
Choice Operators

- Semicolon is disjunction
 - Example: parent(X,Y) :- (father(X,Y); mother(X,Y)), X \(\equiv\) Y.
 - Always replacable with multiple rules, so never necessary
 - But it can sometimes be very convenient.

- Ternary operator: \(P_1 \rightarrow P_2 ; P_3 \)
 - If \(P_1 \) succeeds, do \(P_2 \) (and discard \(P_3 \)); otherwise do \(P_3 \) (and discard \(P_2 \))
 - Not quite the same as logical implication (think of it as “if \(P_1 \) is provable...” rather than “if \(P_1 \) is true...”)
 - Diverges when \(P_1 \) diverges
 - Always replacable with multiple rules (like disjunction)

- Underscore is a wildcard

 \[
 \text{isparent}(X) :- \text{parent}(X,_).
 \]

- If you write a variable on a rule’s lhs that’s never used on its rhs, you’ll get a warning. Use underscore instead.
- Warnings help programmer identify typos (e.g., mistyped variable names).
Negation

“\(\neg P\)” succeeds when predicate \(P\) terminates with failure

- NOT the same as logical negation!
- think of it more like “\(P\) is disprovable”
- loops when \(P\) loops
- can exacerbate order-sensitivity issues
- avoid spurious uses, but sometimes needed
“is” keyword

- Syntax: X is 3+5
- single variable on left
- arithmetic expression on right
- no unbound variables permitted on right!

Examples:

- X=5, X is 4+2 (fails)
- X is Y+3 (aborts with error if Y unbound)
- X=5, Y is X+3 (succeeds with Y = 8)

Equality does not solve arithmetic

- X = 3+5 (binds X to the literal structure “3+5”)

The “is” keyword is not an assignment operation

- X is X+1 (always fails)
- X=X+1 (always fails)
Lists

- **Syntax**
 - `[]` is the empty list
 - `[H|T]` is a list with head `H` and tail `T`
 - Recall: list tail is *list* of all elements except head
 - tail can be empty
 - `[X,Y|Z]` is a list with first two elements `X` and `Y`, and remaining elements `Z`

- **Exercise:** Implement a predicate `sum(L,S)` that succeeds with `S` equal to the sum of numbers in list `L.`
Lists

- Syntax
 - `[]` is the empty list
 - `[H | T]` is a list with head H and tail T
 - Recall: list tail is list of all elements except head
 - tail can be empty
 - `[X, Y | Z]` is a list with first two elements X and Y, and remaining elements Z

- **Exercise:** Implement a predicate `sum(L, S)` that succeeds with S equal to the sum of numbers in list L.

 \[
 \text{sum}([], 0).
 \]
Lists

- **Syntax**
 - `[]` is the empty list
 - `[H | T]` is a list with head `H` and tail `T`
 - Recall: list tail is list of all elements except head
 - Tail can be empty
 - `[X, Y | Z]` is a list with first two elements `X` and `Y`, and remaining elements `Z`

- **Exercise**: Implement a predicate `sum(L, S)` that succeeds with `S` equal to the sum of numbers in list `L`.


  ```prolog
  sum([], 0).
  sum([H | T], S) :- sum(T, S1), S is H + S1.
  ```

Exercise: Implement a predicate $\text{append}(L_1,L_2,L_3)$ that succeeds with L_3 equal to list L_1 appended by list L_2.

append([],L,L).
append([H1 | T1],L2,[H1 | T3]) :- append(T1,L2,T3).

Exercise: Implement a predicate $\text{pick}(X,L_1,L_2)$ that succeeds when X is a member of list L_1, and L_2 is list L_1 without the first X.

pick(X,[X | T],T).
pick(X,[Y | T1],[Y | T2]) :- X != Y, pick(X,T1,T2).
Exercise: Implement a predicate `append(L1,L2,L3)` that succeeds with L3 equal to list L1 appended by list L2.

```
append([],L,L).
```

Exercise: Implement a predicate `pick(X,L1,L2)` that succeeds when X is a member of list L1, and L2 is list L1 without the first X.

```
pick(X,[X|T],T).
pick(X,[Y|T1],[Y|T2]) :- X \= Y, pick(X,T1,T2).
```
Exercise: Implement a predicate `append(L1,L2,L3)` that succeeds with L3 equal to list L1 appended by list L2.

```
append([],L,L).
append([H|T1],L2,[H|T3]) :- append(T1,L2,T3).
```
More List Examples

Exercise: Implement a predicate `append(L1,L2,L3)` that succeeds with `L3` equal to list `L1` appended by list `L2`.

```
append([],L,L).
append([H1|T1],L2,[H1|T3]) :- append(T1,L2,T3).
```

Exercise: Implement a predicate `pick(X,L1,L2)` that succeeds when `X` is a member of list `L1`, and `L2` is list `L1` without the first `X`.

```
pick(X,[X|T],T).
pick(X,[Y|T1],[Y|T2]) :- X \= Y, pick(X,T1,T2).
```
More List Examples

Exercise: Implement a predicate `append(L1,L2,L3)` that succeeds with `L3` equal to list `L1` appended by list `L2`.

```prolog
append([],L,L).
append([H1|T1],L2,[H1|T3]) :- append(T1,L2,T3).
```

Exercise: Implement a predicate `pick(X,L1,L2)` that succeeds when `X` is a member of list `L1`, and `L2` is list `L1` without the first `X`.

```prolog
pick(X,[X|T],T).
```
Exercise: Implement a predicate `append(L1,L2,L3)` that succeeds with `L3` equal to list `L1` appended by list `L2`.

```
append([],L,L).
append([H1 | T1],L2,[H1 | T3]) :- append(T1,L2,T3).
```

Exercise: Implement a predicate `pick(X,L1,L2)` that succeeds when `X` is a member of list `L1`, and `L2` is list `L1` without the first `X`.

```
pick(X,[X | T],T).
pick(X,[Y | T1],[Y | T2]) :- X \=\= Y, pick(X,T1,T2).
```
Logical Arithmetic

- Encode natural numbers as structures:
 - zero is 0
 - one is s(0)
 - two is s(s(0))

- **Exercise:** Implement a predicate `num(N)` that succeeds when `N` is a valid logical arithmetic encoding.

  ```prolog
  num(0).
  num(s(N)) :- num(N).
  ```

- **Exercise:** Implement a predicate `lplus(X,Y,Z)` that succeeds with `Z` equal to the logical numeral that encodes the sum of logical numerals `X` and `Y`.

  ```prolog
  lplus(0,Y,Y).
  lplus(s(X),Y,s(Z)) :- lplus(X,Y,Z).
  ```
Logical Arithmetic

- Encode natural numbers as structures:
 - zero is 0
 - one is s(0)
 - two is s(s(0))

- **Exercise:** Implement a predicate `num(N)` that succeeds when `N` is a valid logical arithmetic encoding.

  ```prolog
  num(0).
  num(s(N)) :- num(N).
  ```

- **Exercise:** Implement a predicate `lplus(X,Y,Z)` that succeeds with `Z` equal to the logical numeral that encodes the sum of logical numerals `X` and `Y`.

  ```prolog
  lplus(0,Y,Y).
  ```
Logical Arithmetic

- Encode natural numbers as structures:
 - zero is 0
 - one is s(0)
 - two is s(s(0))

- Exercise: Implement a predicate `num(N)` that succeeds when `N` is a valid logical arithmetic encoding.

  ```prolog
  num(0).
  num(s(N)) :- num(N).
  ```

- Exercise: Implement a predicate `lplus(X,Y,Z)` that succeeds with `Z` equal to the logical numeral that encodes the sum of logical numerals `X` and `Y`.

  ```prolog
  lplus(0,Y,Y).
  lplus(s(X),Y,s(Z)) :- lplus(X,Y,Z).
  ```
Exercise: Implement a predicate `lminus(X,Y,Z)` that succeeds with Z equal to the logical numeral that encodes the difference between logical numerals X and Y.

```prolog
lminus(0,Y,0).
lminus(s(X),Y,Z) :- lminus(X,Y,XY), lplus(XY,Y,Z).
```
Exercise: Implement a predicate `lminus(X,Y,Z)` that succeeds with Z equal to the logical numeral that encodes the difference between logical numerals X and Y.

\[
\text{lminus}(X,Y,Z) \leftarrow \text{lplus}(Y,Z,X).
\]
Logical Arithmetic

Exercise: Implement a predicate `lminus(X,Y,Z)` that succeeds with `Z` equal to the logical numeral that encodes the difference between logical numerals `X` and `Y`.

\[
lminus(X,Y,Z) :- lplus(Y,Z,X).
\]

Exercise: Implement a predicate `ltimes(X,Y,Z)` that succeeds with `Z` equal to the logical numeral that encodes the product of logical numerals `X` and `Y`.

\[
ltimes(0,Y,0).
ltimes(s(X),Y,Z) :- ltimes(X,Y,XY), lplus(XY,Y,Z).
\]
Logical Arithmetic

Exercise: Implement a predicate `lminus(X,Y,Z)` that succeeds with `Z` equal to the logical numeral that encodes the difference between logical numerals `X` and `Y`.

```
lminus(X,Y,Z) :- lplus(Y,Z,X).
```

Exercise: Implement a predicate `ltimes(X,Y,Z)` that succeeds with `Z` equal to the logical numeral that encodes the product of logical numerals `X` and `Y`.

```
ltimes(0,Y,0).
```
Exercise: Implement a predicate `lminus(X, Y, Z)` that succeeds with `Z` equal to the logical numeral that encodes the difference between logical numerals `X` and `Y`.

\[
lminus(X, Y, Z) :- lplus(Y, Z, X).
\]

Exercise: Implement a predicate `ltimes(X, Y, Z)` that succeeds with `Z` equal to the logical numeral that encodes the product of logical numerals `X` and `Y`.

\[
ltimes(0, Y, 0).
ltimes(s(X), Y, Z) :- ltimes(X, Y, XY), lplus(XY, Y, Z).
\]
Cryptarithmetic Puzzles

\[
\begin{array}{c}
A M \\
+ \ P M \\
\hline
D A Y
\end{array}
\]

Exercise: Use Prolog to find a mapping from letters to digits such that:

- no leftmost digit is a zero
- no two letters are assigned the same digit

Specifically, `solve([A,M,P,D,Y])` should succeed with a list of digits for the corresponding letters satisfying all above constraints.
Cryptarithmetic Solution

\[
\begin{array}{c}
A \\ M \\
+ \\ P \\ M \\
\hline
D \\ A \\ Y \\
\end{array}
\]

solve([A,M,P,D,Y]) :-
Cryptarithmetic Solution

\[
\begin{array}{c}
A M \\
+ P M \\
\hline
D A Y
\end{array}
\]

solve([A,M,P,D,Y]) :-
pick(M,[0,1,2,3,4,5,6,7,8,9],L1),
pick(Y,L1,L2),
pick(A,L2,L3), A = 0,
pick(P,L3,L4), P = 0,
A is (A+P+C1) mod 10,
D is (A+P+C1) // 10, D = 0,
pick(D,L4,L1).
Cryptarithmetic Solution

\[
\begin{array}{c}
A \ M \\
+ \ P \ M \\
\hline
D \ A \ Y
\end{array}
\]

\[
solve([A,M,P,D,Y]) :-
\]
\[
pick(M,[0,1,2,3,4,5,6,7,8,9],L1),
\]
\[
Y \text{ is } (M+M) \mod 10,
\]
\[
C1 \text{ is } (M+M) \div 10,
\]
\[
A \text{ is } (A+P+C1) \mod 10,
\]
\[
D \text{ is } (A+P+C1) \div 10.
\]
Cryptarithmetic Solution

\[
\begin{array}{c}
AM \\
+ PM \\
\hline
DA Y
\end{array}
\]

\[
solve([A,M,P,D,Y]) :-
\]
\[
pick(M,[0,1,2,3,4,5,6,7,8,9],L1),
\]
\[
Y \text{ is } (M+M) \mod 10,
\]
\[
C1 \text{ is } (M+M) \div 10,
\]
\[
pick(Y,L1,L2),
\]
\[
pick(A,L2,L3), A \neq 0,
\]
\[
pick(P,L3,L4), P \neq 0,
\]
\[
A \text{ is } (A+P+C1) \mod 10,
\]
\[
D \text{ is } (A+P+C1) \div 10, D \neq 0,
\]
\[
pick(D,L4,L5).
\]
Cryptarithmetic Solution

\[
\begin{array}{c}
AM \\
+ PM \\
\hline
DAY
\end{array}
\]

\begin{verbatim}
solve([A,M,P,D,Y]) :-
pick(M,[0,1,2,3,4,5,6,7,8,9],L1),
Y is (M+M) mod 10,
C1 is (M+M) // 10,
pick(Y,L1,L2),
pick(A,L2,L3), A \== 0,
pick(P,L3,L4), P \== 0,
A is (A+P+C1) mod 10,
D is (A+P+C1) // 10, D \== 0,
pick(D,L4_,L).
\end{verbatim}
Cryptarithmetic Solution

\[
\begin{array}{c}
A M \\
+ \\
P M \\
\hline
D A Y
\end{array}
\]

solve([A,M,P,D,Y]) :-
pick(M,[0,1,2,3,4,5,6,7,8,9],L1),
Y is (M+M) mod 10,
C1 is (M+M) // 10,
pick(Y,L1,L2),
pick(A,L2,L3), A \== 0,
pick(P,L3,L4), P \== 0,
Cryptarithmetic Solution

\[
\begin{array}{c}
A M \\
+ P M \\
\hline
D A Y
\end{array}
\]

solve([A,M,P,D,Y]) :-
pick(M,[0,1,2,3,4,5,6,7,8,9],L1),
Y is (M+M) mod 10,
C1 is (M+M) // 10,
pick(Y,L1,L2),
pick(A,L2,L3), A \=== 0,
pick(P,L3,L4), P \=== 0,
A is (A+P+C1) mod 10,
Cryptarithmetic Solution

\[
\begin{array}{c}
A M \\
+ P M \\
\hline
D A Y
\end{array}
\]

solve([A,M,P,D,Y]) :-
pick(M,[0,1,2,3,4,5,6,7,8,9],L1),
Y is (M+M) mod 10,
C1 is (M+M) // 10,
pick(Y,L1,L2),
pick(A,L2,L3), A \== 0,
pick(P,L3,L4), P \== 0,
A is (A+P+C1) mod 10,
D is (A+P+C1) // 10, D \== 0,
Cryptarithmetic Solution

\[
\begin{array}{c}
A M \\
+ P M \\
\hline
D A Y
\end{array}
\]

solve([A,M,P,D,Y]) :-
pick(M,[0,1,2,3,4,5,6,7,8,9],L1),
Y is (M+M) mod 10,
C1 is (M+M) // 10,
pick(Y,L1,L2),
pick(A,L2,L3), A \== 0,
pick(P,L3,L4), P \== 0,
A is (A+P+C1) mod 10,
D is (A+P+C1) // 10, D \== 0,
pick(D,L4,_).
Cut Operator

- Predicate “!” always succeeds and cannot be backtracked over.
 - prunes the search tree when it appears
 - can make code significantly more difficult to understand and debug
- Example: List membership

\[
\text{mem}(X,[X|_]) :- !.
\]
\[
\text{mem}(X,[_|T]) :- \text{mem}(X,T).
\]

- How does this differ from \text{pick}(X,L)?
- What happens if we delete the cut (and the whole first rule)?

- Green vs. red cuts
 - **Green cut**: a cut that doesn’t change any success/failure if removed (only improves efficiency)
 - **Red cut**: a non-green cut
 - Many logic programmers consider red cuts to be poor programming, and consider green cuts to be at best a necessary evil.
Cut

In this class:

- I won’t require you to know anything about cuts (all problems solvable without them).
- You should avoid using cuts until you are a proficient logic programmer (comfortable with most other aspects of the language).
- If you use cuts, stick to green cuts only. (If you aren’t sure, you shouldn’t be using cuts!)
- Read more about them online (cuts surround much theory, history, and opinion of logic programming!).
Final Remarks

- **Prolog has no function calls!**
 - `f(...)` as an argument to a predicate is a structure (not evaluated).
 - `f(...)` as a predicate sometimes feels like a function, but it’s not. It’s a search.
 - Easy to get confused if you’re an imperative or functional programmer.

- **Inputs vs. outputs**
 - There are no functions, so there are no return values.
 - Many (most?) predicates are intended to work with certain arguments being “inputs” and others being “outputs” (but they can be in any order).
 - If this is desired, I will try to be clear about it: `mypredicate(X,Y,Out)`.
 - Really great solutions work correctly with any/all combinations of arguments being bound and unbound!

- **Ordering**
 - Success does not stop the program (e.g., user may press semicolon, caller may backtrack, etc.)!
 - Correct code must never later succeed on wrong answers.

- **Grading and partial credit**
 - Don’t write me a Java program. I’m evaluating whether you can think like a logic programmer.
 - If you rely upon predicates we’ve defined in class or on homework, you must define them again (because their exact definitions often affect whether your code works).
 - Good logic programs are usually short (relative to imperative and even functional code), elegant, and clear.