Large-step Operational Semantics

Large-step Judgments

A large-step judgment declares that a configuration **converges to** a store or value:

- **command judgments** \(\langle c, \sigma \rangle \downarrow \sigma' \) \(\sigma' \in \Sigma \)
- **arithmetic judgments** \(\langle a, \sigma \rangle \downarrow n \) \(n \in \mathbb{Z} \)
- **boolean judgments** \(\langle b, \sigma \rangle \downarrow p \) \(p \in \{T, F\} \)

where “converges to” \(\downarrow \) means “terminates and returns a value of ...”

Advantages:
- relatively simple to reason about (few inference rules)
- good when code correctness means returning the correct result

Disadvantages:
- mostly cannot prove things about non-terminating programs
- insufficient when code correctness depends on what the program does as it executes (e.g., side-effects)
Small-step Operational Semantics

Alternative: Small-step Operational Semantics

Small-step Judgments

A small-step judgment declares that a configuration \textbf{steps to} a new configuration:

- command judgments \(\langle c, \sigma \rangle \rightarrow_1 \langle c', \sigma' \rangle\)
- arithmetic judgments \(\langle a, \sigma \rangle \rightarrow_1 \langle a', \sigma' \rangle\)
- boolean judgments \(\langle b, \sigma \rangle \rightarrow_1 \langle b', \sigma' \rangle\)

where “steps to” \((\rightarrow_1)\) means “keeps executing in this next configuration.”

- Advantages:
 - can prove things about non-terminating code
 - can prove things about all machine states realized by a computation

- Disadvantage:
 - more complex (more rules)
 - harder to reason about terminating programs (more induction)
Small-step Rule for skip

\[\langle \text{skip}, \sigma \rangle \rightarrow_1 \langle ?, ? \rangle \]
Small-step Rule for \textit{skip}

\[
\langle \text{skip}, \sigma \rangle \rightarrow_1 \langle \text{skip}, \sigma \rangle
\]

This is incorrect. Why? What does this rule actually say?
Small-step Rule for skip

Need a way to say that skip has no “next configuration.” It’s done.

Solution: No rule for skip!

Sometimes write: \(\langle \text{skip}, \sigma \rangle \not\rightarrow_1 \)

Definition (final configuration): \(\langle \text{skip}, \sigma \rangle, \langle n, \sigma \rangle, \langle \text{true}, \sigma \rangle \) and \(\langle \text{false}, \sigma \rangle \) are final configurations for all \(\sigma \in \Sigma \).
Small-step Rule for Sequence

\[
\langle c_1 ; c_2 , \sigma \rangle \rightarrow_1 \langle ?, ? \rangle
\]
Small-step Rule for Sequence

\[
\begin{align*}
\langle c_1, \sigma \rangle &\rightarrow_1 \langle c'_1, \sigma' \rangle \\
\langle c_1 ; c_2, \sigma \rangle &\rightarrow_1 \langle ?, ? \rangle
\end{align*}
\]
Small-step Rule for Sequence

\[
\langle c_1, \sigma \rangle \rightarrow_1 \langle c'_1, \sigma' \rangle \\
\langle c_1 ; c_2, \sigma \rangle \rightarrow_1 \langle c'_1 ; c_2, \sigma' \rangle
\]
Small-step Rule for Sequence

\[
\frac{\langle c_1, \sigma \rangle \rightarrow_1 \langle c'_1, \sigma' \rangle}{\langle c_1; c_2, \sigma \rangle \rightarrow_1 \langle c'_1; c_2, \sigma' \rangle}\quad (S1)
\]

But how do we ever execute \(c_2 \)?

Need some way to say, “If \(c_1 \) can’t take any more steps, then work on \(c_2 \).”

“can’t take any more steps” = “final configuration”
Solution: Two rules

\[
\begin{align*}
\langle c_1, \sigma \rangle & \xrightarrow{1} \langle c'_1, \sigma' \rangle \\
\langle c_1; c_2, \sigma \rangle & \xrightarrow{1} \langle c'_1; c_2, \sigma' \rangle \\
\langle \text{skip}; c_2, \sigma \rangle & \xrightarrow{1} \langle c_2, \sigma \rangle
\end{align*}
\]
Small-step Rule for Assignment

\[\langle v := a, \sigma \rangle \rightarrow_1 \langle ?, ? \rangle \]
Small-step Rule for Assignment

\[\langle v := a, \sigma \rangle \rightarrow_1 \langle \text{skip}, \sigma[v \mapsto a] \rangle \]
Small-step Rule for Assignment

\[
\langle v := a, \sigma \rangle \rightarrow_1 \langle \text{skip}, \sigma[v \mapsto a] \rangle
\]

This is type-incorrect because \(a \) is not necessarily an integer.
Small-step Rule for Assignment

\[
\langle a, \sigma \rangle \xrightarrow{1} \langle n, \sigma \rangle
\]

\[
\langle v := a, \sigma \rangle \xrightarrow{1} \langle \text{skip}, \sigma[v \mapsto n] \rangle
\]

Still wrong: What if \(a \) takes many steps to finally yield an answer \(n \)?

Don’t confuse large-step and small-step semantics!
Small-step Rules for Assignment

Solution: Again, two rules

\[
\frac{\langle a, \sigma \rangle \rightarrow_1 \langle a', \sigma' \rangle}{\langle v := a, \sigma \rangle \rightarrow_1 \langle v := a', \sigma' \rangle}\quad (S3)
\]

\[
\frac{\langle v := n, \sigma \rangle \rightarrow_1 \langle \text{skip}, \sigma[v \mapsto n] \rangle}{\langle v := n, \sigma \rangle \rightarrow_1 \langle \text{skip}, \sigma[v \mapsto n] \rangle}\quad (S4)
\]
Small-step Rules for Conditionals

For conditionals we need three rules:

\[
\begin{align*}
\langle b, \sigma \rangle & \rightarrow_1 \langle b', \sigma' \rangle \\
\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle & \rightarrow_1 \langle \text{if } b' \text{ then } c_1 \text{ else } c_2, \sigma' \rangle \\
\langle \text{if true then } c_1 \text{ else } c_2, \sigma \rangle & \rightarrow_1 \langle c_1, \sigma \rangle \\
\langle \text{if false then } c_1 \text{ else } c_2, \sigma \rangle & \rightarrow_1 \langle c_2, \sigma \rangle
\end{align*}
\]

\((S5) \)

\((S6) \)

\((S7) \)
Small-step Rule for While-loop

For while-loop we’ll use the same trick from large-step semantics:

\[
\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow_1 \langle \text{if } b \text{ then } (c; \text{while } b \text{ do } c) \text{ else skip}, \sigma \rangle
\]
This completes the small-step rules for commands.

Also need rules for arithmetic and boolean judgments.

- Nothing particularly surprising, but requires lots of rules (26 total)
- See online lecture notes for full list.
- Exercise: See if you can figure them out on your own, then check the notes.
Totality

Definition (total relation): A relation \mathcal{R} is **total** if every domain element x is related to a range element y (i.e., $\forall x, \exists y, x \mathcal{R} y$).

Question: Is \downarrow a total relation?

In other words, is there any program c and store σ for which there is no σ' satisfying $\langle c, \sigma \rangle \downarrow \sigma'$?
Totality

Definition (total relation): A relation R is **total** if every domain element x is related to a range element y (i.e., $\forall x, \exists y, x R y$).

Question: Is \downarrow a total relation?

In other words, is there any program c and store σ for which there is no σ' satisfying $\langle c, \sigma \rangle \downarrow \sigma'$?

Answer: \downarrow is not total. For example, if we choose $c =$ while true do skip (and any σ), there is no σ' satisfying $\langle c, \sigma \rangle \downarrow \sigma'$.

Follow-up question: What about aside from infinite loops?
Totality

Definition (total relation): A relation R is **total** if every domain element x is related to a range element y (i.e., $\forall x, \exists y, x \mathrel{R} y$).

Question: Is \downarrow a total relation?

Answer: \downarrow is not total. For example, if we choose $c = \text{while true do skip}$ (and any σ), there is no σ' satisfying $\langle c, \sigma \rangle \downarrow \sigma'$.

Follow-up question: What about aside from infinite loops?

Answer: We could also choose $c = (x := y)$ and any σ such that $y \notin \sigma^{←}$.

Two cases of non-totality:

1. infinite loops (limitation of large-step semantics)
2. uninitialized reads (intentionally implementation-defined)
Definition (ambiguity): A derivation system is said to be **ambiguous** if there exists a judgment having multiple distinct derivations.

Question: Are our large-step semantics ambiguous?

In other words, is there some judgment $\langle c, \sigma \rangle \Downarrow \sigma'$ that is derivable in two different ways?
Ambiguity

Definition (ambiguity): A derivation system is said to be **ambiguous** if there exists a judgment having multiple distinct derivations.

Question: Are our large-step semantics ambiguous?

In other words, is there some judgment \(\langle c, \sigma \rangle \Downarrow \sigma' \) that is derivable in two different ways?

Answer: No. For every judgment that’s derivable, there’s only one way to derive it.
Derivation systems for real languages usually have ambiguity (and that’s okay because it gives implementors choices).

Example: Adding these rules makes our system ambiguous.

\[
\begin{align*}
\langle b_1, \sigma \rangle & \Downarrow F \\
\langle b_1 \&\& b_2, \sigma \rangle & \Downarrow F \\
\langle b_2, \sigma \rangle & \Downarrow F \\
\langle b_1 \&\& b_2, \sigma \rangle & \Downarrow F
\end{align*}
\]
Definition (deterministic): A relation R is deterministic (also called a function) if every domain element x is related to at most one range element y (i.e., $\forall x, \forall y_1, y_2, (x \ R \ y_1) \land (x \ R \ y_2) \Rightarrow y_1 = y_2$).

Question: Is \downarrow deterministic?
Determinism

Definition (deterministic): A relation \mathcal{R} is deterministic (also called a function) if every domain element x is related to at most one range element y (i.e., $\forall x, \forall y_1, y_2, (x \mathcal{R} y_1) \land (x \mathcal{R} y_2) \Rightarrow y_1 = y_2$).

Question: Is \downarrow deterministic?

Answer: Yes.
Our system would become non-deterministic if we added something like this:

\[a ::= \cdots | \text{rand} \]

\[\frac{n \in \mathbb{Z}}{\langle \text{rand}, \sigma \rangle \downarrow n} \]