
Evaluation Strategies
CS 4301/6371: Advanced Programming Languages

Kevin W. Hamlen

April 11–16, 2024



Advanced Programming Languages

Function Features

First-class

Definition (first-class): A type is said to be first-class for a programming
language if values of that type require no special syntax or encapsulation to be

assigned to variables,

passed as arguments,

returned by functions,

any other type-agnostic usages.

Which of the following languages have first-class functions?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

First-class

Definition (first-class): A type is said to be first-class for a programming
language if values of that type require no special syntax or encapsulation to be

assigned to variables,

passed as arguments,

returned by functions,

any other type-agnostic usages.

Which of the following languages have first-class functions?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

First-class

Definition (first-class): A type is said to be first-class for a programming
language if values of that type require no special syntax or encapsulation to be

assigned to variables,

passed as arguments,

returned by functions,

any other type-agnostic usages.

Which of the following languages have first-class functions?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

First-class

Definition (first-class): A type is said to be first-class for a programming
language if values of that type require no special syntax or encapsulation to be

assigned to variables,

passed as arguments,

returned by functions,

any other type-agnostic usages.

Which of the following languages have first-class functions?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

First-class

Definition (first-class): A type is said to be first-class for a programming
language if values of that type require no special syntax or encapsulation to be

assigned to variables,

passed as arguments,

returned by functions,

any other type-agnostic usages.

Which of the following languages have first-class functions?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

First-class

Definition (first-class): A type is said to be first-class for a programming
language if values of that type require no special syntax or encapsulation to be

assigned to variables,

passed as arguments,

returned by functions,

any other type-agnostic usages.

Which of the following languages have first-class functions?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

First-class

Definition (first-class): A type is said to be first-class for a programming
language if values of that type require no special syntax or encapsulation to be

assigned to variables,

passed as arguments,

returned by functions,

any other type-agnostic usages.

Which of the following languages have first-class functions?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

First-class

Definition (first-class): A type is said to be first-class for a programming
language if values of that type require no special syntax or encapsulation to be

assigned to variables,

passed as arguments,

returned by functions,

any other type-agnostic usages.

Which of the following languages have first-class functions?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

First-class

Definition (first-class): A type is said to be first-class for a programming
language if values of that type require no special syntax or encapsulation to be

assigned to variables,

passed as arguments,

returned by functions,

any other type-agnostic usages.

Which of the following languages have first-class functions?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

First-class

Definition (first-class): A type is said to be first-class for a programming
language if values of that type require no special syntax or encapsulation to be

assigned to variables,

passed as arguments,

returned by functions,

any other type-agnostic usages.

Which of the following languages have first-class functions?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

First-class

Definition (first-class): A type is said to be first-class for a programming
language if values of that type require no special syntax or encapsulation to be

assigned to variables,

passed as arguments,

returned by functions,

any other type-agnostic usages.

Which of the following languages have first-class functions?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

Partial Evaluation

Definition (Curried): A multi-argument function is curried if it is expressed as a
function from each individual argument to a function of the remaining arguments
(i.e., has type τ1 → · · · → τn).

Definition (Partial Evaluation): A multi-argument function is partially
evaluated when it is applied to fewer than its total number of arguments,
yielding a function from the remaining arguments to the return value.

Which of the following languages support currying and partial evaluation?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !(with functools)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

Partial Evaluation

Definition (Curried): A multi-argument function is curried if it is expressed as a
function from each individual argument to a function of the remaining arguments
(i.e., has type τ1 → · · · → τn).

Definition (Partial Evaluation): A multi-argument function is partially
evaluated when it is applied to fewer than its total number of arguments,
yielding a function from the remaining arguments to the return value.

Which of the following languages support currying and partial evaluation?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !(with functools)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

Partial Evaluation

Definition (Curried): A multi-argument function is curried if it is expressed as a
function from each individual argument to a function of the remaining arguments
(i.e., has type τ1 → · · · → τn).

Definition (Partial Evaluation): A multi-argument function is partially
evaluated when it is applied to fewer than its total number of arguments,
yielding a function from the remaining arguments to the return value.

Which of the following languages support currying and partial evaluation?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !(with functools)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

Partial Evaluation

Definition (Curried): A multi-argument function is curried if it is expressed as a
function from each individual argument to a function of the remaining arguments
(i.e., has type τ1 → · · · → τn).

Definition (Partial Evaluation): A multi-argument function is partially
evaluated when it is applied to fewer than its total number of arguments,
yielding a function from the remaining arguments to the return value.

Which of the following languages support currying and partial evaluation?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !(with functools)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

Partial Evaluation

Definition (Curried): A multi-argument function is curried if it is expressed as a
function from each individual argument to a function of the remaining arguments
(i.e., has type τ1 → · · · → τn).

Definition (Partial Evaluation): A multi-argument function is partially
evaluated when it is applied to fewer than its total number of arguments,
yielding a function from the remaining arguments to the return value.

Which of the following languages support currying and partial evaluation?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !(with functools)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

Partial Evaluation

Definition (Curried): A multi-argument function is curried if it is expressed as a
function from each individual argument to a function of the remaining arguments
(i.e., has type τ1 → · · · → τn).

Definition (Partial Evaluation): A multi-argument function is partially
evaluated when it is applied to fewer than its total number of arguments,
yielding a function from the remaining arguments to the return value.

Which of the following languages support currying and partial evaluation?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !(with functools)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

Partial Evaluation

Definition (Curried): A multi-argument function is curried if it is expressed as a
function from each individual argument to a function of the remaining arguments
(i.e., has type τ1 → · · · → τn).

Definition (Partial Evaluation): A multi-argument function is partially
evaluated when it is applied to fewer than its total number of arguments,
yielding a function from the remaining arguments to the return value.

Which of the following languages support currying and partial evaluation?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !(with functools)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

Partial Evaluation

Definition (Curried): A multi-argument function is curried if it is expressed as a
function from each individual argument to a function of the remaining arguments
(i.e., has type τ1 → · · · → τn).

Definition (Partial Evaluation): A multi-argument function is partially
evaluated when it is applied to fewer than its total number of arguments,
yielding a function from the remaining arguments to the return value.

Which of the following languages support currying and partial evaluation?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !(with functools)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

Partial Evaluation

Definition (Curried): A multi-argument function is curried if it is expressed as a
function from each individual argument to a function of the remaining arguments
(i.e., has type τ1 → · · · → τn).

Definition (Partial Evaluation): A multi-argument function is partially
evaluated when it is applied to fewer than its total number of arguments,
yielding a function from the remaining arguments to the return value.

Which of the following languages support currying and partial evaluation?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !(with functools)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

Partial Evaluation

Definition (Curried): A multi-argument function is curried if it is expressed as a
function from each individual argument to a function of the remaining arguments
(i.e., has type τ1 → · · · → τn).

Definition (Partial Evaluation): A multi-argument function is partially
evaluated when it is applied to fewer than its total number of arguments,
yielding a function from the remaining arguments to the return value.

Which of the following languages support currying and partial evaluation?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !(with functools)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Function Features

Partial Evaluation

Definition (Curried): A multi-argument function is curried if it is expressed as a
function from each individual argument to a function of the remaining arguments
(i.e., has type τ1 → · · · → τn).

Definition (Partial Evaluation): A multi-argument function is partially
evaluated when it is applied to fewer than its total number of arguments,
yielding a function from the remaining arguments to the return value.

Which of the following languages support currying and partial evaluation?

C %

C++ %

SIMPL !

Java %

JavaScript !

Python !(with functools)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Evaluation Strategies

Eager Evaluation

Definition (Eager Semantics or Call-by-value): An eager or call-by-value
language evaluates all function arguments before passing them as parameters.

Operational semantics look like this:

∀i ∈ [1, n], 〈ei, σ〉 ⇓ ui σ(f)(u1, . . . , un) ⇓ u′

〈f(e1, . . . , en), σ〉 ⇓ u′



Advanced Programming Languages

Evaluation Strategies

Lazy Evaluation

Definition (Lazy Semantics): A lazy language evaluates function arguments
after the function body has started evaluating. There are two main varieties:

Call-by-name languages (re)evaluate each argument expression each time
the function uses it.

Can be formalized via capture-avoiding substitution
Disadvantage: usually inefficient
Advantage: sometimes highly efficient (e.g., unused arguments, highly
parallelizable languages)

Call-by-need languages evaluate each argument at first use, then memoize
and reuse those values at subsequent uses.

Advantage: highest efficiency (usually)
Disadvantage: sometimes unintuitive!

Optional Exercises: Devise call-by-value and call-by-need operational semantics
for λ-calculus



Advanced Programming Languages

Evaluation Strategies

Call-by-reference

Definition (call-by-reference): Languages supporting call-by-reference allow
callees to destructively modify the values of variables passed as arguments.

Example: Most object-oriented languages pass objects by reference, allowing
callees to globally modify the object’s fields instead of receiving a local copy of
the object.

Note: Call-by-reference does not make sense for immutable variables.



Advanced Programming Languages

Evaluation Strategies

Evaluation Strategies

Which evaluation strategies are supported by the following languages?

C call-by-value
C++ call-by-value, call-by-reference
SIMPL call-by-value
Java call-by-value, call-by-reference (objects)
JavaScript call-by-value, call-by-reference (objects)
Python call-by-value, call-by-reference (everything mutable!)
λ→ call-by-name
System F call-by-name
OCaml call-by-value, call-by-reference (objects)
Haskell call-by-need



Advanced Programming Languages

Evaluation Strategies

Evaluation Strategies

Which evaluation strategies are supported by the following languages?

C call-by-value
C++ call-by-value, call-by-reference
SIMPL call-by-value
Java call-by-value, call-by-reference (objects)
JavaScript call-by-value, call-by-reference (objects)
Python call-by-value, call-by-reference (everything mutable!)
λ→ call-by-name
System F call-by-name
OCaml call-by-value, call-by-reference (objects)
Haskell call-by-need



Advanced Programming Languages

Evaluation Strategies

Evaluation Strategies

Which evaluation strategies are supported by the following languages?

C call-by-value
C++ call-by-value, call-by-reference
SIMPL call-by-value
Java call-by-value, call-by-reference (objects)
JavaScript call-by-value, call-by-reference (objects)
Python call-by-value, call-by-reference (everything mutable!)
λ→ call-by-name
System F call-by-name
OCaml call-by-value, call-by-reference (objects)
Haskell call-by-need



Advanced Programming Languages

Evaluation Strategies

Evaluation Strategies

Which evaluation strategies are supported by the following languages?

C call-by-value
C++ call-by-value, call-by-reference
SIMPL call-by-value
Java call-by-value, call-by-reference (objects)
JavaScript call-by-value, call-by-reference (objects)
Python call-by-value, call-by-reference (everything mutable!)
λ→ call-by-name
System F call-by-name
OCaml call-by-value, call-by-reference (objects)
Haskell call-by-need



Advanced Programming Languages

Evaluation Strategies

Evaluation Strategies

Which evaluation strategies are supported by the following languages?

C call-by-value
C++ call-by-value, call-by-reference
SIMPL call-by-value
Java call-by-value, call-by-reference (objects)
JavaScript call-by-value, call-by-reference (objects)
Python call-by-value, call-by-reference (everything mutable!)
λ→ call-by-name
System F call-by-name
OCaml call-by-value, call-by-reference (objects)
Haskell call-by-need



Advanced Programming Languages

Evaluation Strategies

Evaluation Strategies

Which evaluation strategies are supported by the following languages?

C call-by-value
C++ call-by-value, call-by-reference
SIMPL call-by-value
Java call-by-value, call-by-reference (objects)
JavaScript call-by-value, call-by-reference (objects)
Python call-by-value, call-by-reference (everything mutable!)
λ→ call-by-name
System F call-by-name
OCaml call-by-value, call-by-reference (objects)
Haskell call-by-need



Advanced Programming Languages

Evaluation Strategies

Evaluation Strategies

Which evaluation strategies are supported by the following languages?

C call-by-value
C++ call-by-value, call-by-reference
SIMPL call-by-value
Java call-by-value, call-by-reference (objects)
JavaScript call-by-value, call-by-reference (objects)
Python call-by-value, call-by-reference (everything mutable!)
λ→ call-by-name
System F call-by-name
OCaml call-by-value, call-by-reference (objects)
Haskell call-by-need



Advanced Programming Languages

Evaluation Strategies

Evaluation Strategies

Which evaluation strategies are supported by the following languages?

C call-by-value
C++ call-by-value, call-by-reference
SIMPL call-by-value
Java call-by-value, call-by-reference (objects)
JavaScript call-by-value, call-by-reference (objects)
Python call-by-value, call-by-reference (everything mutable!)
λ→ call-by-name
System F call-by-name
OCaml call-by-value, call-by-reference (objects)
Haskell call-by-need



Advanced Programming Languages

Evaluation Strategies

Evaluation Strategies

Which evaluation strategies are supported by the following languages?

C call-by-value
C++ call-by-value, call-by-reference
SIMPL call-by-value
Java call-by-value, call-by-reference (objects)
JavaScript call-by-value, call-by-reference (objects)
Python call-by-value, call-by-reference (everything mutable!)
λ→ call-by-name
System F call-by-name
OCaml call-by-value, call-by-reference (objects)
Haskell call-by-need



Advanced Programming Languages

Evaluation Strategies

Evaluation Strategies

Which evaluation strategies are supported by the following languages?

C call-by-value
C++ call-by-value, call-by-reference
SIMPL call-by-value
Java call-by-value, call-by-reference (objects)
JavaScript call-by-value, call-by-reference (objects)
Python call-by-value, call-by-reference (everything mutable!)
λ→ call-by-name
System F call-by-name
OCaml call-by-value, call-by-reference (objects)
Haskell call-by-need



Advanced Programming Languages

Evaluation Strategies

Evaluation Strategies

Which evaluation strategies are supported by the following languages?

C call-by-value
C++ call-by-value, call-by-reference
SIMPL call-by-value
Java call-by-value, call-by-reference (objects)
JavaScript call-by-value, call-by-reference (objects)
Python call-by-value, call-by-reference (everything mutable!)
λ→ call-by-name
System F call-by-name
OCaml call-by-value, call-by-reference (objects)
Haskell call-by-need



Advanced Programming Languages

Evaluation Strategies

Church-Rosser Property

Definition (Church-Rosser): Languages with the Church-Rosser Property are
those in which the order of evaluation has no impact on the observable result.
More technically, they are those languages whose small-step operational
semantics are confluent.

Church-Rosser languages typically...

have strictly immutable variables,

are pure (i.e., free of side-effects).

Languages that are Church-Rosser can have unknown evaluation strategies
(unobservable to the user), and offer compilers many optimization opportunities.



Advanced Programming Languages

Typing Features

Static vs. Dynamic Typing

Definition (static/dynamic typing): A language is (strictly) statically typed if
all types are erased during compilation. In contrast, a language is dynamically
typed if types are available at runtime (usually attached to runtime values).

Advantages of strict static typing:

space- and time-efficiency (no runtime storage or tracking of types)

types facilitate static debugging

types facilitate compile-time static code optimization

types can be more universal (e.g., characterizing all possible executions)

Advantages of dynamic typing:

type-tag values available at runtime (whether you need them or not)

sometimes easier patching and bug mitigation

opportunities for extra security sanity-checking



Advanced Programming Languages

Typing Features

Strict Static Typing

Which of the following languages are strictly statically typed?

C !

C++ !

SIMPL !

Java %

JavaScript %

Python %

λ→ !

System F !

OCaml !(except for objects)

Haskell !



Advanced Programming Languages

Typing Features

Strict Static Typing

Which of the following languages are strictly statically typed?

C !

C++ !

SIMPL !

Java %

JavaScript %

Python %

λ→ !

System F !

OCaml !(except for objects)

Haskell !



Advanced Programming Languages

Typing Features

Strict Static Typing

Which of the following languages are strictly statically typed?

C !

C++ !

SIMPL !

Java %

JavaScript %

Python %

λ→ !

System F !

OCaml !(except for objects)

Haskell !



Advanced Programming Languages

Typing Features

Strict Static Typing

Which of the following languages are strictly statically typed?

C !

C++ !

SIMPL !

Java %

JavaScript %

Python %

λ→ !

System F !

OCaml !(except for objects)

Haskell !



Advanced Programming Languages

Typing Features

Strict Static Typing

Which of the following languages are strictly statically typed?

C !

C++ !

SIMPL !

Java %

JavaScript %

Python %

λ→ !

System F !

OCaml !(except for objects)

Haskell !



Advanced Programming Languages

Typing Features

Strict Static Typing

Which of the following languages are strictly statically typed?

C !

C++ !

SIMPL !

Java %

JavaScript %

Python %

λ→ !

System F !

OCaml !(except for objects)

Haskell !



Advanced Programming Languages

Typing Features

Strict Static Typing

Which of the following languages are strictly statically typed?

C !

C++ !

SIMPL !

Java %

JavaScript %

Python %

λ→ !

System F !

OCaml !(except for objects)

Haskell !



Advanced Programming Languages

Typing Features

Strict Static Typing

Which of the following languages are strictly statically typed?

C !

C++ !

SIMPL !

Java %

JavaScript %

Python %

λ→ !

System F !

OCaml !(except for objects)

Haskell !



Advanced Programming Languages

Typing Features

Strict Static Typing

Which of the following languages are strictly statically typed?

C !

C++ !

SIMPL !

Java %

JavaScript %

Python %

λ→ !

System F !

OCaml !(except for objects)

Haskell !



Advanced Programming Languages

Typing Features

Strict Static Typing

Which of the following languages are strictly statically typed?

C !

C++ !

SIMPL !

Java %

JavaScript %

Python %

λ→ !

System F !

OCaml !(except for objects)

Haskell !



Advanced Programming Languages

Typing Features

Strict Static Typing

Which of the following languages are strictly statically typed?

C !

C++ !

SIMPL !

Java %

JavaScript %

Python %

λ→ !

System F !

OCaml !(except for objects)

Haskell !



Advanced Programming Languages

Typing Features

Type-safety

Definition (type-safety): A language is type-safe if its static semantics
preclude all stuck states in its operational semantics.

Sometimes difficult to tell whether a language is type-safe because:

Some languages have no formal semantics(?!?!).

Some languages have an operational semantics that formalizes states most
of us would consider stuck states.

Which of the following languages are type-safe?

C %

C++ %

SIMPL !
Java (stuckness formalized as exception)
JavaScript (stuckness formalized as exception)
Python (stuckness formalized as exception)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Typing Features

Type-safety

Definition (type-safety): A language is type-safe if its static semantics
preclude all stuck states in its operational semantics.

Sometimes difficult to tell whether a language is type-safe because:

Some languages have no formal semantics(?!?!).

Some languages have an operational semantics that formalizes states most
of us would consider stuck states.

Which of the following languages are type-safe?

C %

C++ %

SIMPL !
Java (stuckness formalized as exception)
JavaScript (stuckness formalized as exception)
Python (stuckness formalized as exception)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Typing Features

Type-safety

Definition (type-safety): A language is type-safe if its static semantics
preclude all stuck states in its operational semantics.

Sometimes difficult to tell whether a language is type-safe because:

Some languages have no formal semantics(?!?!).

Some languages have an operational semantics that formalizes states most
of us would consider stuck states.

Which of the following languages are type-safe?

C %

C++ %

SIMPL !
Java (stuckness formalized as exception)
JavaScript (stuckness formalized as exception)
Python (stuckness formalized as exception)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Typing Features

Type-safety

Definition (type-safety): A language is type-safe if its static semantics
preclude all stuck states in its operational semantics.

Sometimes difficult to tell whether a language is type-safe because:

Some languages have no formal semantics(?!?!).

Some languages have an operational semantics that formalizes states most
of us would consider stuck states.

Which of the following languages are type-safe?

C %

C++ %

SIMPL !
Java (stuckness formalized as exception)
JavaScript (stuckness formalized as exception)
Python (stuckness formalized as exception)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Typing Features

Type-safety

Definition (type-safety): A language is type-safe if its static semantics
preclude all stuck states in its operational semantics.

Sometimes difficult to tell whether a language is type-safe because:

Some languages have no formal semantics(?!?!).

Some languages have an operational semantics that formalizes states most
of us would consider stuck states.

Which of the following languages are type-safe?

C %

C++ %

SIMPL !
Java (stuckness formalized as exception)
JavaScript (stuckness formalized as exception)
Python (stuckness formalized as exception)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Typing Features

Type-safety

Definition (type-safety): A language is type-safe if its static semantics
preclude all stuck states in its operational semantics.

Sometimes difficult to tell whether a language is type-safe because:

Some languages have no formal semantics(?!?!).

Some languages have an operational semantics that formalizes states most
of us would consider stuck states.

Which of the following languages are type-safe?

C %

C++ %

SIMPL !
Java (stuckness formalized as exception)
JavaScript (stuckness formalized as exception)
Python (stuckness formalized as exception)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Typing Features

Type-safety

Definition (type-safety): A language is type-safe if its static semantics
preclude all stuck states in its operational semantics.

Sometimes difficult to tell whether a language is type-safe because:

Some languages have no formal semantics(?!?!).

Some languages have an operational semantics that formalizes states most
of us would consider stuck states.

Which of the following languages are type-safe?

C %

C++ %

SIMPL !
Java (stuckness formalized as exception)
JavaScript (stuckness formalized as exception)
Python (stuckness formalized as exception)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Typing Features

Type-safety

Definition (type-safety): A language is type-safe if its static semantics
preclude all stuck states in its operational semantics.

Sometimes difficult to tell whether a language is type-safe because:

Some languages have no formal semantics(?!?!).

Some languages have an operational semantics that formalizes states most
of us would consider stuck states.

Which of the following languages are type-safe?

C %

C++ %

SIMPL !
Java (stuckness formalized as exception)
JavaScript (stuckness formalized as exception)
Python (stuckness formalized as exception)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Typing Features

Type-safety

Definition (type-safety): A language is type-safe if its static semantics
preclude all stuck states in its operational semantics.

Sometimes difficult to tell whether a language is type-safe because:

Some languages have no formal semantics(?!?!).

Some languages have an operational semantics that formalizes states most
of us would consider stuck states.

Which of the following languages are type-safe?

C %

C++ %

SIMPL !
Java (stuckness formalized as exception)
JavaScript (stuckness formalized as exception)
Python (stuckness formalized as exception)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Typing Features

Type-safety

Definition (type-safety): A language is type-safe if its static semantics
preclude all stuck states in its operational semantics.

Sometimes difficult to tell whether a language is type-safe because:

Some languages have no formal semantics(?!?!).

Some languages have an operational semantics that formalizes states most
of us would consider stuck states.

Which of the following languages are type-safe?

C %

C++ %

SIMPL !
Java (stuckness formalized as exception)
JavaScript (stuckness formalized as exception)
Python (stuckness formalized as exception)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Typing Features

Type-safety

Definition (type-safety): A language is type-safe if its static semantics
preclude all stuck states in its operational semantics.

Sometimes difficult to tell whether a language is type-safe because:

Some languages have no formal semantics(?!?!).

Some languages have an operational semantics that formalizes states most
of us would consider stuck states.

Which of the following languages are type-safe?

C %

C++ %

SIMPL !
Java (stuckness formalized as exception)
JavaScript (stuckness formalized as exception)
Python (stuckness formalized as exception)

λ→ !

System F !

OCaml !

Haskell !



Advanced Programming Languages

Typing Features

Polymorphism

Definition (polymorphism): A language is polymorphic if interfaces (e.g.,
functions) can accommodate entities (e.g., arguments) of multiple different
types.

Three main varieties:

1 Parametric Polymorphism: type system has type-variables α
facilitates machine-checked code-reuse idioms
compatible with strictly static type-safety

2 Subtyping Polymorphism: object types arranged in a hierarchy
hallmark of object-oriented programming
static semantics usually characterized by a weakening rule:

Γ ` e : τ τ � τ ′

Γ ` e : τ ′

Warning: makes structural induction proofs much harder (Why?)

3 Ad hoc Polymorphism: conditionals can test types at runtime
opens the door for arbitrarily heterogeneous code blocks per type
antithesis of code-reuse (much harder to maintain and debug)



Advanced Programming Languages

Typing Features

Polymorphism Examples

Which forms of polymorphism are supported by the following languages?

C none
C++ subtyping
SIMPL none
Java parametric (generics), subtyping, ad hoc
JavaScript subtyping, ad hoc
Python parametric (generics), subtyping, ad hoc
λ→ none
System F parametric
OCaml parametric, subtyping
Haskell parametric



Advanced Programming Languages

Typing Features

Polymorphism Examples

Which forms of polymorphism are supported by the following languages?

C none
C++ subtyping
SIMPL none
Java parametric (generics), subtyping, ad hoc
JavaScript subtyping, ad hoc
Python parametric (generics), subtyping, ad hoc
λ→ none
System F parametric
OCaml parametric, subtyping
Haskell parametric



Advanced Programming Languages

Typing Features

Polymorphism Examples

Which forms of polymorphism are supported by the following languages?

C none
C++ subtyping
SIMPL none
Java parametric (generics), subtyping, ad hoc
JavaScript subtyping, ad hoc
Python parametric (generics), subtyping, ad hoc
λ→ none
System F parametric
OCaml parametric, subtyping
Haskell parametric



Advanced Programming Languages

Typing Features

Polymorphism Examples

Which forms of polymorphism are supported by the following languages?

C none
C++ subtyping
SIMPL none
Java parametric (generics), subtyping, ad hoc
JavaScript subtyping, ad hoc
Python parametric (generics), subtyping, ad hoc
λ→ none
System F parametric
OCaml parametric, subtyping
Haskell parametric



Advanced Programming Languages

Typing Features

Polymorphism Examples

Which forms of polymorphism are supported by the following languages?

C none
C++ subtyping
SIMPL none
Java parametric (generics), subtyping, ad hoc
JavaScript subtyping, ad hoc
Python parametric (generics), subtyping, ad hoc
λ→ none
System F parametric
OCaml parametric, subtyping
Haskell parametric



Advanced Programming Languages

Typing Features

Polymorphism Examples

Which forms of polymorphism are supported by the following languages?

C none
C++ subtyping
SIMPL none
Java parametric (generics), subtyping, ad hoc
JavaScript subtyping, ad hoc
Python parametric (generics), subtyping, ad hoc
λ→ none
System F parametric
OCaml parametric, subtyping
Haskell parametric



Advanced Programming Languages

Typing Features

Polymorphism Examples

Which forms of polymorphism are supported by the following languages?

C none
C++ subtyping
SIMPL none
Java parametric (generics), subtyping, ad hoc
JavaScript subtyping, ad hoc
Python parametric (generics), subtyping, ad hoc
λ→ none
System F parametric
OCaml parametric, subtyping
Haskell parametric



Advanced Programming Languages

Typing Features

Polymorphism Examples

Which forms of polymorphism are supported by the following languages?

C none
C++ subtyping
SIMPL none
Java parametric (generics), subtyping, ad hoc
JavaScript subtyping, ad hoc
Python parametric (generics), subtyping, ad hoc
λ→ none
System F parametric
OCaml parametric, subtyping
Haskell parametric



Advanced Programming Languages

Typing Features

Polymorphism Examples

Which forms of polymorphism are supported by the following languages?

C none
C++ subtyping
SIMPL none
Java parametric (generics), subtyping, ad hoc
JavaScript subtyping, ad hoc
Python parametric (generics), subtyping, ad hoc
λ→ none
System F parametric
OCaml parametric, subtyping
Haskell parametric



Advanced Programming Languages

Typing Features

Polymorphism Examples

Which forms of polymorphism are supported by the following languages?

C none
C++ subtyping
SIMPL none
Java parametric (generics), subtyping, ad hoc
JavaScript subtyping, ad hoc
Python parametric (generics), subtyping, ad hoc
λ→ none
System F parametric
OCaml parametric, subtyping
Haskell parametric



Advanced Programming Languages

Typing Features

Polymorphism Examples

Which forms of polymorphism are supported by the following languages?

C none
C++ subtyping
SIMPL none
Java parametric (generics), subtyping, ad hoc
JavaScript subtyping, ad hoc
Python parametric (generics), subtyping, ad hoc
λ→ none
System F parametric
OCaml parametric, subtyping
Haskell parametric



Advanced Programming Languages

Typing Features

Non-shallow Types

Definition (shallow types): A shallowly-typed language is one whose type
system only supports type quantifiers at the top level of types (not nested within
non-quantifiers).

Which of the following languages support non-shallow types:

C %

C++ %

SIMPL %

Java %

JavaScript %

Python %

λ→ %

System F !

OCaml !(with --rectypes)

Haskell !



Advanced Programming Languages

Typing Features

Non-shallow Types

Definition (shallow types): A shallowly-typed language is one whose type
system only supports type quantifiers at the top level of types (not nested within
non-quantifiers).

Which of the following languages support non-shallow types:

C %

C++ %

SIMPL %

Java %

JavaScript %

Python %

λ→ %

System F !

OCaml !(with --rectypes)

Haskell !



Advanced Programming Languages

Typing Features

Non-shallow Types

Definition (shallow types): A shallowly-typed language is one whose type
system only supports type quantifiers at the top level of types (not nested within
non-quantifiers).

Which of the following languages support non-shallow types:

C %

C++ %

SIMPL %

Java %

JavaScript %

Python %

λ→ %

System F !

OCaml !(with --rectypes)

Haskell !



Advanced Programming Languages

Typing Features

Non-shallow Types

Definition (shallow types): A shallowly-typed language is one whose type
system only supports type quantifiers at the top level of types (not nested within
non-quantifiers).

Which of the following languages support non-shallow types:

C %

C++ %

SIMPL %

Java %

JavaScript %

Python %

λ→ %

System F !

OCaml !(with --rectypes)

Haskell !



Advanced Programming Languages

Typing Features

Non-shallow Types

Definition (shallow types): A shallowly-typed language is one whose type
system only supports type quantifiers at the top level of types (not nested within
non-quantifiers).

Which of the following languages support non-shallow types:

C %

C++ %

SIMPL %

Java %

JavaScript %

Python %

λ→ %

System F !

OCaml !(with --rectypes)

Haskell !



Advanced Programming Languages

Typing Features

Non-shallow Types

Definition (shallow types): A shallowly-typed language is one whose type
system only supports type quantifiers at the top level of types (not nested within
non-quantifiers).

Which of the following languages support non-shallow types:

C %

C++ %

SIMPL %

Java %

JavaScript %

Python %

λ→ %

System F !

OCaml !(with --rectypes)

Haskell !



Advanced Programming Languages

Typing Features

Non-shallow Types

Definition (shallow types): A shallowly-typed language is one whose type
system only supports type quantifiers at the top level of types (not nested within
non-quantifiers).

Which of the following languages support non-shallow types:

C %

C++ %

SIMPL %

Java %

JavaScript %

Python %

λ→ %

System F !

OCaml !(with --rectypes)

Haskell !



Advanced Programming Languages

Typing Features

Non-shallow Types

Definition (shallow types): A shallowly-typed language is one whose type
system only supports type quantifiers at the top level of types (not nested within
non-quantifiers).

Which of the following languages support non-shallow types:

C %

C++ %

SIMPL %

Java %

JavaScript %

Python %

λ→ %

System F !

OCaml !(with --rectypes)

Haskell !



Advanced Programming Languages

Typing Features

Non-shallow Types

Definition (shallow types): A shallowly-typed language is one whose type
system only supports type quantifiers at the top level of types (not nested within
non-quantifiers).

Which of the following languages support non-shallow types:

C %

C++ %

SIMPL %

Java %

JavaScript %

Python %

λ→ %

System F !

OCaml !(with --rectypes)

Haskell !



Advanced Programming Languages

Typing Features

Non-shallow Types

Definition (shallow types): A shallowly-typed language is one whose type
system only supports type quantifiers at the top level of types (not nested within
non-quantifiers).

Which of the following languages support non-shallow types:

C %

C++ %

SIMPL %

Java %

JavaScript %

Python %

λ→ %

System F !

OCaml !(with --rectypes)

Haskell !



Advanced Programming Languages

Typing Features

Non-shallow Types

Definition (shallow types): A shallowly-typed language is one whose type
system only supports type quantifiers at the top level of types (not nested within
non-quantifiers).

Which of the following languages support non-shallow types:

C %

C++ %

SIMPL %

Java %

JavaScript %

Python %

λ→ %

System F !

OCaml !(with --rectypes)

Haskell !



Advanced Programming Languages

Summary

Summary Table

first
-c

lass
fu

nct
ions

cu
rry

in
g

&
par

tia
l ev

alu
atio

n

ev
alu

atio
n

st
ra

te
gies

st
ric

t st
atic

ty
pin

g

ty
pe

sa
fe

ty

polym
orp

hism

non-sh
allo

w
ty

pes

C % % Val ! % % %
C++ % % Val,Ref ! % � %
SIMPL ! ! Val ! ! % %
Java % % Val,Ref % α,�,?: %
JavaScript ! ! Val,Ref % �,?: %
Python ! ! Val,Ref % α,�,?: %
λ→ ! ! Name ! ! % %
System F ! ! Name ! ! α !
OCaml ! ! Val,Ref ! ! α,� !
Haskell ! ! Need ! ! α !


	Function Features
	Evaluation Strategies
	Typing Features
	Summary

