(a) Truthfully write the phrase “I have read and understand the policies on the course website.”

Solution: I have read and understand the policies on the course website. ■

Rubric: 2 points total.

(b) Prove that the number of leaves in F_n is precisely the nth Fibonacci number: $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for all $n \geq 2$.

Solution: Let n be an arbitrary non-negative integer. Assume that for any non-negative integer $k < n$, the number of leaves in F_k is precisely F_k. There are several cases to consider:

- Suppose $n = 1$. Tree $F_n = F_1$ has $1 = F_1 = F_n$ leaves.
- Suppose $n = 2$. Tree $F_n = F_2$ has $1 = F_2 = F_n$ leaves.
- Suppose $n \geq 3$. In constructing F_n, we add one leaf as a child of each leaf of F_{n-1}, and we add one leaf for each node of F_{n-1} that has one child; however, the nodes of F_{n-1} with one child are precisely the leaves of F_{n-2}. The induction hypothesis implies that F_{n-1} has F_{n-1} leaves, and F_{n-2} has F_{n-2} leaves. Therefore, the number of leaves in F_n is precisely $F_{n-1} + F_{n-2} = F_n$.

In each case, we conclude the number of leaves in F_n is precisely F_n. ■

Rubric: 4 points total. –1 point for each missing base case (# of base cases may depend on the induction step). Students do not need to explicitly state the induction hypothesis if they use the natural one.

(c) How many nodes does F_n have? Give an exact, closed-form answer in terms of Fibonacci numbers and prove your answer is correct.

Solution: Tree F_n has $F_{n+2} - 1$ nodes.

Proof: Let n be an arbitrary non-negative integer. Assume that for any non-negative integer $k < n$, tree F_k has $F_{k+2} - 1$ nodes. There are two cases to consider:

- Suppose $n = 1$. Tree $F_n = F_1$ has $1 = F_3 - 1 = F_{n+2} - 1$ nodes.
- Suppose $n \geq 2$. Per part (a), tree F_n is obtained from F_{n-1} by adding F_n leaves. The induction hypothesis implies F_{n-1} has $F_{(n-1)+2} - 1 = F_{n+1} - 1$ nodes. Therefore, F_n has $F_{n+1} - 1 + F_n = F_{n+2} - 1$ nodes.

In each case, we conclude F_n has $F_{n+2} - 1$ nodes. ■

Rubric: 4 points total. –1 point for each missing base case (# of base cases may depend on their induction step). Students do not need to explicitly state the induction hypothesis if they use the natural one.
Sort the functions of n from asymptotically smallest to asymptotically largest, indicating ties if there are any.

Solution:

\[
3 - \cos n \equiv 3345 \\
\ll \lg^{0.6} n \\
\ll \log_{9} n \equiv \lg(7n) \\
\ll \ln^{3} n \\
\ll \sqrt{n} \\
\ll 17n \equiv n + 500 \\
\ll n \log n \\
\ll n^{2} \\
\ll 2^{4 \lg n} \\
\ll 2^{n} \\
\ll 4^{n}
\]

Rubric: 10 points total. -1 point for each function that appears too soon or for which the wrong comparison is used.