Semantic Equivalence

CS 4301/6371: Advanced Programming Languages

Kevin W. Hamlen

February 27, 2024

Advanced Programming Languages

L Semantic Equivalence

Formal Semantics

Three styles of formal semantics:
Large-step operational: {c,o) | o’
Small-step operational: {c,o) —1 (c/,o’)
Denotational: C[c]o = o’

Each has strengths, so often must define more than one

Danger: multiple semantics must be mutually consistent

m Can we prove that our SIMPL semantics are all consistent?

Advanced Programming Languages

L Semantic Equivalence

Semantic Equivalence

Theorem: Semantic Equivalence

The following assertions are all equivalent (each implies the others):
{c,o) | o
(c,0) —* (skip, o’) where —" is the reflexive transitive closure of —;
Clc]o =o'

Advanced Programming Languages

L Semantic Equivalence

Semantic Equivalence

Theorem: Semantic Equivalence

The following assertions are all equivalent (each implies the others):
(c,o) U o
(c,0) —=*
Cle)o =o'

(skip, o’) where —* is the reflexive transitive closure of —;

Proof strategy: Prove three implications:
= (1)=(2)
= (2)=(3)
= (3)=(1)

Theorem follows from transitivity of implication.

Advanced Programming Languages

L Large step implies Small-step

Large-step implies Small-step

(c,0) | ' = (c,0) =" (skip,o’)

Assume (c,a) |} o’. ...

What next?

Advanced Programming Languages

L Large step implies Small-step

Structural Induction Setup

(e,) bo' = (¢,0) =" (skip, o)

Proof

Let D be a derivation of {(c,) |} o’. Proof is by structural induction over D.

Let's just state the IH upfront, so we don't have to predict which are the base
cases.

Advanced Programming Languages

L Large step implies Small-step

Structural Induction Setup

Lemma

(c,0) | ' = (c,0) —* (skip,d’)

Let D be a derivation of (c, o) |} o’. Proof is by structural induction over D.

IH: Assume if (co, o0) | o, has a derivation Dy < D, then (co, oo) —* (skip, oy).

Advanced Programming Languages

L Large step implies Small-step

Skip Case

Lemma

(c,0) | 0/ = (c,0) —* (skip,o’)

Proof

Let D be a derivation of (c, o) |} o’. Proof is by structural induction over D.
IH: Assume if (co, o0) | o, has a derivation Do < D, then (co, o0) —* (skip, oy).

Case 1: Suppose D ends in Rule L1:

P EErE e

Advanced Programming Languages

L Large step implies Small-step

Skip Case

Lemma

(c,0) | ' = (c,0) —* (skip,o’)

Proof

Let D be a derivation of (c,) | o’. Proof is by structural induction over D.

IH: Assume if (co, o0) | o, has a derivation Do < D, then (co, o0) —* (skip, op).

Case 1: Suppose D ends in Rule L1:

P= (skip, o) | U(Ll)

Hence ¢ = skip and ¢’ = 0.

Advanced Programming Languages

L Large step implies Small-step

Skip Case

(c,0) | ' = (c,0) —* (skip, ')

Proof

Let D be a derivation of (c, o) | o’. Proof is by structural induction over D.

IH: Assume if (co, 00) | o, has a derivation Do < D, then (co, o0) —* (skip, o()).

Case 1: Suppose D ends in Rule L1:

b= (skip, o) | J(Ll)

Hence ¢ = skip and ¢’ = o. Since —* is reflexive, we conclude that (c, o) —* (skip,c’).

Advanced Programming Languages

L Large step implies Small-step

Sequence Case

(c,0) | 0/ = (c,0) =" (skip,o’)

Proof

Let D be a derivation of {(c,) |} o’. Proof is by structural induction over D.
IH: Assume if (co, o0) | o, has a derivation Do < D, then (co, o0) —* (skip, op).
Case 2: Suppose D ends in Rule L2:
Dy D2
(c1,0) | o2 (c2,02) U o’
(c1;¢2,0) U o’

D= (L2)

Advanced Programming Languages

L Large step implies Small-step

Sequence Case

Lemma

(c,0) | 0/ = (c,0) —* (skip,o’)

Proof

Let D be a derivation of (c, o) | o’. Proof is by structural induction over D.

IH: Assume if (co, o0) | o, has a derivation Do < D, then (co, o0) —* (skip, o()).

Case 2: Suppose D ends in Rule L2:
D, D->
(c1,0) § o2 (c2,02) | o

(c1;c2,0) § o

D= (L2)

Hence ¢ = c1;co.

Advanced Programming Languages

L Large step implies Small-step

Sequence Case

Lemma

(c,0) | ' = (c,0) —* (skip,o’)

Proof
Let D be a derivation of (c, o) |} o’. Proof is by structural induction over D.
IH: Assume if (co, o0) | o, has a derivation Dy < D, then (co, o0) —* (skip, op).
Case 2: Suppose D ends in Rule L2:
Dl D2
(c1,0) | o2 (c2,02) U o’

(c1;c2,0) U o’

D =

(L2)

Hence ¢ = ¢1;c¢2.
Apply IH with Dy = D1, ¢o = ¢1, 09 = o, and 0(’] = 03. Since D; < D, we infer that
(c1,0) =" (skip, 02).

Advanced Programming Languages

L Large step implies Small-step

Sequence Case

Lemma

(c,0) b0’ —=> (e,0) —" (skip,o’)

Let D be a derivation of {(c,) |} o’. Proof is by structural induction over D.
IH: Assume if (co, 00) | o, has a derivation Do < D, then (co, o0) =™ (skip, oy)).
Case 2: Suppose D ends in Rule L2:

D1 Do

(c1,0) J o2 (c2,02) I o

(c15¢2,0) Yo’

D =

(L2)

Hence ¢ = c¢1;c¢5.

Apply IH with Dy = D1, co = c1, 09 = 0, and of = 02. Since D1 < D, we infer that
(c1,0) =~ (skip, 02).

Apply IH with Dy = Ds, ¢y = ¢, 09 = 03, and 0(') = ¢’. Since Dy < D, we infer that
(c2,02) —* (skip,a’).

Need to somehow prove that {c1;c2,0) —* (skip,o’) ... 7

Advanced Programming Languages

L Large step implies Small-step

Sequence Case

(c,0) | o' = (c,0) =" (skip,o’)

Proof
Let D be a derivation of {(c,a) | o’. Proof is by structural induction over D.
IH: Assume if (co, o0) | o, has a derivation Do < D, then (co, o0) —* (skip, op).
Case 2: Suppose D ends in Rule L2:
D1 D2
(c1,0) § o2 (c2,02) I o
(c15¢2,0) | o’

D= (L2)

Hence ¢ = ¢1;¢2.

Apply IH with Dy = D1, ¢o = ¢1, 09 = o, and 06 = o03. Since Dy < D, we infer that
(c1,0) =~ (skip, 02).

Apply IH with Dy = D3, co = c2, 00 = 02, and o, = o’. Since D> < D, we infer that
(ca,02) —* (skip,o’).

Need to somehow prove that {(ci;cz,0) —* (skip,o’)
Idea: Prove {(c1;c2,0) —* (skip;ca,02) —1 (c2,02) =™ (skip,o’)

Advanced Programming Languages

L Large step implies Small-step

Sequence Lemma

Subsequence Lemma:

(c,0) =™ (skip,o’) = (c;c’,0) =™ (skip;c’,o’)

Assume (c, o) —* (skip, o’).

How to prove this?

Advanced Programming Languages

L Large step implies Small-step

Sequence Lemma

Subsequence Lemma:

(c,0) =™ (skip, 0’y = (c;c’,0) =™ (skip;c’,d’)

Assume (c, o) —,, (skip,o’). Proof is by weak natural number induction on n € N.

Advanced Programming Languages

L Large step implies Small-step

Sequence Lemma

Subsequence Lemma:

(c,0) —=* (skip, 0’y = (c;c’, o) —=* (skip;c’, ")

Assume (c, o) —, (skip,a’). Proof is by weak natural number induction on n € N.

Base Case: Suppose n = 0.

Advanced Programming Languages

L Large step implies Small-step

Sequence Lemma

Subsequence Lemma:

(c,0) = (skip, 0’y = (c;c’, o) =™ (skip;c’, ")

Proof

Assume (c, o) —, (skip,o’). Proof is by weak natural number induction on n € N.

Base Case: If n = 0 then ¢ = skip and o = o’ (by reflexivity). It follows that
(c;c’,a) —* (skip;c’, o’ (also by reflexivity).

Advanced Programming Languages

L Large step implies Small-step

Sequence Lemma

Subsequence Lemma:

(c,0) —* (skip, 0’y = (c;c’, o) =™ (skip;c’, ")

Proof

Assume (c, o) —, (skip,o’). Proof is by weak natural number induction on n € N.

Base Case: If n = 0 then ¢ = skip and o = o’ (by reflexivity). It follows that
(c;c’, 0y —* (skip;c’, o’ (also by reflexivity).

IH: Assun,']e i/f (co,00) —+n—1 (skip, o) then (co;cy, 00) —n—1 (skip;c’, o) (for all
5010'010'0100)‘

Advanced Programming Languages

L Large step implies Small-step

Sequence Lemma

Subsequence Lemma:

(c,0) = (skip, 0’y = (c;c’, o) —* (skip;c’,o")

Proof

Assume (c, o) —, (skip,o’). Proof is by weak natural number induction on n € N.

Base Case: If n = 0 then ¢ = skip and o = o’ (by reflexivity). It follows that
(c;c’, o) —* (skip;c’, o’ (also by reflexivity).

IH: Assume if (co, 00) —n—1 (skip, o) then (co;ch, 00) —n—1 (skip;c’, ap) (for all
COaO'OaO'(,]aCE))‘

Inductive Case: Assume n > 1.

Advanced Programming Languages

L Large step implies Small-step

Sequence Lemma

Subsequence Lemma:

(c,0) —* (skip, 0’y = (c;c’, o) —* (skip;c’, ")

Proof

Assume (c, o) —,, (skip,o’). Proof is by weak natural number induction on n € N.

Base Case: If n = 0 then ¢ = skip and o = o’ (by reflexivity). It follows that
(c;c’,a) —* (skip;c’, o’) (also by reflexivity).

IH: Assur,ne i/f (co,00) —n—1 (skip, () then (co;cy, 00) —n—1 (skip;c’, o) (for all
5010'010'0100)‘

Inductive Case: If n > 1 then we have (c, o) —1 {c2,02) —n—1 (skip, o’) for some (ca,02).

Advanced Programming Languages

L Large step implies Small-step

Sequence Lemma

Subsequence Lemma:

(c,0) =™ (skip, 0’y = (c;c’,0) =™ (skip;c’,d’)

Proof

Assume (c, o) —,, (skip,o’). Proof is by weak natural number induction on n € N.

Base Case: If n = 0 then c = skip and o = o’ (by reflexivity). It follows that
(c;c’, o) —* (skip;c’,a’) (also by reflexivity).

IH: Assume if (co,00) —+n—1 (skip, o() then (co;cy, 00) —n—1 (skip;c’, op) (for all
C0,00,00,Cq)-

Inductive Case: If n > 1 then we have (c,0) —1 (c2,02) —,_1 (skip, o’) for some (c2, 02).
By IH (with co = c2, 09 = 032, 0'6 =o', cg = c’) we infer {ca;c’, 02) —n_1 (skip;c’,o’).

Advanced Programming Languages

L Large step implies Small-step

Sequence Lemma

Subsequence Lemma:

(c, o) —=* (skip, 0’y = (c;c’,0) —* (skip;c, ")

Proof

Assume (c, o) —, (skip,o’). Proof is by weak natural number induction on n € N.

Base Case: If n = 0 then ¢ = skip and o = o’ (by reflexivity). It follows that

(c;c’,a) —* (skip;c’, o’ (also by reflexivity).

IH: Assume if (co, 00) —n—1 (skip, o) then (co;cy, 00) —n—1 (skip;c’, ag) (for all

co, 00, o'('], 66)4

Inductive Case: If n > 1 then we have (c, o) —1 {c2,02) —n—1 (skip, o’) for some (ca, 02).
By IH (with co = c2, 09 = 02, 0'6 =0/, c{) = c’) we infer {ca;c’, 02) —n_1 (skip;c’,o’).

Rule S1 allows us to derive
(c,0) —1 (c2,02)

(c;c’, o) =1 (ca;c’, 02)

(1)

Advanced Programming Languages

L Large step implies Small-step

Sequence Lemma

Subsequence Lemma:

(c,0) =™ (skip, 0’y = (c;c’,0) =™ (skip;c’,d’)

Proof

Assume (c, o) —,, (skip,o’). Proof is by weak natural number induction on n € N.

Base Case: If n = 0 then c = skip and o = o’ (by reflexivity). It follows that
(c;c’, o) —* (skip;c’,a’) (also by reflexivity).

IH: Assume if (co, 00) —+n—1 (skip, o) then (co;c(, 00) —n—1 (skip;c’, o) (for all
o, 00,0y, Ch)-

Inductive Case: If n > 1 then we have (¢, o) —1 (c2,02) —,_1 (skip, o’) for some (c2, 02).
By IH (with co = c2, 09 = 032, 0'6 =0/, cf) = c’) we infer {ca;c’, 02) —n_1 (skip;c’,o’).
Rule S1 allows us to derive

(c,0) =1 {(c2,02)

(c;c’, o) =1 (casc’, 02)

(1)

Putting these together yields (c;c’, o) —1 {c2;c’, 02) —n_1 (skip;c’, o’). O

Advanced Programming Languages

L Large step implies Small-step

Sequence Case

Lemma: (1)=(2)

(c,0) | 0/ = (c,0) —

*

(skip, o)

Subsequence Lemma:

(c,0) = (skip, 0’y = (c;c’,0) =™ (skip;c’,o’)

Proof

Let D be a derivation of {(c,) |} o’. Proof is by structural induction over D.

IH: Assume if (co, 00) | o, has a derivation Do < D, then (co, o0) —™ (skip, oy)).
Case 2: Suppose D ends in Rule L2:

Dl D2
(c1,0) U o2 (c2,02) I o

(c15¢2,0) Yo’

D=

(L2)

Apply IH with Dy = D1, ¢o = c1, 00 = 0, and o) = o2. Since D1 < D, we infer that
(c1,0) =~ (skip, 02).
Apply IH with Do = D3, co = c2, 00 = 02, and o) = ¢’. Since D> < D, we infer that
(c2,02) =" (skip,0”).

Idea: Prove {(ci;c2,0) —* (skip;ca,02) —1 (c2,02) —* (skip,o’)

Advanced Programming Languages

L Large step implies Small-step

Sequence Case

Lemma: (1)=(2)

(c,0) | 0/ = (c,0) —

*

(skip, o)

Subsequence Lemma:

(c,0) = (skip, 0’y = (c;c’,0) =™ (skip;c’,o’)

Proof

Let D be a derivation of {(c,) |} o’. Proof is by structural induction over D.

IH: Assume if (co, 00) | o, has a derivation Do < D, then (co, o0) —™ (skip, oy)).
Case 2: Suppose D ends in Rule L2:

Dl D2
(c1,0) U o2 (c2,02) I o

(c15¢2,0) Yo’

D=

(L2)

Apply IH with Dy = D1, ¢o = c1, 00 = 0, and o = o2. Since D1 < D, we infer that
(c1,0) =" (skip, 02). The subsequence lemma implies that (c1;c2,0) —™ (skip;ca, 02).
Apply IH with Do = D3, co = c2, 00 = 02, and o) = ¢’. Since D2 < D, we infer that
(ca,02) —* (skip, o’).

Idea: Prove {(ci;c2,0) —* (skip;ca,02) —1 (c2,02) —* (skip,o’)

Advanced Programming Languages

L Large step implies Small-step

Sequence Case

(c,o) | 0/ = (c,0) —* (skip,o’)

Let D be a derivation of {(c,) |} o’. Proof is by structural induction over D.
IH: Assume if (co, 00) | o, has a derivation Do < D, then (co, o0) —* (skip, op).
Case 2: Suppose D ends in Rule L2:

Dy Dy

(c1,0) 4 o2 (c2,02) I o
(01;02,0>U0l

D=

(L2)

Apply IH with Dy = D1, ¢o = ¢1, 09 = o, and 0(’) = 03. Since D; < D, we infer that
(c1,0) =™ (skip, o2). The subsequence lemma implies that (c1;c2,0) —* (skip;ca, o2).
Moreover, Rule S2 derives

(S2)
(skip;ca, 02) —1 (c2,02)

Apply IH with Dy = D2, ¢o = c2, 09 = 02, and o, = o’. Since D2 < D, we infer that
(c2,02) —* (skip, o’). This yields (c1;c2,0) =~ (skip;ca, 02) —1 (c2,02) —* (skip, o’).

Advanced Programming Languages

L Large step implies Small-step

Assignment Case

Lemma: (1)=
(e,0) 4 o' = (c,0) = (skip,0”)

Proof

Let D be a derivation of (c, o) | o’. Proof is by structural induction over D.
IH: Assume if (co, o0) | o, has a derivation Do < D, then (co, o0) —* (skip, o()).

Case 3: Suppose D ends in Rule L3:
Dy
(a,0) I n

P= (vi=a,o) | olv— n](L3)

Advanced Programming Languages

L Large step implies Small-step

Assignment Case

Lemma: (1)=(2)

(e,0) 4 o' = (c,0) = (skip,0”)

Proof

Let D be a derivation of (c, o) | o’. Proof is by structural induction over D.

IH: Assume if (co, o0) | o, has a derivation Do < D, then (co, o0) —* (skip, o()).

Case 3: Suppose D ends in Rule L3:
D1
(a,0) I n

b= (vi=a,o) | olv— n](L3)

So ¢ = (v:=a) and 0/ = o[v — n].

Need to somehow prove that (v:=a,c) =" (skip,c[v — n]).

Advanced Programming Languages

L Large step implies Small-step

Assignment Case

Lemma: (1)=(

(e,0) 4 o' = (c,0) =" (skip,0”)

Let D be a derivation of {(c, o) |} o’. Proof is by structural induction over D.
IH: Assume if (co, o0) | o, has a derivation Do < D, then (co, o0) —™ (skip, oy)).
Case 3: Suppose D ends in Rule L3:
Dy
(a,0) ¥ n

P= (vi=a,o) | olv— n](L3)

So c= (v:=a) and 0’ = o[v — n].

Need to somehow prove that (v :=a,0) —* (skip,o[v — n]).
Idea: Prove (v:=a,0) =" (v:=n,0) = (skip, o[v — n]).

Advanced Programming Languages

L Large step implies Small-step

Assignment Case

Let D be a derivation of (c, o) |} o’. Proof is by structural induction over D.

IH: Assume if (co, o0) | o, has a derivation Do < D, then (co, o0) —* (skip, oy).

Case 3: Suppose D ends in Rule L3:
Dy
(a,0) I n

b= (vi=a,o) | olv— n](L3)

Soc= (v:=a)and o’ = o[v > n].

Need to somehow prove that (v:=a,c) =" (skip,c[v — n]).
Idea: Prove (v:=a,0) =" (v:=n,0) = (skip, o[v — n]).
Two challenges:

m Must prove {(a,0) || n => (a,0) = (n, o).

*

m Must prove (a,0) =" (n,0) = (v:=a,0) =" (v:=n,0).

Advanced Programming Languages

L Large step implies Small-step

Semantic Equivalence

Theorem: Arithmetic Semantic Equivalence

The following assertions are all equivalent:
(a,0) I n
(a,0) =" (n,o)
Ala]o =n

Theorem: Boolean Semantic Equivalence

The following assertions are all equivalent (p € {T, F'}):
(b;o) ¥ p
(b,o) =™ (true,o) if p =T and (b, c) —* (false,o) if p = F
Blb]o =p

Theorem: Command Semantic Equivalence

The following assertions are all equivalent (each implies the others):
(e, o) b o’
(c,0) —* (skip, 0’) where —* is the reflexive transitive closure of —1

Clc]o =o'

Advanced Programming Languages

L Large step implies Small-step

Subassignment Lemma

Subassignment Lemma

(a,0) =" (n,0) = (v:=a,0) =" (v:i=n,0)

Proof

Assume (a, o) —; (n, o). Proof is by weak natural number induction over i € N.

Base Case: If i = 0 then a = n (by reflexivity). It follows that (a, o) —* (n, o) (also by
reflexivity).

IH: Assume if (ag, 00) —>i—1 (no,00) then (v :=ag,00) —i—1 (v :=ng,00).

Inductive Case: If 7 > 1 then we have (a, o) —1 (a2,0) —;—1 (n, o) for some az. By IH (with
ag = a2, 09 = 0, ng = n) we infer (v :=a, o) —;_1 (v:=n, o). Rule S3 allows us to derive

(a,o) =1 (a2, 0)

(S3)

(vi=a,0) =1 (vi=as,0)

Putting these together yields (v :=a, o) —1 (v:i=az,0) —;—1 (v:i=n,o). O

Advanced Programming Languages

L Large step implies Small-step

Assignment Case

Lemma: (1)=

(c,0) U o’ => {c,0) =" (skip,o”)

Let D be a derivation of (c, o) | o’. Proof is by structural induction over D.
IH: Assume if (co, o0) | o, has a derivation Do < D, then (co, o0) =™ (skip, o()).
Case 3: Suppose D ends in Rule L3:

D1
(a,0) I n

P= (vi=a,o) | olv— n]

(L3)

So ¢ = (v:=a) and 0’ = o[v — n]. By arithmetic semantic equivalence, D1 implies
(a, o) = (n, o). The subassignment lemma therefore implies (v :=a, o) —=* (v:=n, o).
Moreover, Rule S4 derives

s4)

(v:=n,o) —1 (skip, o’)

We conclude that (v :=a, o) —* (v:=n,o) —1 (skip, o’).

Advanced Programming Languages

L Large step implies Small-step

Conditional Case

(c,0) I 0/ = (c,0) —=* (skip,d’)

Let D be a derivation of (c, o) | o’. Proof is by structural induction over D.
IH: Assume if (co, o0) | o, has a derivation Do < D, then (co, o0) —* (skip, o().
Case 4: Suppose D ends in Rule L4:
D, Do
(b,o) 4 T (c1,0) U o’

D = L4
(if b then c; else c2,0) | o"()

*

By boolean semantic equivalence, Dy implies (b, c) —* (true, o). A subconditional lemma proves
(if b then ¢y else cz,0) —" (if true then c¢; else cz, o). Rule S6 derives

(if true then c¢; else ¢z, 0) —1 {c1,0). Applying the IH (with Dy = D2 < D, ¢g = c1,

oo = 0, 0y = o) implies (c1,0) —* (skip, o). Putting these together yields

(if b then c; else ca,0) —* (if true then c; else ca,0) —1 {c1,0) —* (skip, a’).

Case 5: The case where D ends in Rule L5 is similar.

Advanced Programming Languages

L Large step implies Small-step

Loop Case

Lemma: (1)=(2)
(e,0) 4 o' = (c,0) =" (skip,0”)

Proof

Let D be a derivation of (c, o) | o’. Proof is by structural induction over D.

IH: Assume if (co, o0) | o, has a derivation Do < D, then (co, o0) —* (skip, oy)).
Case 6: Suppose D ends in Rule L6:
D1
(if b then (cj;while b do c1) else skip, o) | o’
(while b do c1,0) | o’

D= (L6)

Optional exercise: You should try this one yourself. Turns out it's not very hard!
(Answer on next slide.)

Advanced Programming Languages

L Large step implies Small-step

Loop Case

Lemma: (1)=(2)

(e,0) 4 o' = (c,0) =" (skip,0”)

Let D be a derivation of (c, o) | o’. Proof is by structural induction over D.
IH: Assume if (co, o0) | o, has a derivation Do < D, then (co, o0) —™ (skip, o()).
Case 6: Suppose D ends in Rule L6:
Dy
(if b then (cj;while b do c1) else skip, o) | o’

D= (L6)
(while b do c1,0) | o’

Rule S8 derives (while b do c1,0) —1 (if b then (cj1;while b do c1) else skip). Applylng the
IH (with Do = Dy < D, co = if b then (c;;while b do c1) else skip, 09 = 0, 0y = 0’)

yields (if b then (cj;while b do c1) else skip, o) —* (skip,o’). Putting these together yields
(while b do c1,0) —1 (if b then (ci;while b do c1) else skip) —* (skip,o’). O

Advanced Programming Languages

L Small-step implies Denotational

Small-step implies Denotational

Lemma: (2)=(3)
(c,0) =* (skip,o’) = C[c]o = o’
Assume (c, o) —* (skip, o’).

What should be our proof strategy for this one?

Advanced Programming Languages

L Small-step implies Denotational

Small-step implies Denotational

Lemma: (2)=(3)

(c,0) =* (skip,0’) = C[c]o = o’

Proof

Assume (c, o) —* (skip, o’).
What should be our proof strategy for this one?
Clever idea: Let's instead prove {c,c) —; {¢',0’) = C[c]o = C[c']o’".

Do you see why this suffices to prove the theorem?

Advanced Programming Languages

L Small-step implies Denotational

Small-step implies Denotational

Lemma: (2)=(3)
(c,0) =1 (c', 0"y = C[c]o = C[']o’

Proof is by structural induction on the derivation D of {c, o) —1 (c’,d’).

Advanced Programming Languages

L Small-step implies Denotational

Inductive Sequence Case

Lemma: (2)=(3)

(c,0) =1 {c’,0') = C[c]o = C[']o’

Proof

Proof is by structural induction on the derivation D of {c, o) —1 (c’,o’).
IH: Assume if (co, o0) —1 (cj, 0() has a derivation Do < D then C[co]o = Clcp]oy.
Case 1: Suppose D ends in Rule S1:
D,
<Cl’ U> —1 <Cllf 0’>

s1
(c13c2,0) —1 <C'1;62,0’)()

D =

Advanced Programming Languages

L Small-step implies Denotational

Inductive Sequence Case

Lemma: (2)=(3)
(c,0) =1 {c’,0') = C[c]o = C[]o’

Proof
Proof is by structural induction on the derivation D of (¢, o) —1 (c’, o).
IH: Assume if (co, o0) —1 (¢, () has a derivation Do < D then C[co]o = Clcploy.

Case 1: Suppose D ends in Rule S1:

D,
5 — {c1,0) =1 {c1,0") (s1)
(c13c2,0) —1 (c)5c2,0")

Applying the IH (with Dg = D1 < D, ¢ = ¢1, 00 = 0, 56 =d, a(') = o’) implies
Clei]o = Clei]o’.

Must prove C[ci;ca]o = C[c];c2]o’.

Advanced Programming Languages

L Small-step implies Denotational

Inductive Sequence Case

Lemma: (2)=(3)
(c,0) =1 (c', 0"y = C[c]o = C[']o’

Proof
Proof is by structural induction on the derivation D of {(c, o) —1 (c’,o’).
IH: Assume if (co, o0) —1 (ci, o) has a derivation Do < D then C[co]o = Clcp]oy.

Case 1: Suppose D ends in Rule S1:

D1

D= <Cly U> —1 <Clla U,> (S1)
(c13c2,0) —1 (cf5c2,0")

Applying the IH (with Do = D1 < D, cg = c1, 00 = 0, ¢y = ¢y, oy, = o) implies
Clei]o = C[ci]o’. From the denotational definition of sequence, we conclude that

Clei;ea]o = Clezl(Clei]o) = Cle](Cley]e’) = Cle)sea]o’.

Advanced Programming Languages

L Small-step implies Denotational

Other Cases

Optional exercise: Try some of the other cases on your own. Most are pretty
feasible (no new lemmas needed other than semantic equivalence of expressions,
which we already assumed).

The case for while-loops is challenging though!

Advanced Programming Languages

L Denotational implies Large-step

Which Proof Approach?

Lemma: (3)=(1)
Clc]o =o' = (c,0) J o

/

Proof

Assume Clc]o = o’. ...

How do we approach this one? (No derivation in the assumptions to induct

over!)

Advanced Programming Languages

L Denotational implies Large-step

Setting Up the Induction

Lemma: (3)=(1)
Clc]o =0" = (c,0) J o

/

Proof

Assume C[c]o = o’. Proof is by structural induction over c.

Danger: We might be in trouble when we hit the while loop, but let’s proceed
for now. What's the IH?

Advanced Programming Languages

L Denotational implies Large-step

Setting Up the Induction

Lemma: (3)=(1)
Clcjo =o' = (c,0) J o

Assume C[[c]o = o’. Proof is by structural induction over c.

/

IH: Assume if C[[co]oo = o and cg < c then (co, o0) | o
What does “smaller” (co < ¢) mean for commands?

Same idea as derivations: Any reasonable metric will do, but we'll just compare
the heights of the ASTs.

Advanced Programming Languages

L Denotational implies Large-step

Skip Case

Lemma: (3)=(1)
Clc]o =o' = (c,0) J o

/

Proof

Assume C[c]o = o’. Proof is by structural induction over c.
IH: Assume if C[[co]oo = o and cg < c then (co, o0) | 7.

Case 1: Suppose ¢ = skip.

Advanced Programming Languages

L Denotational implies Large-step

Skip Case

Lemma: (3)=(1)
Clco =o' = (¢c,0) | o

Proof

Assume C[c]o = o’. Proof is by structural induction over c.

IH: Assume if C[[co]oo = o and cg < c then (co, o0) | 7.
Case 1: If ¢ = skip then o’ = C[c]o = o. Thus, we can derive

(c,o) U o’ (1)

Advanced Programming Languages

L Denotational implies Large-step

Sequence Case

Lemma: (3)=(1)
Clc]o =o' = (c,0) |} o

/

Proof

Assume C[[c]o = o’. Proof is by structural induction over c.

IH: Assume if C[[co]oo = ofy and cg < c then (co, o0) | 0.

Case 2: Suppose ¢ = ¢ ;C2.

Advanced Programming Languages

L Denotational implies Large-step

Sequence Case

Lemma: (3)=(1)
ClcJo =o' = (c,0) J o

/

Proof
Assume C[c]o = o’. Proof is by structural induction over c.

IH: Assume if C[[co]oo = ofy and cg < c then (co, o0) | 7.

Case 2: If ¢ = c1;¢2 then o’ = C[c]o = C[e1;ca]lo = Clea](Clei]o).

Advanced Programming Languages

L Denotational implies Large-step

Sequence Case

Lemma: (3)=(1)
Clc]o =o' = (c,0) J o

/

Proof

Assume C[c]o = o’. Proof is by structural induction over c.
IH: Assume if C[[co]oo = o and cg < c then (co, o0) | 7.

Case 2: If ¢ = c1;c2 then o/ = C[c]o = C[e1;c2]lo = Cea](Clei]o).
The IH (with co = ¢1 < ¢, 09 = 0, a(’, = C[c1]o) implies that (c1,0) | C[ei]o.

Advanced Programming Languages

L Denotational implies Large-step

Sequence Case

Lemma: (3)=(1)
Clc]o =o' = {(c,0) | o’

Proof

Assume C[c]o = o’. Proof is by structural induction over c.
IH: Assume if C[[co]oo = of, and cg < c then (co, o0) | 7.

Case 2: If ¢ = c1;c2 then o’ = C[c]o = C[ei;e2]lo = Clea](Clei]o).

The IH (with co = ¢1 < ¢, 00 = 0, o, = C[c1]o) implies that (c1, o) I Cle1]o.
The IH (with co = c2 < ¢, 00 = C[e1]o, o = Clcz](Clc1]o)) implies that
(e2,Cler]o) ¥ Cle2](Clea]o).

Advanced Programming Languages

L Denotational implies Large-step

Sequence Case

Lemma: (3)=(1)

/

ClcJo =0’ = (c,0) J o

Proof

Assume C[c]o = o’. Proof is by structural induction over c.
IH: Assume if C[[co]oo = ofy and cg < c then (co, o0) | 0.

Case 2: If ¢ = c1;c¢2 then o’ = C[c]o = C[ei;ea]lo = Clea](Clei]o).

The IH (with co = ¢1 < ¢, 09 = 0, o, = C[c1]o) implies that (c1, o) | Cle1]o.
The IH (with co = c2 < ¢, 00 = C[c1]o, oy = C[c2](Ce1]o)) implies that
(c2,Cle1]o) U Clez2](Cler]o).

Since C[c2](C[e1]o) = Clei;ca]o (by the definition of C), we can therefore derive:

(c1,0) $ Cler]lo {ec2,C[eci]o) UC[[Cl;Cz]]U(Lz
(c1;5¢2,0) | Clersea]o

)

Advanced Programming Languages

L Denotational implies Large-step

Other Cases

Lemma: (3)=(1)
Clc]o = o' = {(c,0) I o
Let's skip to the while case, since that's the dangerous one.

(Other cases left as exercise to the reader.)

Advanced Programming Languages

L Denotational implies Large-step

While Case

Lemma: (3)=(1)

/

ClcJo =0’ = (c,0) J o

Proof

Assume C[[c]o = o’. Proof is by structural induction over c.
IH: Assume if C[[co]oo = ofy and cg < c then (co, o0) | 0.

Case 6: If ¢ = while b do c; then C[c] = fiz(T).

We must now prove (c, o) |} fiz(T')o. How?

Hint: The theorem just became a property of a fixed point.

Advanced Programming Languages

L Denotational implies Large-step

While Case

Lemma: (3)=(1)

/

Clc]o =o' = (c,0) } o

Proof

Assume C[[c]o = o’. Proof is by structural induction over c.
IH: Assume if C[[co]oog = o and cg < c then (co, o0) | o.

Case 6: If ¢ = while b do ¢; then C[c] = fiz(T"). Define property
P(f) =V(o,0") € f,{c,0) I o, and observe that P(C[c]) is the theorem statement. Since
C[c] = fiz(T") we can prove P(C[c]) by fixed point induction over I.

Fixed point induction to the rescue!

Advanced Programming Languages

L Denotational implies Large-step

While Case

Assume C[[c]o = o’. Proof is by structural induction over c.

IH: Assume if C[[co]oo = ofy and cg < c then (co, o0) | 0.

Case 6: If ¢ = while b do c; then C[c] = fiz(T"). Define property

P(f) =V(o,0’) € f,{c,0) § o/, and observe that P(C[c]) is the theorem statement. Since
C[c] = fiz(T") we can prove P(C[c]) by fixed point induction over I.

Base Case: P(_L) holds vacuously.

Advanced Programming Languages

L Denotational implies Large-step

While Case

Assume C[[c]o = o’. Proof is by structural induction over c.

IH1: Assume if C[co]oo = o), and co < c then (co, 00) | o).

Case 6: If ¢ = while b do c; then C[c] = fiz(I"). Define property
P(f) =V(o,0') € f,{c,0) § o, and observe that P(C[c]) is the theorem statement. Since
C[c] = fiz(T") we can prove P(C[c]) by fixed point induction over I.

Base Case: P(L) holds vacuously.

IH2: Assume P(g) for some arbitrary g. That is, assume V(o0, o) € g, (c,00) | 0{.

Goal: Prove P(T'(g)).

Practice Exercise: See if you can prove this on your own. (Solution on next two
slides.)

Advanced Programming Languages

L Denotational implies Large-step

While Case

Assume C[c]o = o’. Proof is by structural induction over c.

IH1: Assume if C[co]oo = o, and co < c then (cg, o0) | o).

Case 6: If ¢ = while b do c; then C[c] = fiz(T"). Define property
P(f) =V(o,0’) € f,{c,0) § o/, and observe that P(C[c]) is the theorem statement. Since
C[c] = fiz(T") we can prove P(C[c]) by fixed point induction over I.

Base Case: P (L) holds vacuously.

IH2: Assume P(g) for some arbitrary g. That is, assume V(o0, o)) € g, (c,00) I 0{.

Inductive Case: Let (0,0’) € T'(g) be given.
Case 6.1: If B[b]Jo = F then ¢’ = o by definition of I'. Since B[b]o = F, the boolean
semantic equivalence lemma implies that (b, o) | F is derivable. We can therefore derive:

(L1)

(bo) § F (skip, o) 4 o’ 15
(if b then (c1;c) else skip, o) | a’()
7 (L6)

(o) b o

Case 6.2: If B[b]o = T then ... (next slide)

Advanced Programming Languages

L Denotational implies Large-step

While Case

Assume C[cJo = o’. Proof is by structural induction over c.

IH1: Assume if C[co]oo = o, and co < c then (co, 0) | o).

Case 6: If ¢ = while b do ¢ then Clc] = fiz(T"). Define property
P(f) =V(o,0") € f,{c,0) § o, and observe that P(C[c]) is the theorem statement. Since
C[c] = fiz(T") we can prove P(C[[c]]) by fixed point induction over I'.

Base Case: P(.L) holds vacuously.
IH2: Assume P(g) for some arbitrary g. That is, assume V(o0, o3) € g, (c,00) I of.

Inductive Case: Let (o,0’) € I'(g) be given.
Case 6.1: If B[b]o = F then ... (previous slide)
Case 6.2: If B[b]o = T then o’ = g(C[c1]o) by definition of I". Since B[b]oc = T, the
boolean semantic equivalence lemma implies that (b,o) || T is derivable. From IH1 (with
co = c1 < ¢, 0p = a) we have (c1,0) | Clci]o. From IH2, (C[ci]o,0’) € g implies
(c,Clc1]o) U o’. This allows us to derive
(c1,0) U Clei]o (c,Cler]o) I o’
(bo) 4 T (e15¢,0) Y o’
(if b then (cj;c) else skip, o) | o’
(e, o) 4o’

(L2)

(L4)
(L6)

Advanced Programming Languages

L Completing the Proof

Large Proofs

m This was/is a huge proof even for a small language.
m We didn't even prove equivalence of arithmetic and boolean expression
semantics (must prove (1)=-(2), (2)=-(3), and (3)=-(1) for each!).
m And we skipped many cases just for commands.
m Good news: If you want to practice structural induction, try some of the
(many, many) cases we left out!
m Bad news: How can we trust a proof this large? What if there's a mistake?
m Modern language designers don't write proofs like this by hand. They use
Automated Theorem Provers.
m (But we'll stick with writing them manually in this class, because that
teaches the foundational skills you need to do it in a theorem prover.)

	Semantic Equivalence
	Large-step implies Small-step
	Small-step implies Denotational
	Denotational implies Large-step
	Completing the Proof

