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Abstract

Multimedia applications such as video-conferencing, telemedicine, HDTV etc. have very stringent Quality of Service (QoS)

demands and require a connection oriented service. For these applications, a path satisfying their requirements in terms of bandwidth,

delay, buffer etc. needs to be found. As conventional IP routing is based only on hop counts, it is not suitable for multimedia applications.

It is clear that, to route requests that have QoS requirements, existing routers should be made QoS aware and the packet forwarding

should be based on QoS parameters. Also, routing protocols like OSPF and RIP must be extended suitably to facilitate QoS routing.

The goal of QoS routing algorithms is to find a loop-less path satisfying a given set of constraints on parameters like bandwidth, delay,

etc. The path selection process could return either the entire path to the destination or the best next hop for the request. The first case

is called as Source routing and the second is referred to as Distributed routing. In this paper, we propose a new distributed QoS routing

algorithm for unicast flows, which has a very low call establishment overhead. Our algorithm makes use of existing IP routing protocols

like OSPF, RIP with minimal modifications.

I. INTRODUCTION

A. Need for QoS Routing

Resource reservation is a necessity for providing guaranteed end-to-end performance for multimedia applications.

However in the present Internet setup, resource reservation is not supported. Also, the data packets of these applications could

follow different paths and reach the destination out of order, which is not desirable. Hence, the future networks are likely to

provide a connection oriented service for real time applications. These applications demand a guaranteed amount of network

resources like bandwidth, buffer space, CPU time etc. Hence, given a set of QoS requirements for a connection, the routers

should be able to find a path which satisfies the requirements. The current routing protocols used in IP networks are transparent

to any particular quality-of-service(QoS) that different flows could require. As a result, routing decisions are made without

referring to the QoS requirements of the flow. This means that flows are often routed over paths that are unable to support their

requirements, while alternate paths with sufficient resources exist. This will increase the call blocking probability. The goal

of QoS routing algorithms is to find a path in the network that satisfies the given requirements. They may also additionally

optimize the global network resource utilization. Protocols like RSVP [14] have been proposed to enable the applications to

request guaranteed amount of network resources in an internet. However, RSVP is not a routing protocol and it relies on the

underlying routing table of IP. Hence, the application’s ability to reserve resources will be a waste, if the path specified by the

IP routing table cannot support the required resources. Thus, we clearly see the need for QoS routing algorithms in the current

IP networks. However, the proposed QoS routing algorithms should demand only minimal changes to the existing routing

protocols. This will greatly facilitate their deployment.

Depending on the scope of the path selection process, an algorithm could either return the best next hop or the entire path

to the destination. The first case is more similar to the traditional hop-by-hop routing and is referred to as Distributed QoS

The authors are with Department of Computer Science and Engineering, State University of New York at Buffalo, NY 14260.(e-mail: don-
nag@cse.buffalo.edu; sarangan@cse.buffalo.edu; acharya@cse.buffalo.edu)



2

routing. The latter is termed as Source QoS routing. Henceforth, in this paper, the term “routing algorithms” will refer to

QoS routing algorithms unless specified. Also, the terms “nodes” and “routers” have been used inter-changeably in this paper.

In Source routing algorithms, the entire path computation is done at the source router. One of the main drawbacks of the

source routing algorithms is that each router in the network is required to maintain a global network state information which

needs to updated periodically. Global state refers to the information regarding the entire network connectivity and resource

availability in all the links. Protocols like OSPF can be extended to do such updates [11]. This frequent updating generates a

lot of overhead. The global state thus maintained is inherently imprecise due to the dynamic nature of the network resource

availability. There is always a trade-off between the average number of messages exchanged and the amount of staleness (or

impreciseness) in the global state maintained at each router. Clearly, the amount of impreciseness and the average message

overhead, both increase with the network size. Hence, such approaches are not scalable with network size. Also in source

routing, finding a path could be computationally intensive for the source router. In distributed routing algorithms, the path

computation is shared by various routers in the network. Hence, there is no computation burden on any single router in the

network.

In this paper, we propose a new distributed packet forwarding mechanism based on the QoS requirements of the flow. We

assume a network where all the routers are QoS aware i.e. packets are forwarded based on both their destination and QoS

requirements. We do not consider a heterogeneous network, where some routers are QoS aware and some are not. We limit

ourselves to the case of establishing an unicast flow. Each connection request contains the destination id, and the set of QoS

requirements for that flow. The routing algorithm reads the destination and the QoS requirements, and returns a path (if

available) that is most likely to satisfy the requirements.

B. Related Works

Various distributed routing algorithms have been proposed in [2], [3], [4], [5], [6], [7], and [8]. Distributed algorithms

could be categorized into two types based on whether all the routers maintain a global state or not. If the routers have a global

state, it could be used in the path computation to specify the best next hop. Algorithms proposed in [3], [7] and [8] fall under

this category. Hence, all of them suffer from the same problem as with source routing, namely overhead in maintaining the

global state and state impreciseness. Apart from degrading the routing algorithm’s performance, the impreciseness can also

create looping. If no global state is stored, techniques like flooding as in [2], [4], [5] could be used to establish a path, where

a request is flooded on all the router’s outgoing links (excluding the incoming link) which satisfy the QoS requirements of

the request. The problem with such an approach however, is that the overhead involved in establishing a connection could be

very high. Our approach is different from [2], [4] and [5] in the sense that, we use additional state information and reduce

the overhead in connection establishment. To reduce the overhead in flooding, along with the QoS constraints an additional

constraint is imposed on the number of hops the connection request can travel [2], [6]. Our method complements this bounded

flooding approach and can be used along with it. The combined usage results in a much lower overhead than either of them

used alone. We propose a new distributed routing algorithm in which a router stores information only about its immediate

neighbors (routers reachable in one hop) and second degree neighbors (neighbors of a neighbor). The advantage of this
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approach is two-fold. Firstly, the message overhead and the impreciseness will not be as large as maintaining the global

state. A router exchanges information only with its neighbors. As a result, the impreciseness in storing the information about

the second degree neighbors will not be as big as the impreciseness in storing the entire global state. Secondly, using the

information about the second degree neighbors, a router can forward the connection requests intelligently instead of blindly

flooding the requests. This is because every router can now see two levels downstream. Hence the overhead in connection

establishment is reduced.

Cidon et al. [9] have used the idea of storing information about the Second-degree neighbors. However they use it only

for re-routing (deflection routing). They have proposed deflection routing schemes for source routing networks and for ATM

networks. In source routing, the source router chooses the path for a connection based on it’s global state and then sends a

control packet to reserve resources along that path. It is quite possible that, a router along the path, on getting the control

packet, finds that it does not have sufficient resources (along the link connecting it to the next hop). Then it would use its

information about the second degree neighbors to route the connection along some other link to the next hop. In other words,

the second-degree neighbor information is used only for bypassing a particular link. They have also suggested a bypass

algorithm for ATM networks. Upon a VP construction, loaded areas are identified and bypass routes are created to be used

when the primary route is blocked. Thus in [9], having found a path (by some other means), the second-degree neighborhood

information is used only for bypassing a link whereas we use the same information for building an entire path from a source

to the destination. Our approach could also be extended so that a router stores information about its ����� degree neighbor.

However as we increase � , the impreciseness in the information stored by a router also increases proportionally. If ����� ,

our approach becomes same as the flooding given in [2]. If � equals the total number of routers in the network, our approach

becomes same as the source routing. Our algorithm is generic and can be used with both additive metrics (such as delay,

cost) as well as concave metrics (such as bandwidth). In this paper, we have explained our algorithm taking bandwidth as the

metric. The rest of the paper is organized as follows. We introduce our algorithm in Sections II and III. Experimental results

are given in Section IV and we conclude in section V.

The routing algorithm we propose has two separate tasks, namely Table maintenance and Packet forwarding. The table

maintenance component is responsible for constructing and maintaining the entries about the second degree neighbors in a

routing table. This is explained in section II. The packet forwarding mechanism is responsible for forwarding the connection

requests using the “two-level” routing table and is explained in detail in section III.

II. ROUTING TABLE MAINTENANCE

We assume that (a)All nodes store their local metrics and (b)All nodes know when to send updates to their neighbors.

Assumption (a) is valid since a node always knows the resources available in its own outgoing links. Assumption (b) would

become valid, if an update policy is prescribed. Various update policies are discussed in [1] and any of them could be used. In

this paper, we have used an update policy based on Thresholding which will be discussed in detail in section II-B. Each node

maintains a Link-to-Node (LTN) table. The LTN table basically gives which link to use to reach a given neighbor and resource

available along that link. Links are assumed to be asymmetric i.e., the metric available in the forward direction need not be
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the same as that in the reverse direction. A node can easily construct this table by exchanging Hello packets with neighbors.

Each node on booting up constructs a Link-to-Node (LTN) table.

A. Building the Routing Table

Apart from maintaining a LTN table, each router also maintains a Routing (or) Forwarding table. On receiving a

connection request probe, a router uses this forwarding table to decide on what outgoing links the probe must be forwarded.

Let us consider a node � . Let,

������� �	� denote those nodes that are adjacent to � in the network

��
���� �	� denote the links that connect � to nodes in ���
� ���

������� �	� denote those nodes that are adjacent to nodes in ����� �	�

��
���� �	� denote the links that connect nodes in ���
� ��� to nodes in ����� �	� .

The forwarding table of � contains information about the metrics of all the links in 
���� ��� and 
���� �	� . Entries corresponding

to 
��
� ��� are called the first-level entries � �� of � ; Entries corresponding to 
���� ��� constitute the second-level entries � �� of � .

The second level entries are represented as a tuple of the form ��� ���� � � �! where � ��#" 
$��� ��� and � � �" 
���� �	� . If a node say

% is a member of both ����� �	� and ����� �	� , it is represented only as a first level entry. In order to construct and maintain the

routing table, node v must receive updates about the QoS metrics in all its second-level entries from the nodes in �&��� �	� . This

is done by exchanging special messages called '�()�*�,+
- packets at a frequency determined by the update policy used . These

'�()�*�,+
- packets are constructed by copying the neighbor list and the available QoS metrics from the .0/ � table of the router.

At a node � , the first-level entries in the routing table are made by copying the .1/ � table of � . The second-level entries in

the routing table are made by inspecting the received '�()�*�*+
- packets. All the existing second-level entries in the routing table

are updated by the '�(2�,�*+
- packet. Also, any new entry is added to the existing second-level entries.

B. Update Policies

The main idea of sending Hello2 packets is to communicate the changes in a router’s resource availability to other

routers. If a router sends Hello2 packets every time a change occurs, a lot of overhead would be created in the network. To

reduce this overhead, an update policy is prescribed. The update policy used decides when these Hello2 packets are sent.

A simple update policy could be based on timers and it could be such that an update is sent every / seconds. Protocols

like OSPF and RIP send updates at regular intervals of time. While such an approach is acceptable for best-effort routing,

it is not suited for QoS routing. The reason being that, within the update interval, the resources available in the routers can

change drastically. If this change is not communicated to other routers, they will have imprecise (or stale) information and

hence, the performance of QoS routing will degrade. Also it is very difficult to model the impreciseness in the table entries

with such an update mechanism. A detailed survey on various update policies could be found in [1]. The update policy

used in our work is the one suggested in [10]. Each node remembers the last advertised metric on each link. If the ratio

between the last advertised value and the current value is above (or below) a threshold 3 , an update is triggered. The node

constructs Hello2 packets and sends them to all its neighbors. The advantage of using such a threshold based update policy
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is that, the impreciseness could be easily modeled using probabilities. If bandwidth
�

is advertised on a link, and if say 3 is

2, then at any time, the actual metric available on that link could be modeled as a uniform distribution in � ��� - � - ��� . Once the

impreciseness is modeled, there are approaches [10], [12] to do efficient routing with such imprecise information. However,

our algorithm assumes that the information available in the tables is accurate and forwards the probes accordingly. As a result,

the performance of our algorithm in terms of call establishment might be poorer. Experimental results in Section � compares

the performance of the flooding based approach and forwarding based on the two-level table. Existing routing protocols like

RIP and OSPF have to be modified slightly to have an update mechanism based on a threshold. If RIP is used, a router has to

send the bandwidth available on its incident links along with the routes for the best-effort traffic. Instead of sending periodical

updates, the updates have to be triggered by the thresholding policy. For OSPF, already some extensions have been suggested

to support QoS routing [11]. The only additional modification would be that, a router should send the bandwidth information

only to its neighbors and need not send it to all routers in the network.

III. PACKET FORWARDING MECHANISM

The forwarding mechanism suggested could be used for any QoS metric. In this paper, bandwidth is taken as the QoS

metric and all discussions and results are with respect to bandwidth. An outline of the packet forwarding mechanism is given

in Section III-A and a flow chart of the same is given in figure 1.

A. An Outline

Each node � maintains a routing table in which two kinds of entries are present. The structure of the table is given

in table I. � �� is the set of entries corresponding to the immediate neighbors of � . � �� is the set of entries corresponding to

the second degree neighbors, namely ����� ��� . A neighbor % , of node � , is said to be eligible, if the link � � � % � can support

the requested bandwidth. The connection set-up process has three phases namely Probing, Ack and Failure handling. The

first phase is probing and it is started when a source sends out a connection request. Each connection request is identified

by an unique identifier, �	��
 . The connection request also called as probe, is a tuple of the form � � ��
 +�� ����� � 
�����
���� �
� � ����� � � �	��
 ��� ��� � . The probe format is interpreted as, � is the source requesting a connection �	��
 with metric requirements as


 +�� ����� � 
�����
���� � � � to destination � and � is the router that has forwarded the probe to � . A source would set the � field

to its own id and send the probe and � ��� refers to the list of neighbors to which � should forward this probe. On receiving this

probe, � checks whether it is the first probe � has received for this connection. If not, the probe is discarded as a duplicate. If

the probe is the first for the connection ��� 
 , � marks that it has received a probe for the connection �	��
 . It stores the upstream

router id, referred to as ! � � �	��
 � , that has forwarded the probe to it, in a table. The table entry is maintained for a duration / ,

which is the maximum connection set-up time. After / , the entry is flushed out. Router � checks if the destination is present

in its routing table as a first-level entry or as a second-level entry. If the destination is present, and if it is eligible, the probe is

forwarded in the corresponding link(s).

If the destination is not present in the routing table, it means that the destination is beyond two hops. In such a situation, the

list of neighbors � ��� to which � should forward the probe to is examined. The probe is forwarded to all eligible neighbors in
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the list. If the destination is beyond two hops and the list � ��� is empty, router � constructs a list on its own. If % is an eligible

neighbor of � , a list of all eligible neighbors of % , � � is constructed. Router � then forwards a probe with � � � � to % . This

is repeated for all eligible neighbors of � . This forwarding process is repeated in all routers till the destination gets a probe.

The path taken by the first probe to reach the destination is called the “tentative path”. During the probing phase, only the

resource availability is checked and no reservations are made.

The destination on receiving the first probe for a connection �	��
 , starts the ack phase by sending an acknowledgment to

its sender. The acknowledgment looks similar to the probe but does not have the neighbor list field. A router on getting an

ack, checks whether the link on which the ack arrived has enough bandwidth to support the request. If the link has enough

bandwidth, the router reserves the requested bandwidth for the connection �	��
 on that link and stores the downstream router’s

id, referred to as � � � �	��
 � , in a table. This table entry is also maintained for a time / after which it is flushed out. The router

then forwards the ack to its upstream router in the tentative path using the ! � � �	��
 � value it stored during the probing phase.

This process continues until the source gets an ack. If the source gets an ack, the connection set-up is complete and the

connection is established. If any router in the tentative path is unable to reserve the requested bandwidth, it starts the failure

handling phase by sending a failure message to the downstream router. If a router receives a failure message, it releases the

resources it had reserved for this connection and forwards the failure message to the next downstream router on the tentative

path using the � � � �	��
 � entry.

The destination sends an ack only to the first probe it receives and discards all the duplicates. This makes sure that the

resources are reserved only along one path. A router does not forward a probe more than once. This means that the tentative

path found by the algorithm will be loop free. We also assume that these control messages are never dropped in the case of a

congestion. A flow chart of the packet forwarding is given in figure 1.

B. Bounded Two-Level Forwarding

The Flooding based approach finds a tentative path through competition among probes. If the network load is light,

it is not a wise idea to blindly flood the probes on all eligible links. Often, it is only the shortest eligible path that is preferred.

To direct the search along the shortest path, an approach was suggested in [2]. Each probe is assigned an age. The age of a

probe p is defined as the number of hops the probe has traveled. Initially, ��� ( � ! � ��� . Whenever ! reaches a node, the age

field is incremented by � . In order to direct the search along the shortest path, the probe forwarding condition on link � � ��� � at

node � is modified as

� +	� � � � 
 � + � 
�� ��� + � + � � � � � � � �
� ��� � � � 
�����
���� � � ��� ��
 ��� ����� ( � ! ��� 
  �� � ����� . �

where 
  �� � is the shortest distance in terms of hops between the node � and destination � ; . is a constant at least as large

as 
�� � � and is the maximum age attainable by a probe. This forwarding condition would make the nodes flood the requests

only along the shortest paths. Hence, this results in a much less overhead when the network load is light. When the network

becomes heavily loaded, it is unlikely that this shortest path approach will succeed in establishing a path. Hence, if no path is

established using . � 
�� � � , the source makes a second attempt for the same connection with . ��� . Flooding with . ���
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is equivalent to flooding the probes blindly to all eligible nodes. In our simulation, all the sources make only one attempt with

. � 
�� � � .

Similar to the bounded flooding approach, we could also have an bounded approach for forwarding using the two-level

table. The definition of an eligible node is modified similarly. If � is the current node of interest, a neighbor � is eligible if
� � � 
�����
���� � � ��� ��
 � and 
  � � � ��� ( � ! ��� � � . . Henceforth in our discussions, the term “unbounded” will refer to the probe

forwarding without the hop constraint, while “bounded” will refer to the probe forwarding with the hop constraint.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The motivation for forwarding based on a two level table is to reduce the message overhead of flooding based ap-

proaches. The example given in figure 2 helps in understanding how forwarding based on a two-level table could reduce the

overhead. Let � be the node of interest and % � � % � � ����� � % � be its � neighbors. Router � gets a connection request for a

destination which is beyond two hops. Let the bandwidth requirement be 5. It is clear that % � � % � � ����� � % � are eligible and

none of the neighbors of % � � ����� � % � are eligible. In such a scenario, if probe forwarding based on two-level approach is used,

the probe will be discarded at � itself. However, if a simple flooding is used, router � would send � copies of the probe to

% � � ����� � % � and the probes will finally be discarded at each of % � � ����� � % � . Thus blind flooding generates additional overhead.

Also, in forwarding based on the two-level table, if the destination is within two hops, probes will be directed only towards the

destination. On the other hand, if the probes are blindly flooded, apart from the destination, many other nodes will also receive

the probe. To have such a reduced overhead, additional information about the second degree neighbors must be stored at each

router. Maintaining this information creates additional overhead in the form of table maintenance. The two-level approach

would be justified if the overhead created due to this table maintenance is much less than the savings in probe forwarding. The

savings in the probe forwarding is dependent on resource availability and the network topology. In the discussions that follow,

we shall refer to forwarding based on the two-level table as two-level forwarding.

Extensive simulations were done on varied network topologies to measure the total message overhead in both blind flood-

ing and two-level forwarding. Due to space constraints, results are reported only from two network topologies. The two

approaches were tested on the network topologies shown in figures 3, and 4. Figure 4 is the topology of a standard ISP

[15]. We believe that these collectively represent various network topologies that could be encountered. The simulations were

done using OPNET, a commercial network simulation software. Each link is duplex and has a capacity of 155 Mbps (OC-3).

Bandwidth available in each link for reservation is set to a value in the range [0, 155 Mbps]. All simulations were run for

- ����� connection requests. The connection requests arrive at the nodes as per a Poisson distribution. The bandwidth requests

are uniformly distributed between 64 Kbps and 1.5 Mbps. Each node in the network can generate a connection request for

every other node in the network with equal probability. The connection durations are drawn as per an exponential distribution.

The results could be divided into two sets. The first set is the comparison between the unbounded versions of flooding and

two-level forwarding. The second set is the comparison between the bounded versions of the two approaches.



8

A. Performance of the Unbounded versions

The graph given in figure 5 shows the overhead in the unbounded versions of the two approaches on MESH-I. In this

graph and the graphs that follow, / is the threshold value used in the update policy. It is clear that, two-level forwarding has

very low overhead (per call-admitted) when compared to blind flooding. When the available bandwidth in the network is less,

the overhead increases significantly as the threshold / is reduced. However, when the available bandwidth is high, the value

of / does not affect the overhead. This behavior could be explained as follows: When the available bandwidth is less, the

Current Available bandwidth / Last advertised bandwidth ratio will fluctuate significantly with each admitted call. As a result,

if a low / value is used, the routers will send updates more frequently than at high / values. If the available bandwidth in each

link is high, the Current Available bandwidth / Last advertised bandwidth ratio will not fluctuate much with each admitted

call. Hence, the routers tend to send updates less frequently irrespective of the / value.

The graph in figure 6 shows the bandwidth admission ratio for the two unbounded versions on MESH-I. Bandwidth ad-

mission ratio is defined as the ratio of bandwidth admitted into the network to the total bandwidth requested [13]. The graph

shows that, when the load is light, both the approaches perform almost equally well. However, when the traffic is heavy,

forwarding based on the two-level table admits less bandwidth into the network than flooding. Also, the bandwidth admitted

by the two-level approach reduces as / increases. The reason is that, the impreciseness in the table information increases

with the value of / . This impreciseness makes the routers have a conservative estimate of bandwidth available in the second

level links. Hence, a router discards probes even though the second level links are capable of supporting these requests. At

low / values, the impreciseness reduces. So the routers tend to be less conservative and they admit more bandwidth into the

network.

Figure 7 and 8 show the performance of the unbounded version of the two approaches on the ISP topology. As stated earlier,

the reduction in message overhead depends on the topology. In MESH-I, there are a lot of alternate paths between any (source,

destination) pair. As a result, in terms of message overhead, the two-level approach performs much better than blind flooding.

Also in terms of bandwidth admitted, the two-level approach is comparable to the blind flooding. In the ISP topology, there

are not lot many alternate paths between any (source, destination) pair. Hence, even though the two-level approach reduces

the overhead, the reduction is slightly less than in MESH-I. The lack of alternate paths affects the bandwidth admitted by

the two-level approach quite significantly. Thus by comparing the graphs in figures 6 and 8, the effect on topology on the

two-level approach’s performance can be clearly seen.

B. Performance of the Bounded versions

The bounded version of the two algorithms were also compared. The motivation behind the bounded technique is

to reduce unnecessary flooding in the network. In the bounded approach, the probes are given a maximum age . , equal to


 � � � , where 
 � � � is the number of hops in the shortest path between the source � and destination � . The overhead in MESH-I

for blind flooding and two-level forwarding is given in figure 9. The overhead of the bounded versions is clearly less than

the overhead of the unbounded versions. Even here, the two-level approach helps in further reducing the message overhead.

Figure 10 shows the bandwidth admitted on MESH-I by the two approaches. As expected, at any given network load, the
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bandwidth admitted by the bounded versions is less than or equal to the bandwidth admitted by the unbounded versions. This

is due to the reduced scope of the path search. Again on MESH-I, in terms of bandwidth admitted, the performance of the

two-level approach is comparable to that of the blind flooding. Figure 11 shows the overhead incurred on the ISP topology

by the two bounded versions. The lack of alternate paths combined with the hop constraint make the blind flooding and the

two-level forwarding comparable in terms of message overhead. In terms of bandwidth admitted, flooding performs better

than the two-level forwarding. This can be seen from figure 12.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new packet forwarding mechanism based on the QoS requirements of the connection.

Our two-level forwarding has a low overhead when compared to the flooding based call set-up. Even though additional

overhead is incurred in maintaining the information about the second level links, simulation results show that, this overhead

is less when compared to the savings obtained by intelligent probe forwarding. Also, for networks with high connectivity, the

impreciseness in the information stored, does not greatly affect the total bandwidth admitted into the network. To exchange

resource availability information between adjacent routers, protocols like OSPF and RIP could be extended. Future work

would involve extending the proposed algorithm to do forwarding, taking into consideration the impreciseness in the table

entries.
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Fig. 6. Unbounded-flooding : Bandwidth Admitted on MESH - I
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Fig. 7. Unbounded-flooding: Overhead on ISP

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Available Bandwidth in Mbps

B
an

dw
id

th
 A

dm
is

si
on

 R
at

io

Flooding      
2Level (T = 2)
2Level (T = 3)
2Level (T = 4)

Fig. 8. Unbounded-flooding : Bandwidth Admitted on ISP
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Fig. 9. Bounded (L): Overhead on MESH - I
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Fig. 10. Bounded (L) : Bandwidth Admitted on MESH - I

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

Available Bandwidth in Mbps

O
ve

rh
ea

d 
pe

r C
al

l A
dm

itt
ed

Bounded Flooding
2Level (T = 2)  
2Level (T = 3)  
2Level (T = 4)  

Fig. 11. Bounded (L): Overhead on ISP
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Fig. 12. Bounded (L) : Bandwidth Admitted on ISP


