
Properties of Axiomatic Semantics
CS 4301/6371: Advanced Programming Languages

Kevin W. Hamlen

April 25, 2024

Advanced Programming Languages

Soundness and Completeness of Hoare Logic

Motivation

Goals of any axiomatic semantics:
Soundness: If a Hoare triple {A}c{B} is derivable, it is “true”.
Completeness: If a Hoare triple {A}c{B} is “true”, it is derivable.

Are our 6 axiomatic semantic rules sound and complete?
Must first formally define what is meant by “true” in the above
Typically we define this using... denotational semantics!

Advanced Programming Languages

Soundness and Completeness of Hoare Logic

Denotations of Assertion Expressions

(1) Extend expression denotations E to include meta-variables v̄:

stores Σ : v ⇀ Z
interpretations Σ̄ : v̄ ⇀ Z
exp denotations E : e→ Σ̄→ Σ ⇀ Z

E [[n]]σ̄σ = n

E [[v]]σ̄σ = σ(v)

E [[v̄]]σ̄σ = σ̄(v̄)

E [[e1 + e2]]σ̄σ = E [[e1]]σ̄σ + E [[e2]]σ̄σ

E [[e1 - e2]]σ̄σ = E [[e1]]σ̄σ − E [[e2]]σ̄σ

E [[e1 * e2]]σ̄σ = E [[e1]]σ̄σ · E [[e2]]σ̄σ

Advanced Programming Languages

Soundness and Completeness of Hoare Logic

Denotations of Assertions

(2) Define denotations A of assertions A:

assertion denotations A : A→ Σ̄→ Σ ⇀ {T, F}

A[[T]]σ̄σ = T

A[[F]]σ̄σ = F

A[[e1 ≤ e2]]σ̄σ = E [[e1]]σ̄σ ≤ E [[e2]]σ̄σ

A[[A1 ⇒ A2]]σ̄σ = A[[A1]]σ̄σ ⇒ A[[A2]]σ̄σ

A[[∀v̄.A]]σ̄σ = ∀i ∈ Z,A[[A]](σ̄[v̄ 7→ i])σ

...

Advanced Programming Languages

Soundness and Completeness of Hoare Logic

Denotations of Judgments

(3) Notations:

σ̄, σ |= A asserts A[[A]]σ̄σ

σ |= A asserts ∀σ̄ ∈ Σ̄, (σ̄, σ |= A)

|= A asserts ∀σ ∈ Σ, (σ |= A)

Note: |= A is our notation from the Rule of Consequence.

(4) Hoare Triple Denotations: |= {A}c{B} asserts:

∀σ̄ ∈ Σ̄, ∀σ, σ′ ∈ Σ, (σ̄, σ |= A) ∧ ((σ, σ′) ∈ C[[c]])⇒ (σ̄, σ′ |= B)

Note: C[[c]] is the denotational semantics of the target programming language.

Advanced Programming Languages

Soundness and Completeness of Hoare Logic

Proving Soundness

Theorem (Soundness)

If {A}c{B} is derivable then |= {A}c{B} holds.

Proof

Let σ̄ ∈ Σ̄ and σ, σ′ ∈ Σ be given such that σ̄, σ |= A and (σ, σ′) ∈ C[[c]].
Let D be a derivation of {A}c{B}. Proof is by structural induction over D.

IH: If {A0}c0{B0} has a derivation D0 < D, then |= {A0}c0{B0} holds.

Case 1: Suppose D ends in Rule 1:

D = (1)
{A}skip{A}

Thus c = skip and B = A. Since σ′ = C[[skip]]σ = σ and B = A, assumption
σ̄, σ |= A implies σ̄, σ′ |= B.
. . .

(Goal: Prove σ̄, σ′ |= B.)

Advanced Programming Languages

Soundness and Completeness of Hoare Logic

Proving Soundness

Theorem (Soundness)

If {A}c{B} is derivable then |= {A}c{B} holds.

Proof

Let σ̄ ∈ Σ̄ and σ, σ′ ∈ Σ be given such that σ̄, σ |= A and (σ, σ′) ∈ C[[c]].
Let D be a derivation of {A}c{B}. Proof is by structural induction over D.

IH: If {A0}c0{B0} has a derivation D0 < D, then |= {A0}c0{B0} holds.

Case 1: Suppose D ends in Rule 1:

D = (1)
{A}skip{A}

Thus c = skip and B = A. Since σ′ = C[[skip]]σ = σ and B = A, assumption
σ̄, σ |= A implies σ̄, σ′ |= B.
. . .

(Goal: Prove σ̄, σ′ |= B.)

Advanced Programming Languages

Soundness and Completeness of Hoare Logic

Proving Soundness

Theorem (Soundness)

If {A}c{B} is derivable then |= {A}c{B} holds.

Proof

Let σ̄ ∈ Σ̄ and σ, σ′ ∈ Σ be given such that σ̄, σ |= A and (σ, σ′) ∈ C[[c]].
Let D be a derivation of {A}c{B}. Proof is by structural induction over D.

IH: If {A0}c0{B0} has a derivation D0 < D, then |= {A0}c0{B0} holds.

Case 1: Suppose D ends in Rule 1:

D = (1)
{A}skip{A}

Thus c = skip and B = A. Since σ′ = C[[skip]]σ = σ and B = A, assumption
σ̄, σ |= A implies σ̄, σ′ |= B.
. . .

(Goal: Prove σ̄, σ′ |= B.)

Advanced Programming Languages

Soundness and Completeness of Hoare Logic

Completeness

Recall: |= {A}c{B} asserts

∀σ̄ ∈ Σ̄, ∀σ, σ′ ∈ Σ, (σ̄, σ |= A) ∧ ((σ, σ′) ∈ C[[c]])⇒ (σ̄, σ′ |= B)

Theorem (Completeness)

If |= {A}c{B} then {A}c{B} is derivable.

Proof

Assume |= {A}c{B}.

Advanced Programming Languages

Soundness and Completeness of Hoare Logic

Completeness

Recall: |= {A}c{B} asserts

∀σ̄ ∈ Σ̄, ∀σ, σ′ ∈ Σ, (σ̄, σ |= A) ∧ ((σ, σ′) ∈ C[[c]])⇒ (σ̄, σ′ |= B)

Theorem (Completeness)

If |= {A}c{B} then {A}c{B} is derivable.

Impossible! Recall our friend Kurt Gödel:

No finite collection of axioms is both sound and complete.

BUT... Stephen Cook1 (of P v. NP fame) comes to our rescue:
Relative Completeness: Given an oracle that (magically) derives the |= A
premises in the Rule of Consequence (whenever they are true), Hoare logic is
complete.
In essence, Hoare Logic is “as complete as possible” given the inherent
incompleteness of mathematics in general.

1S.A. Cook, “Soundness and Completeness of an Axiom System for Program Verification,” SIAM
J. Comput. 7(1):70–90, Feb. 1978.

Advanced Programming Languages

Weakest Precondition, Strongest Postcondition

Preconditions & Postconditions

{A}c{B}x x
precondition postcondition

Edsger Dijkstra’s idea: The strongest correctness assertions are those where
the precondition is “weakest” (fewest assumptions)
the postcondition is “strongest” (most conclusions)

Formally:
We say “D is (strictly) weaker than C” and “C is (strictly) stronger than D”
if C ⇒ D (and D 6⇒ C).
A is a weakest precondition of program c for postcondition B iff every
precondition A0 satisfying {A0}c{B} implies A.
B is a strongest postcondition of program c for precondition A iff B implies
every postcondition B0 satisfying {A}c{B0}.

Advanced Programming Languages

Weakest Precondition, Strongest Postcondition

Can Weakest Preconditions be Computed?

Idea

wp(c,B) should return a weakest precondition A for command c with
postcondition B.

wp(skip, B) = ?

wp(c1;c2, B) = wp(c1,wp(c2, B))

wp(x:= e,B) =B[e/x]

wp(if b then c1 else c2, B) = (b⇒ wp(c1, B)) ∧ (¬b⇒ wp(c2, B))

wp(while b do c,B) =

⇒ (C[[c]]k̄σ |= b ∨B)

Not supported by our assertion language (but turns out one can encode them):

quantification over non-integers (∀σ ∈ Σ . . .)

all of denotational semantics(!) (C[[c]])
function n-composition (fn)

axiomatic denotations (|=)

Advanced Programming Languages

Weakest Precondition, Strongest Postcondition

Can Weakest Preconditions be Computed?

Idea

wp(c,B) should return a weakest precondition A for command c with
postcondition B.

wp(skip, B) =B

wp(c1;c2, B) = wp(c1,wp(c2, B))

wp(x:= e,B) =B[e/x]

wp(if b then c1 else c2, B) = (b⇒ wp(c1, B)) ∧ (¬b⇒ wp(c2, B))

wp(while b do c,B) =

⇒ (C[[c]]k̄σ |= b ∨B)

Not supported by our assertion language (but turns out one can encode them):

quantification over non-integers (∀σ ∈ Σ . . .)

all of denotational semantics(!) (C[[c]])
function n-composition (fn)

axiomatic denotations (|=)

Advanced Programming Languages

Weakest Precondition, Strongest Postcondition

Can Weakest Preconditions be Computed?

Idea

wp(c,B) should return a weakest precondition A for command c with
postcondition B.

wp(skip, B) =B

wp(c1;c2, B) = wp(c1,wp(c2, B))

wp(x:= e,B) =B[e/x]

wp(if b then c1 else c2, B) = (b⇒ wp(c1, B)) ∧ (¬b⇒ wp(c2, B))

wp(while b do c,B) =

⇒ (C[[c]]k̄σ |= b ∨B)

Not supported by our assertion language (but turns out one can encode them):

quantification over non-integers (∀σ ∈ Σ . . .)

all of denotational semantics(!) (C[[c]])
function n-composition (fn)

axiomatic denotations (|=)

Advanced Programming Languages

Weakest Precondition, Strongest Postcondition

Can Weakest Preconditions be Computed?

Idea

wp(c,B) should return a weakest precondition A for command c with
postcondition B.

wp(skip, B) =B

wp(c1;c2, B) = wp(c1,wp(c2, B))

wp(x:= e,B) =B[e/x]

wp(if b then c1 else c2, B) = (b⇒ wp(c1, B)) ∧ (¬b⇒ wp(c2, B))

wp(while b do c,B) =

⇒ (C[[c]]k̄σ |= b ∨B)

Not supported by our assertion language (but turns out one can encode them):

quantification over non-integers (∀σ ∈ Σ . . .)

all of denotational semantics(!) (C[[c]])
function n-composition (fn)

axiomatic denotations (|=)

Advanced Programming Languages

Weakest Precondition, Strongest Postcondition

Can Weakest Preconditions be Computed?

Idea

wp(c,B) should return a weakest precondition A for command c with
postcondition B.

wp(skip, B) =B

wp(c1;c2, B) = wp(c1,wp(c2, B))

wp(x:= e,B) =B[e/x]

wp(if b then c1 else c2, B) = (b⇒ wp(c1, B)) ∧ (¬b⇒ wp(c2, B))

wp(while b do c,B) =

⇒ (C[[c]]k̄σ |= b ∨B)

Not supported by our assertion language (but turns out one can encode them):

quantification over non-integers (∀σ ∈ Σ . . .)

all of denotational semantics(!) (C[[c]])
function n-composition (fn)

axiomatic denotations (|=)

Advanced Programming Languages

Weakest Precondition, Strongest Postcondition

Can Weakest Preconditions be Computed?

Idea

wp(c,B) should return a weakest precondition A for command c with
postcondition B.

wp(skip, B) =B

wp(c1;c2, B) = wp(c1,wp(c2, B))

wp(x:= e,B) =B[e/x]

wp(if b then c1 else c2, B) = (b⇒ wp(c1, B)) ∧ (¬b⇒ wp(c2, B))

wp(while b do c,B) =

⇒ (C[[c]]k̄σ |= b ∨B)

Not supported by our assertion language (but turns out one can encode them):

quantification over non-integers (∀σ ∈ Σ . . .)

all of denotational semantics(!) (C[[c]])
function n-composition (fn)

axiomatic denotations (|=)

Advanced Programming Languages

Weakest Precondition, Strongest Postcondition

Can Weakest Preconditions be Computed?

Idea

wp(c,B) should return a weakest precondition A for command c with
postcondition B.

wp(skip, B) =B

wp(c1;c2, B) = wp(c1,wp(c2, B))

wp(x:= e,B) =B[e/x]

wp(if b then c1 else c2, B) = (b⇒ wp(c1, B)) ∧ (¬b⇒ wp(c2, B))

wp(while b do c,B) =

⇒ (C[[c]]k̄σ |= b ∨B)

Not supported by our assertion language (but turns out one can encode them):

quantification over non-integers (∀σ ∈ Σ . . .)

all of denotational semantics(!) (C[[c]])
function n-composition (fn)

axiomatic denotations (|=)

Advanced Programming Languages

Weakest Precondition, Strongest Postcondition

Can Weakest Preconditions be Computed?

Idea

wp(c,B) should return a weakest precondition A for command c with
postcondition B.

wp(skip, B) =B

wp(c1;c2, B) = wp(c1,wp(c2, B))

wp(x:= e,B) =B[e/x]

wp(if b then c1 else c2, B) = (b⇒ wp(c1, B)) ∧ (¬b⇒ wp(c2, B))

wp(while b do c,B) =

⇒ (C[[c]]k̄σ |= b ∨B)

Not supported by our assertion language (but turns out one can encode them):

quantification over non-integers (∀σ ∈ Σ . . .)

all of denotational semantics(!) (C[[c]])
function n-composition (fn)

axiomatic denotations (|=)

Advanced Programming Languages

Weakest Precondition, Strongest Postcondition

Can Weakest Preconditions be Computed?

Idea

wp(c,B) should return a weakest precondition A for command c with
postcondition B.

wp(skip, B) =B

wp(c1;c2, B) = wp(c1,wp(c2, B))

wp(x:= e,B) =B[e/x]

wp(if b then c1 else c2, B) = (b⇒ wp(c1, B)) ∧ (¬b⇒ wp(c2, B))

wp(while b do c,B) =

⇒ (C[[c]]k̄σ |= b ∨B)

Not supported by our assertion language (but turns out one can encode them):

quantification over non-integers (∀σ ∈ Σ . . .)

all of denotational semantics(!) (C[[c]])
function n-composition (fn)

axiomatic denotations (|=)

Advanced Programming Languages

Weakest Precondition, Strongest Postcondition

Can Weakest Preconditions be Computed?

Idea

wp(c,B) should return a weakest precondition A for command c with
postcondition B.

wp(skip, B) =B

wp(c1;c2, B) = wp(c1,wp(c2, B))

wp(x:= e,B) =B[e/x]

wp(if b then c1 else c2, B) = (b⇒ wp(c1, B)) ∧ (¬b⇒ wp(c2, B))

wp(while b do c,B) = undecidable?

⇒ (C[[c]]k̄σ |= b ∨B)

Not supported by our assertion language (but turns out one can encode them):

quantification over non-integers (∀σ ∈ Σ . . .)

all of denotational semantics(!) (C[[c]])
function n-composition (fn)

axiomatic denotations (|=)

Advanced Programming Languages

Weakest Precondition, Strongest Postcondition

Can Weakest Preconditions be Computed?

Idea

wp(c,B) should return a weakest precondition A for command c with
postcondition B.

wp(skip, B) =B

wp(c1;c2, B) = wp(c1,wp(c2, B))

wp(x:= e,B) =B[e/x]

wp(if b then c1 else c2, B) = (b⇒ wp(c1, B)) ∧ (¬b⇒ wp(c2, B))

wp(while b do c,B) = ∀σ ∈ Σ, ∀k̄,
(
∀ī, (0 ≤ ī < k̄)⇒ C[[c]]īσ |= b

)
⇒ (C[[c]]k̄σ |= b ∨B)

Not supported by our assertion language (but turns out one can encode them):

quantification over non-integers (∀σ ∈ Σ . . .)

all of denotational semantics(!) (C[[c]])
function n-composition (fn)

axiomatic denotations (|=)

Advanced Programming Languages

Weakest Precondition, Strongest Postcondition

Can Weakest Preconditions be Computed?

Idea

wp(c,B) should return a weakest precondition A for command c with
postcondition B.

wp(skip, B) =B

wp(c1;c2, B) = wp(c1,wp(c2, B))

wp(x:= e,B) =B[e/x]

wp(if b then c1 else c2, B) = (b⇒ wp(c1, B)) ∧ (¬b⇒ wp(c2, B))

wp(while b do c,B) = ∀σ ∈ Σ, ∀k̄,
(
∀ī, (0 ≤ ī < k̄)⇒ C[[c]]īσ |= b

)
⇒ (C[[c]]k̄σ |= b ∨B)

Not supported by our assertion language (but turns out one can encode them):

quantification over non-integers (∀σ ∈ Σ . . .)

all of denotational semantics(!) (C[[c]])
function n-composition (fn)

axiomatic denotations (|=)

Advanced Programming Languages

Weakest Precondition, Strongest Postcondition

Exercises and Supplemental Topics

Exercise: Define an algorithm sp(A, c) that computes the strongest
postcondition B for program c with precondition A.

Don’t worry about while-loops (hard!)
Mostly similar to wp algorithm but assignment rule is messy

More (optional) topics:
Read about Dijkstra guarded commands.
Read “The Science of Programming” by David Gries (classic text).
Read about verification condition generators.

	Soundness and Completeness of Hoare Logic
	Weakest Precondition, Strongest Postcondition

