Static Semantics
CS 6371: Advanced Programming Languages

Kevin W. Hamlen

February 28, 2023
Steps for designing a new programming language:

1. Formally define the syntax using BNF
2. Formally define operational or denotational semantics (or both)
3. Prove semantic equivalence if you have multiple semantics
4. Today: Formally define a *static semantics* (type theory)
Extending the Syntax

Let’s add support for boolean variables to SIMPL:

- **arithmetic expressions**: \(a ::= n \mid v \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 \ast a_2 \)
- **boolean expressions**: \(b ::= \text{true} \mid \text{false} \mid v \mid a_1 \leq a_2 \mid b_1 \&\& b_2 \mid b_1 \mid b_2 \mid \neg b \)
- **commands**: \(c ::= \text{skip} \mid c_1 ; c_2 \mid v ::= a \mid v ::= b \mid \text{if } b \text{ then } c_1 \text{ else } c_2 \mid \text{while } b \text{ do } c \)
- **variable names**: \(v \)
- **integer constants**: \(n \)

Q: Unfortunately there’s a problem with this new grammar. What?
Extending the Syntax

Let’s add support for boolean variables to SIMPL:

arithmetic expressions
\[a ::= n \mid v \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \]

boolean expressions
\[b ::= \text{true} \mid \text{false} \mid v \mid a_1 \leq a_2 \mid b_1 \&\& b_2 \mid b_1 \mid\mid b_2 \mid \neg b \]

commands
\[c ::= \text{skip} \mid c_1 ; c_2 \mid v := a \mid v := b \mid \text{if } b \text{ then } c_1 \text{ else } c_2 \mid \text{while } b \text{ do } c \]

variable names
\[v \]

integer constants
\[n \]

Q: Unfortunately there’s a problem with this new grammar. What?
A: It’s ambiguous (recall definition of ambiguity).
Example: \[x := y \] (Is \(y \) a \(b \) or an \(a \)?)
Or even worse: \[y := \text{true} ; x := y + 1 \]
Disambiguating the Syntax

How to fix? Three typical options:

1. Add extra syntax (e.g., $\text{Arith}(v)$ and $\text{Bool}(v)$ instead of v)
 - really annoying; programmers hate it!

2. Find an interpretation for everything (e.g., $\text{true} + 1 = 2$)
 - results in a chaotic language
 - bad for debugging, readability, maintainability, security, ...

3. The right solution: Coalesce the syntax and introduce a static semantics!
Coalesce the Syntax

expressions

\[e ::= n | v | e_1 + e_2 | e_1 - e_2 | e_1 \times e_2 \\
 | \text{true} | \text{false} | e_1 \leq e_2 | e_1 \&\& e_2 | e_1 \| e_2 | !e \]

commands

\[c ::= \text{skip} | c_1;c_2 | v := e | \text{if } e \text{ then } c_1 \text{ else } c_2 | \text{while } e \text{ do } c \]

variable names

\[v \]

integer constants

\[n \]
Add Type Declarations

expressions
\[e ::= n \mid v \mid e_1 + e_2 \mid e_1 - e_2 \mid e_1 \times e_2 \]
\[\mid \text{true} \mid \text{false} \mid e_1 \leq e_2 \mid e_1 \&\& e_2 \mid e_1 || e_2 \mid !e \]

commands
\[c ::= \text{skip} \mid c_1 ; c_2 \mid v ::= e \mid \text{if } e \text{ then } c_1 \text{ else } c_2 \mid \text{while } e \text{ do } c \mid \text{int } v \mid \text{bool } v \]

variable names
\[v \]

integer constants
\[n \]

Declarations have *no effect* at runtime:

\[\langle \text{int } v, \sigma \rangle \rightarrow_1 \langle \text{skip}, \sigma \rangle \]
\[\langle \text{bool } v, \sigma \rangle \rightarrow_1 \langle \text{skip}, \sigma \rangle \]
Many Stuck States

expressions
\[e ::= n \mid v \mid e_1 + e_2 \mid e_1 - e_2 \mid e_1 \cdot e_2 \]
\[\mid \text{true} \mid \text{false} \mid e_1 \leq e_2 \mid e_1 \&\& e_2 \mid e_1 \mid e_2 \mid !e \]

commands
\[c ::= \text{skip} \mid c_1; c_2 \mid v ::= e \mid \text{if } e \text{ then } c_1 \text{ else } c_2 \mid \text{while } e \text{ do } c \mid \text{int } v \mid \text{bool } v \]

variable names
\(v \)

integer constants
\(n \)

Declarations have *no effect* at runtime:

\[\langle \text{int } v, \sigma \rangle \xrightarrow{1} \langle \text{skip}, \sigma \rangle \quad \langle \text{bool } v, \sigma \rangle \xrightarrow{1} \langle \text{skip}, \sigma \rangle \]

We disambiguated the grammar, but now there are many stuck states!
Example: \(\langle \text{true } + 3, \sigma \rangle \) (and of course we still have \(\langle x, \bot \rangle \))
Intro to Static Semantics

Static Semantics: Deductive rules that, when combined with syntax restrictions, define the set of legal programs by precluding stuck states.

- **Types:**
 \[\tau ::= \text{int} \mid \text{bool} \]

- **Typing Contexts:**
 \[\Gamma : v \rightarrow \tau \]

- **Typing Judgments:**
 \[\Gamma \vdash e : \tau \]
 “\(\Gamma \) proves that \(e \) has type \(\tau \)”
Intro to Static Semantics

Static Semantics: Deductive rules that, when combined with syntax restrictions, define the set of legal programs by precluding stuck states.

- **types** \(\tau ::= \text{int} \mid \text{bool} \)
- **typing contexts** \(\Gamma : v \rightarrow (\tau \times \{T, F\}) \)
- **typing judgments** \(\Gamma \vdash e : \tau \) "\(\Gamma \) proves that \(e \) has type \(\tau \)"

Intuition: \(\Gamma(v) = (\text{int}, T) \) means \(v \) is an integer and is definitely initialized.
Define derivation rules that prove typing judgments. Easy ones:

\[(28)\]
\[\Gamma \vdash n : int\]

\[(29)\]
\[\Gamma \vdash \text{true} : \text{bool}\]

\[(30)\]
\[\Gamma \vdash \text{false} : \text{bool}\]
Typing Arithmetic Operations

\[
\frac{?}{\Gamma \vdash e_1 + e_2 : ?}
\]
Typing Arithmetic Operations

\[
\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int} \\
\quad \quad \Gamma \vdash e_1 + e_2 : \text{int}
\]
Typing Arithmetic Operations

\[\Gamma \vdash e_1 : int \quad \Gamma \vdash e_2 : int \]

\[\Gamma \vdash e_1 + e_2 : int \]
Typing Arithmetic Operations

\[
\Gamma \vdash e_1 : int \quad \Gamma \vdash e_2 : int
\]

\[
\Gamma \vdash e_1 + e_2 : int
\]

We need these premises!

Remember: The goal of a static semantics is to *preclude stuck states*, not infer a type for as many expressions as possible!

Rejecting bad programs *helps the programmer!*
Typing Boolean Operations

\[
\Gamma \vdash e_1 \&\& e_2 : ?
\]
Typing Boolean Operations

\[
\Gamma \vdash e_1 : bool \quad \Gamma \vdash e_2 : bool \\
\Gamma \vdash e_1 \&\& e_2 : bool
\]
Typing Comparisons

\[\Gamma \vdash e_1 \leq e_2 : ? \]
Typing Comparisons

\[\Gamma \vdash e_1 : int \quad \Gamma \vdash e_2 : int \]
\[\Gamma \vdash e_1 \leq e_2 : bool \]
Typing Variable Reads

$$\Gamma \vdash v : ?$$
Typing Variable Reads

\[\Gamma(v) = (\tau, p) \]
\[\Gamma \vdash v : \tau \]
Typing Variable Reads

\[\Gamma(v) = (\tau, T) \]

\[\frac{\Gamma \vdash v : \tau}{\Gamma \vdash v : \tau} \]
Typing Commands

Other rules for expressions are similar (see assignment).

Q: How do we type-check commands?

\[\Gamma \vdash c : ? \]
Typing Commands

Other rules for expressions are similar (see assignment).

Q: How do we type-check commands?

\[\Gamma \vdash c : \Gamma' \]
Typing Skip

\[\Gamma \vdash \text{skip} : \Gamma \]
Typing Sequence

\[\Gamma \vdash c_1 ; c_2 : ? \]
Typing Sequence

\[
\frac{\Gamma \vdash c_1 : \Gamma_2 \quad \Gamma_2 \vdash c_2 : \Gamma'}{\Gamma \vdash c_1 ; c_2 : \Gamma'}^{(24)}
\]
Typing Declarations

\[\Gamma \vdash \text{int } v : ? \]
Typing Declarations

\[
\frac{v \not\in \Gamma^-}{\Gamma \vdash \text{int} \ v : \Gamma[v \mapsto \text{(int, } F')]}
\]
Typing Declarations

\[\frac{v \not\in \Gamma}{\Gamma \vdash \text{int } v : \Gamma[v \mapsto (\text{int}, F)]}^{(22)} \]

\[\frac{v \not\in \Gamma}{\Gamma \vdash \text{bool } v : \Gamma[v \mapsto (\text{bool}, F)]}^{(23)} \]
Typing Assignments

\[? \]
\[\Gamma \vdash v := e : ? \]
Typing Assignments

\[
\Gamma \vdash e : \tau \\
\Gamma \vdash v := e : ?
\]
Typing Assignments

\[\Gamma \vdash e : \tau \quad \Gamma(v) = (\tau, T) \]

\[\Gamma \vdash v := e : \Gamma \]
Typing Assignments

\[
\Gamma \vdash e : \tau \quad \Gamma(v) = (\tau, p) \quad (25)
\]

\[
\Gamma \vdash v := e : \Gamma[v \mapsto (\tau, T)]
\]
Typing Conditionals

\[\Gamma \vdash \text{if } e \text{ then } c_1 \text{ else } c_2 : ? \]
Typing Conditionals

\[\Gamma \vdash e : bool \quad \Gamma \vdash c_1 : ? \quad ? \vdash c_2 : ? \]

\[\Gamma \vdash \text{if } e \text{ then } c_1 \text{ else } c_2 : ? \]
Typing Conditionals

\[
\Gamma \vdash e : bool \quad \Gamma \vdash c_1 : \Gamma_1 \quad \Gamma \vdash c_2 : \Gamma_2
\]

\[
\Gamma \vdash if \ e \ then \ c_1 \ else \ c_2 : ?
\]
Typing Conditionals

\[\Gamma \vdash e : bool \quad \Gamma \vdash c_1 : \Gamma_1 \quad \Gamma \vdash c_2 : \Gamma_2 \]

\[\Gamma \vdash \text{if } e \text{ then } c_1 \text{ else } c_2 : \Gamma \]
typing conditionals

\[
\Gamma \vdash e : bool \quad \Gamma \vdash c_1 : \Gamma_1 \quad \Gamma \vdash c_2 : \Gamma_2 \\
\Gamma \vdash \text{if } e \text{ then } c_1 \text{ else } c_2 : \Gamma
\]

(26)

optional exercise: see if you can come up with a better choice than \(\Gamma \).

- your choice must not permit stuck states!
- but it should admit as many non-stuck programs as possible.

(but for the assignment, just implement the given rule.)
Same strategy for loops:

\[
\frac{\Gamma \vdash e : bool \quad \Gamma \vdash c_1 : \Gamma_1}{\Gamma \vdash \text{while } e \text{ do } c_1 : \Gamma_{(27)}}
\]

(Not many better choices this time. Why?)
Devising Static Semantics

Definition (well-typed): A command c is well-typed if $\bot \vdash c : \Gamma'$ is derivable for some Γ'.

Definition (type-checker): A decision procedure for $\bot \vdash c : \Gamma'$ is called a type-checker.

Recall two possible interpretations of derivation rules:

- The rules form an implementation recipe for a type-checker.
- The rules extend propositional logic, allowing us to prove things about code (e.g., assuming a program is well-typed gives us extra reasoning power).

A good static semantics:

- Catches all (or most) stuck states before runtime (type-safety)
- Is deterministic!
 - Don’t put operational/denotational semantics inside static semantics!
 - “In order to find out whether the program is safe, first run the program …”
- Isn't so restrictive that it rules out important functionalities.